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Abstract— The steel industry involves energy-intensive pro-
cesses such as combustion processes whose accurate modelling
via first principles is both challenging and unlikely to lead
to accurate models let alone cast time-varying dynamics and
describe the inevitable wear and tear. In this paper we address
the main objective which is the reduction of energy consumption
and emissions along with the enhancement of the autonomy of
the controlled process by online modelling and uncertainty-
aware predictive control. We propose a risk-sensitive model
selection procedure which makes use of the modern theory
of risk measures and obtain dynamical models using process
data from our experimental setting: a walking beam furnace
at Swerea MEFOS. We use a scenario-based model predictive
controller to track given temperature references at the three
heating zones of the furnace and we train a classifier which
predicts possible drops in the excess of Oxygen in each heating
zone below acceptable levels. This information is then used to
recalibrate the controller in order to maintain a high quality
of combustion, therefore, higher thermal efficiency and lower
emissions.

Index Terms— Advanced Process Control; Machine Learn-
ing; Stochastic Model Predictive Control; Risk-sensitive Model
Selection; Cyber-Physical Systems.

I. INTRODUCTION

The process industry is undergoing a remarkable transfor-

mation led by the proliferation of devices with sensing, com-

munication and computation capabilities which has marked

the advent of cyber-physical systems which are ensembles

of physical processes and computational agents [1].

In the process industry, one often encounters energy

intensive processes which operate in highly uncertain con-

texts. The main objective is the design of control systems

which lead to higher performance and lower consumption

of resources, lower emissions, resilience to the inevitable

underlying uncertainty and, as a result, high autonomy. It has

nowadays become evident that the torrents of data which are

produced by industrial processes can be exploited to reach

these objectives.
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Model predictive control (MPC) has become the golden

standard in the process industry for its ability to account for

multiple-input multiple-output dynamics, problem objectives

and constraints [2]. MPC consists in solving an optimal

control problem along a prediction horizon minimising a

performance index subject to the system dynamics and

constraints; this yields an optimal sequence of control actions

the first one of which is applied to the system [3]. Often,

uncertainty is accounted for in MPC in a worst-case fashion

and the performance index is minimised for the worst-case

realisation of the uncertainty leading, naturally, to conser-

vative behaviour and poor performance. Advanced variants

of MPC, such as its stochastic variants, have been proven

powerful tools in dealing with uncertain systems [4]–[6].

In this paper we propose an integrated process control

scheme using a walking beam furnace of MEFOS Swerea

— a common process in the steel industry — as our case

study. To the best of our knowledge, this is the only large-

scale experimental furnace in Europe. A rough sketch of our

scheme is depicted in Figure 2. We explore several control-

oriented data-driven modelling approaches which can be

applied adaptively to update the obtained dynamical models

and detect changes in the dynamic behaviour of the system.

We propose a novel risk-based model selection methodology

which is suitable for MPC.

II. HEAT EXCHANGE DYNAMICS & DATA-DRIVEN

MODELLING

A. Walking Beam Furnace

A walking beam furnace is a furnace where steel slabs

are walked through several heating zones until they reach a

desired temperature. Heat is provided in each of the zones

via combustion of oil. The temperature increases as the slabs

move from zone 1 towards zone 3, so heat flows inside

the furnace upstream. Apart from heat losses through the

wall of the furnace, heat flows to the ambient by the charge

and discharge gates in zones 1 and 3 respectively which

open and close at regular intervals to load and unload the

slabs (or, sometimes, for manual inspection). Heat flow is

further influenced by the combustion air flow; a stream of

air convecting heat upstream. A schematic overview of the

walking beam furnace of MEFOS is shown in Figure 1.

The walking beam furnace is designed to heat the steel

products slabs (large steel beams) to a specific temperature

prior to the rolling process. Depending on the product the

discharge temperature varies, typically between 1100◦C to

1300◦C, with an acceptable discharge temperature window
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Fig. 1: Schematic of the walking beam furnace of MEFOS comprising three
heating zones. Heat is provided to each zone with rate Q̇i and, because of
temperature difference and convection, there is a heat flow Ḣ21 from zone
2 to zone 1 and Ḣ32 from zone 3 to zone 2. Heat escapes zones 1 and 3
at rates L̇1 and L̇3 mainly because of the input and output doors.

of a few degrees. In the furnace the slabs travel through

by using a combination of revolving and stationary beams.

