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Abstract— This paper presents a novel two-stage regularized
moving-horizon algorithm for PieceWise Affine (PWA) regres-
sion. At the first stage, the training samples are processed it-
eratively, and a Mixed-Integer Quadratic-Programming (MIQP)
problem is solved to find the sequence of active modes and the
model parameters which best match the training data, within a
relatively short time window in the past. According to a moving-
horizon strategy, only the last element of the optimal sequence
of active modes is kept, and the next sample is processed
by shifting forward the estimation horizon. A regularization
term on the model parameters is included in the cost of the
formulated MIQP problem, to partly take into account also the
past training data outside the considered time horizon. At the
second stage, linear multi-category discrimination techniques
are used to compute a polyhedral partition of the regressor
space based on the estimated sequence of active modes.

I. INTRODUCTION

Piecewise Affine (PWA) systems are heterogeneous sys-
tems which exhibit both continuous and discrete dynamics.
PWA models are simple and flexible model structures and
thanks to their universal approximation properties, any non-
linear function can be modeled with arbitrary accuracy by a
PWA map [8]. Furthermore, due to the equivalence between
PWA models and several classes of hybrid models [13],
available tools for modelling, analysis and control of hybrid
systems can be also applied to PWA systems [4], [6].

PWA regression is an NP-hard problem [15], where both
the regressor space partition and the submodel parameters
have to be estimated from a set of training data. Several
algorithms/heuristics for PWA regression and for the identi-
fication of hybrid systems, have been proposed in the last
two decades (see the survey papers [12], [20]). Among
these algorithms, we mention the set-membership approaches
[5], [19], the sparse-optimization based approaches [1], [18]
and the mixed-integer programming method [22]. In the
latter approach, the estimation of hinging-hyperplane ARX
models and piecewise affine Wiener models is formulated as
a mixed-integer linear or quadratic programming problem,
and then solved through a branch-and-bound algorithm.
As the number of integer variables is proportional to the
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number of modes and the number of training samples, the
approach in [22] is limited to medium-scale problems. The
contributions [2], [5], [9]–[11], [14], [17] fall in the class
of cluster-based two-stage methods. At the first stage, the
training samples are clustered by assigning each datapoint to
a submodel according to a certain criterion and, at the same
time, the parameters of the affine submodels are estimated.
In the second stage, the polyhedral partition of the regressor
space is computed by linear separation techniques. Unlike
the mixed-integer programming approach [22], which can
be solved for the global optimum, sub-optimal solutions are
obtained by the aforementioned two-stage methods.

In this paper, we propose a regularized moving-horizon
PWA regression algorithm, which can be seen as a mix
between the mixed-integer programming approach [22] and
the cluster-based algorithm [10]. At the first stage, a Mixed-
Integer Quadratic-Programming (MIQP) problem is formu-
lated to compute both the optimal sequence of active modes
within the considered horizon and the parameters of the
affine submodels. Moreover, a regularization term is included
in the cost of the formulated MIQP problem, to exploit
the information from the past training samples outside the
considered time window. Thus, the length Np of the horizon
acts as a knob to combine the advantages of the two-stage
algorithm [10] (namely, computational efficiency and itera-
tive processing of the training samples) and the advantages of
the mixed-integer programming approach [22] (namely, non-
decoupled optimization over the active modes and the sub-
model parameters). According to a moving-horizon strategy,
only the active mode at current sampling time is extracted
from the computed optimal sequence of active modes, and
the next training sample is processed by shifting forward
the estimation horizon. At the second stage, the regressor
space is partitioned using computationally efficient multi-
class linear separation methods proposed in [10].

II. PROBLEM FORMULATION

Let us consider a data-generating system in the form

y(k) = fo(x(k)) + eo(k), (1)

where k ∈ N is the time index, y(k) ∈ Rny is the measured
output at time k, eo(k) ∈ Rny is an additive random noise,
x(k) ∈ Rnx is the regressor vector which is assumed to take
values in a set X ⊂ Rnx , and fo : X → Rny is an unknown
and possible discontinuous function.