During this passage, the slabs are directly exposed to the

heat produced by burners located inside the furnace. Typical

residence time inside the furnace is up to a few hours.

Highly turbulent flow profiles and heat transfer by con-

duction, convection and radiation call for accurate modelling

techniques involving partial differential equations [7] which

are not suitable for controller design purposes. Traditionally,

simple models are used and such plants are controlled by

simple PID-type controllers [8]. It has, however, nowadays

become evident that MPC can afford industrial furnaces high

performance and reliability [9], [10].

The walking beam furnace is equipped with temperature

sensors, two at each combustion zone ( one at the ceiling

and one on the wall) and Oxygen sensors at each zone; these

define the output variables of the system. The manipulated

variables are the supply rates of fuel (atomised oil) and

combustion air.

B. Risk-sensitive model selection

Models, regardless of their form and structure, need to

be appraised for their predictive ability. For this purpose we

introduced and used a new performance indicator which we

present in this section. At time k, using past information (past

observations of the system state and input values) and given

the current control action uk, the model predicts a value

ŷk+1|k. Recursively, and given a sequence of future (pre-

dicted) control actions uk+1, uk+2, . . . , uk+N−1, the model

is used to predict ŷk+i|k for i = 2, . . . , N . Once the actual

output realisations have occurred, that is, at the end of the

horizon, we may compute the errors

εk+j|k = ŷk+j|k − yk+j (1)

Thus, at every k we may create a vector εk :=
(εk+1|k, . . . , εk+N |k) ∈ IRN which is, essentially, a random

variable. We quantify the predictive ability of the model at
time k using the predicted mean square error defined as

PMSEk =
1

N

N∑
j=1

‖εk+j|k‖2. (2)

We then define the predicted root mean square error at time k
which we denote by PRMSEk as the square root of PMSEk,

PRMSEk =
√
PMSEk. (3)

This is a random variable. It should be clear that performing

a single-shot prediction and computing PRMSEk at a par-

ticular k is not indicative of the model’s predictive ability

at other time instants k. Computing the expected value of

PRMSEk is again not really indicative because we will be

disregarding all other higher-order moments of PRMSEk.

In order to extract a meaningful characteristic value out

of the random variable PRMSEk we need to employ an

appropriate risk measure. In particular, since we need to

minimise the prediction error – rather than to maximise it

– we are looking for a convex risk measure.

The theory of risk measures has been well established the

last decade and certain well-posedness axioms have been

postulated. A risk measure is called coherent if it satisfies the

four coherency axioms which can be found in [11]. The most

popular risk measure which enjoys a series of favourable

properties is the average value-at-risk of an (integrable)

random variable Z which is defined as

AV@Rα[Z] = inf
t∈IR

{t+ α−1
E[Z − t]+}, (4)

where [X]+ = max{0, X} and α is the significance level at

which AV@Rα is estimated.

In order to understand the meaning and practical signif-

icance of this operator, we need first to define the value-
at-risk of a real-valued random variable Z at significance

level α which is V@Rα[Z] = inf{z : P[Z ≤ z] ≥ α}. It

can be easily shown that AV@Rα[Z] is the expectation of

Z conditioned by Z ≥ V@Rα[Z], i.e.,

AV@Rα[Z] = E[Z | Z ≥ V@Rα[Z]]. (5)

We need to highlight that the minimisation of AV@Rα[Z]
leads to different choices than the minimisation of E[Z]. It

should be neither assumed that AV@Rα[Z1] ≤ AV@Rα[Z2]
implies E[Z1] ≤ E[Z2], nor the converse. Following (5),

AVAR0[Z] = sup[Z] and AVAR1[Z] = E[Z] — therefore,

AV@Rα interpolates between sup (the worst-case operator)

and E (the expectation).

In our analysis, in order to select a reliable dynamical

model, we assess its predictive ability on a set of data which

has not been used for training; this we call the test dataset
and thereon we compute AV@Rα[PRMSEk]. Note that the

models we produce may not be suitable for long-term open-

loop predictions, but they are suitable for control applications

where a predictive ability of a few time instants is required,

notwithstanding, but the availability of feedback obviates the

need for very accurate models.

C. Heat transfer dynamics

After an experimental campaign at MEFOS, a dataset

was obtained with measurements of temperature, oxygen,

combustion air flow, fuel supply rate and gate status in

intervals of 10s; a dataset of 35000 measurements was

thus compiled. This was split into a training set of 25000
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Fig. 2: Data-driven control concept for the industrial process of the walking beam furnace.

measurements and a test set of 10000 measurements. Models

were tested on the test set for their predictive ability using

the indexes presented in the previous section.
Hereafter we present some modelling techniques we used

along with validation results.
1) ARX model description: Auto-regressive model with

exogenous inputs (ARX) provide a simple and efficient

modelling framework. We assume that the temperatures

y(k) = (T1(k), T2(k), T3(k)) at the three zones of the

furnace are predicted by the model

ŷ(k) =

Ny∑
i=1

Ni
y∑

j=1

aijy
i(k − j) +

Nu∑
i=1

Ni
u∑

j=1

biju
i(k − j), (6)

that is, they are given as a linear combination of past temper-

atures, and past values of the fuel supply rate, combustion

air supply and door statuses (which are packed in the vector

u). History lengths are selected as shown in Tables I and II,

and the results in Table III.

T1 T2 T3

T1 q l
T2 l q l
T3 l q

TABLE I: Output-output correspondence of variables and the lags. We use
the parametrisation q = �1.67l�.

u1 u2 u3 u4 u5 u6 u7 u8

T1 l l l
T2 l l
T3 l l l

TABLE II: Output-input correspondence of variables and the lags used for
each variables. Input varialbes. u1, u3, u5: Oil consumption rate at zones
1, 2 and 3 respectively. u2, u4, u6: Combustion air flow at zones 1, 2 and
3 respectively. u7: load hatch-door, and u8: unload hatch-door.

Equation (6) can be concisely written as

ŷ(k) = φ(k)�p, (7)

where φ(k) is called a vector of regressors at time k and is a

collection of yi(k−j) and ui(k−j), while p is the vector of

corresponding model coefficients. For convenience we will

define the following

A = [ φ(k0) φ(k0+1) ··· φ(k0+D) ]
�
, (8)

here D is number of data points in our training data set.

The standard approach to system identification consists in

determining p by solving the least-squares problem [12],

minimizep
1
2‖Ap− y‖22. (9)

q l AV@R0.05 AV@R0.1

8 5 8.7980 6.8428
20 12 8.8208 6.8744
33 20 8.8798 6.9127
50 30 8.9429 6.9885

TABLE III: Summary of system identification results for K = 10 steps-
ahead prediction.

2) Sparse models — LASSO and Elastic net: In this

section will identify sparse models of the underlying physical

process. We aim at finding simple models that still explain

the data with sufficient accuracy. By doing so we hope

to obtain a model that will have superior generalisation

properties, based on the reasoning that simple models do

not capture noise. A well-known approach is to solve a

�1-regularised least squares problem, where penalisation is

imposed on models parameters. This technique is otherwise

known as Least Absolute Shrinkage and Selection Operator

(LASSO) [13] and enables us to select model structure based

on the data only. Furthermore, results of LASSO can help

us to better interpret the model.

The regularised problem is

minimise 1
2‖Ap− y‖22 + λ‖p‖1. (10)

Parameter λ enforces sparsity in the model — higher λ
will tend to force more values of p towards zeros and is

usually chosen by cross-validation. Once we have solved

the LASSO problem to identify the model structure (the

nonzeros of p), we solve a standard least-squares problem

for the reduced-order system known as debiasing.

Similar to LASSO, elastic net solves the optimisation

problem which involves both �1 and �2 penalty terms

minimise 1
2‖Ap− y‖22 + λ‖p‖1 + λ2

2
‖p‖22, (11)

and it overcomes certain limitations of LASSO such as its

sensitivity to highly correlated variables.

Results are reported in Table IV. It can be seen that Elastic

net method produces models that give lower AV@Rα score

on the test data. It is worth pointing out that LASSO and

elastic net models can be trained online as new data arrive

using streaming methodologies such as [14].

III. UNCERTAINTY PROPAGATION

We previously presented various predictive dynamical

models and proposed a method to evaluate their predictive

ability. When, however, it comes to using these models to

make predictions it is expedient to know, not only how good
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λ Method LASSO Elastic net
30 8.9751 -
60 9.3528 7.9545
90 8.9414 8.3693
120 8.2951 8.2951
150 9.1920 8.4822

TABLE IV: Summary of model selection algorithms. Performance is
assessed by AV@R0.1[PRMSE]. In all of the models history of l = 80
was used with different λ.

we expect the prediction to be, but what are some probable

realisations of the future evolution of the predicted trajectory.

Such a collection of future state trajectories is known as a

scenario fan [15].

Informative scenario fans can be directly constructed from

historical data — possibly the entire history of available data.

Such a voluble representation of the uncertainty is, however,

unnecessarily complicated and will lead to the formulation of

huge scale optimisation problem in the context of stochastic

MPC. Scenario fans may be compressed into scenario trees

— discrete filtered probability distribution such as the one

shown in Figure 3 — which can be constructed follow-

ing [16].

Fig. 3: Scenario tree structure

IV. COMBUSTION QUALITY MODELS

Combustion quality can be estimated by the amount of

oxygen in each zone of the furnace. However, the construc-

tion of dynamical models for the concentration of Oxygen

in each zone is hindered by the highly fluctuating and noisy

available measurements. Instead, here we opt for a predictive

model for the expected quality of combustion — a nominal

(class) variable.

An estimate of that measure, can be given by averaging

the oxygen concentration over a predefined Horizon H .

Based on expert knowledge, instead of providing a continues

measurement, only predefined intervals matter. Therefore

the oxygen state prediction can be cast as a classification

problem, involving three classes:

• Class 1: (Poor combustion) if the H-step-ahead pre-

dicted average [O2] is in [0; 1.5]

• Class 2: (Adequate combustion) if the H-step-ahead

predicted average [O2] is in (1.5; 5.0]

• Class 3: (Excess of Oxygen) Otherwise.

The developed predictive model is based on current

and previous values of the measured variables described

in Section II-C. As in any other machine learning and

data driven approach the problem of the “curse of dimen-

sionality” is present, which can make the learning/training

procedure problematic. Therefore it is common to have a

feature/attribute selection stage, to try to pick the most

informative/relevant features.

On the other hand feature selection is not an easy task. It

is a search problem to find a subset of l features from an

original set of d features, such that l < d, which achieves

the maximum targeted outcome. Therefore, the “goodness”

of a particular feature subset is evaluated by using an

objective function, J(Ym), where Ym is a feature subset

of size m. This kind of objective function can be defined

primarily using either filters or wrappers [17] . One one hand,

filters rate the “goodness” of features without employing

any learning algorithm, while one the other hand, wrappers

using the performance of a learning algorithm as a measure

of the “goodness” of a feature (sub)set. A quite powerful

hybrid scheme combines filter ranking with wrapper subset

evaluation [18], adding features sequentially based on their

ranking, forming nested subsets:

S1 = {fi1}, S2 = {fi1 , fi2}, . . . , Sn = {fi1 , fi2 , . . . , fin}
and selecting the one that achieves the best results once it is

fed to the predictive model.

In this work, due to the imbalance nature of the data set,

the ranking was based using the Area Under the Receiver

Operating Characteristic (ROC) curve (AUC) [19], which is

immune to the problem of class imbalance. AUC is given

by:

AUC =
1

mn

m∑
i=1

n∑
j=1

I(r−i , r
+
j ) (12)

where

I(r−i , r
+
j ) =

⎧⎪⎨
⎪⎩

1, if r−i ≥ r+j
0, if r−i = r+j
3, if r−i ≤ r+j

(13)

where m is the number of the negative cases r−, r−i is the

value (of the feature) of the i-th negative case and n is the

number of positive cases r+ and r+j the value (of the feature)

of the j-th positive case. For multi-class problems AUC is

given as the average of all class pairs.

The predictive model involved both in the wrapper stage as

well as the final oxygen prediction is the Nearest Neighbour

(NN) classifier, which as its name implies, given a labeled

training set, assigns unseen examples to the class of its

nearest neighbour. A set of initial experiments revealed that

the imbalanced nature of the dataset made very difficult the

training of the predictive model (the under-sampled class 1

was practically never predicted correctly). In order to combat

the imbalanced nature of the data set, the Synthetic Minority

Oversampling TEchnique (SMOTE) was employed [20],
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which creates stochastically synthetic instances for the mi-

nority class along the lines connecting an instance of the

minority class with its k nearest neighbours.

The results of the proposed approach for the three different

zones are depicted in the following confusion matrices, given

in Table V, which are translated into overall accuracies per

zones 1, 2 and 3, equal to 96.33%, 94.65% and 88.57%

respectively.

CM Zone 1 Predicted
Class 1 Class 2 Class 3

True
Class 1 350 16 0
Class 2 13 1908 199
Class 3 0 138 7347

CM Zone 2 Predicted
Class 1 Class 2 Class 3

True
Class 1 564 8 0
Class 2 10 2100 77
Class 3 0 64 148

CM Zone 3 Predicted
Class 1 Class 2 Class 3

True
Class 1 42 4 0
Class 2 49 5410 699
Class 3 0 388 3379

TABLE V: Confusion matrices (CM) for the combustion quality classifier
for the three zones.

V. DATA-DRIVEN OPERATING MANAGEMENT

A. Stochastic model predictive control

For the model predictive control problem formulation we

identify two main objectives: (i) to retain the temperatures

at each zone as close as possible to the desired temperature

set-points with higher importance on the tracking error at

zones 2 and 3, (ii) to penalise the consumption of fuel at

each zone. For this purpose, we use the stage cost function

�(x, u;xsp) = 1
2‖x− xsp‖2Q + 1

2‖u‖2R, (14)

where Q = diag(Q1, Q2, Q3) is a diagonal matrix where

Qi > 0 is the tracking error weight for zone i with Q1 <
Q2 < Q3, xsp is the temperature set-point which is specified

by the operator and R is a diagonal matrix with zeros on the

diagonal at the positions which don’t correspond to the fuel

consumption. The notation ‖·‖2Q is meant as ‖x‖2Q = x�Qx.

We will discuss a data-driven procedure to select Q and R
in Section V-B.

The stochastic MPC controller needs to take into account

the input constraints. Let uk = (u1
k, u

2
k) where u1

k ∈ IR3 are

the fuel supply rates and u2
k ∈ IR3 are the combustion air

flows at each zone. Then⎡
⎣
0
0
0

⎤
⎦ ≤ u1

k ≤
⎡
⎣
50
50
50

⎤
⎦ ,

⎡
⎣
0
0
0

⎤
⎦ ≤ u2

k ≤
⎡
⎣
1000
900
1000

⎤
⎦ . (15)

The exact times at which load and unload doors are opened

is scheduled in advanced and those are fed to the MPC

controller as prescient inputs. This is because the doors open

and close based on a predefined production schedule.

At this point note that the stage cost � is a random variable

as the future evolution of the system state is uncertain. As

customary in MPC we define the following value function

to be optimised

V =

N−1∑
k=0

�(xk+j|k, uk+j|k;x
sp
k+j|k), (16)

where xk+j|k is the future state of the system, at time

k + j as predicted at time k and uk+j|k are decisions

which are to be taken at time k + j using the information

that will be available to the controller at that time (that

is xk|k, xk+1|k, . . . , xk+j|k.) The total cost V is again a

random variable. In stochastic MPC we minimise V over the

space of all possible causal control function u(x) instead of

minimising over sequences of control actions. Here, for every

possible future realisation of xk+j|k we make a decision

uk+j|k. This control scheme is known as scenario-based
model predictive control and the interested reader can find

more information in [15], [21]. The stochastic MPC problem

now becomes

minimiseu EV (17)

subject to the system dynamics, constraints (15) and xk|k =
xk.

B. Data-driven tuning

The tuning parameters Q and R can be adapted on-line

from process data so as to strike a good balance between

quality of set-point tracking and quality of combustion

(availability of oxygen). Besides the oil and the combustion

air, another crucial factor for the quality of combustion is the

oxygen. If the level of oxygen in the furnace is satisfying,

the combustion process can go on, otherwise we will have

lower quality combustion which leads to poorer temperature

tracking.

To this end we employ a switching scheme for the

control of the furnace based on the predicted oxygen levels.

If the level of oxygen is predicted to be acceptable, we

use a nominal MPC controller. Likewise, if the classifier

predicts low oxygen levels, we switch to a more conservative

MPC controller that penalises oil expenditure more than the

nominal one. This is regulated by increasing the values of

entries of R matrix in (14).

We proceed in the following fashion. At each time step

oxygen state predictor returns a good (Class 2 or 3) or

bad (Class 1) flag for the oxygen levels in each furnace

zone. Based on the prediction we adjust the corresponding

entries of the matrix R. In effect, we will have eight different

MPC controllers where, at each time step, a corresponding

controller is selected based on the classifications given by

the algorithm. Diagonal entries of matrix Q are always set to

Q11 = 3, Q22 = 4 and Q33 = 5, whereas, depending on the

high or low predicted oxygen content, we have RH
ii = 10−2

or RL
ii = 10−3 for the diagonal entries of the matrix R.

Next, model predictive controller is selected based on the

predicted zones oxygen levels with different stage-wise costs

due to selection of matrices Q and R.
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Fig. 4: Simulation of the closed-loop operation of the walking beam furnace.
Black crosses mark times at which a different controller (with higher R
values) is used to save up oxygen in the zone.

C. Simulations

Here we provide simulations to support the concept pre-

sented in the previous section. At each time step we select

a controller from the set of eight possible ones based on

the classifier prediction regarding the zones oxygen levels at

each zone. We then apply the first computed input and repeat

the procedure at the next time instant.

In order to demonstrate our concept we have taken a

simple ARX model with l = 5 and converted it to state

space representation. The resulting model has 56 states, but

is also significantly sparse.

Closed-loop simulations are shown in Figure 4 where we

employ the proposed control scheme. Most of the time,

the combustion quality is high. In particular, in the low-

temperature zone 1, there is only one instance of using a

high-R controller. The temperature spike around time 70min
is due to the increase of temperature in zone 3 because

heat is transferred from zone 3 to zone 2. Moreover, it can

be observer that the temperature response in zone 1 is less

aggressive that the response in zones 2 and 3 and temperature

tracking in zone 3 is constant with a negligible fluctuation

of a few degrees.

Since dynamical models are not perfect and an estimation

in the simulations shown here (cf. Figure 4) the underlying

system is taken to be uncertain. This allows us to perform

realistic simulations even with imperfect dynamical models

by replaying the modelling errors.

VI. CONCLUSIONS

In this paper we have put together three novel tools to

address issues related to the control of industrial processes.

First, we proposed a robust data-driven model selection pro-

cedure based on the average value-at-risk which can be used

to automatically and reliably train and select process models.

Second, we used a stochastic variant of model predictive

control to deal with uncertainty as a result of modelling and

measurement errors. Third, we proposed an on-line automatic

tuning methodology where the parameters Q and R are

allowed to change online based on the predictions of a

machine learning model for the expected combustion quality.

The proposed data-driven control scheme augurs the advent

of industrial processes of higher performance, resilience and

autonomy.

Our ongoing work focuses on the utilisation of information

from immersible sensors which travel inside the furnace with

the slabs and provide temperature measurements from their

surface and core. This will lead to the acquisition of further

experimental data that will allow us to build higher resolution

temperature and oxygen models.
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