In this paper, we address a PWA regression problem,
which amounts at computing a PWA function f : X → Rny

approximating the regression function fo based on a set of N
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observations of the regressor/output pairs {x(k), y(k)}Nk=1.
The PWA vector-valued function f is described as:

f(x) =


Θ1 [ 1

x ] if x ∈ X1,
...
Θs [ 1

x ] if x ∈ Xs,
(2)

where s ∈ N denotes the number of modes, Θi ∈
Rny×(nx+1) are parameter matrices, and Xi, with i =
1, . . . , s, are polyhedra (Hix ≤ Di) that form a complete
polyhedral partition1 of the regressor space X.

Estimation of the PWA function f in (2) thus requires:
(i) selecting the number of modes s; (ii) estimating the
parameter matrices Θi; and (iii) finding the polyhedra Xi
(i.e., the matrices Hi and Di) defining the partition of the
regressor space X . Tradeoff between data fitting and model
complexity should be taken into account while choosing the
number of modes s. If the number of modes s is small, then
the PWA map f may not be flexible enough to capture the
shape of the underlying nonlinear data-generating function
fo (1). On the contrary, considering the high number of
modes results in a more accurate description of the PWA
map f with more degrees of freedom. However, this may
cause overfitting and poor generalization to unseen data (not
used in the training phase) as the final estimate is sensitive to
the noise corrupting the observations, besides increasing the
complexity of the estimation procedure and of the resulting
PWA model. In the rest of the paper, we assume that s is
fixed by the user, and chosen via cross-calibration. This is
done by evaluating the performance of the estimated model
for different values of s, on a fresh data set which is different
from the training data set.

III. PWA REGRESSION ALGORITHM

The developed algorithm for PWA regression consists of
the following two stages:

S1. Recursive estimation of the model parameters Θi and
simultaneous clustering of the regressors {x(k)}Nk=1.

S2. Computation of a polyhedral partition of the regressor
space X using computationally efficient multi-category
linear separation methods already available in the lit-
erature. This can be computed either offline or online
(recursively) and is executed after S1.

A. Recursive clustering and parameter estimation

Stage S1 is carried out through a regularized moving-
horizon identification algorithm. The training regres-
sor/output pairs {x(k), y(k)} are processed iteratively. At
each time sample k, a moving-horizon window of length
Np containing regressor/output pairs from time k −Np + 1
to time k is considered. The model parameters Θi and the
active mode σ(k) at time k are estimated simultaneously by

1A collection {Xi}si=1 is a complete partition of the regressor domain X
if
⋃s

i=1 Xi = X and
◦
Xi ∩

◦
Xj = ∅, ∀i 6= j, with

◦
Xi denoting the interior

of Xi.

solving the mixed-integer programming problem:

min
{Θi}si=1

{δi(k−t)}
s,Np−1
i=1,t=0

s∑
i=1

Np−1∑
t=0

∥∥(y(k−t)−Θi

[
1

x(k−t)
])
δi(k−t)

∥∥2
(3a)

+

k−Np∑
t=1

∥∥y(t)−Θσ(t)

[
1
x(t)

]∥∥2
(3b)

s.t. δi(k−t)∈{0, 1},
s∑
i=1

δi(k−t)=1, t=0, . . . , Np−1. (3c)

The active mode σ(k) ∈ {1, . . . , s} represents the cluster
that the regressor x(k) is assigned to, and it is extracted
from the optimizer of problem (3), i.e.,

σ(k) = i∗, with i∗ : δi∗(k) = 1. (4)

According to a moving-horizon estimation strategy, only the
active mode σ(k) at time k is kept, and the Np-length time
window is shifted forward to process the next pair {x(k +
1), y(k + 1)}.

Problem (3) aims at searching for the optimal sequence
of active modes within the considered time window and
the model parameters Θi which best match the available
observations up to time k. Note that the term (3a) aims at
finding both the model parameters and the sequence of active
modes {σ(t)}kt=k−Np+1 which best match the observations
within the Np-step time horizon. The term (3b) acts as
a regularization term on the parameters Θi and it takes
into account the time history of the observations outside
the considered time window. More specifically, in (3b), the
sequence of active modes is not optimized from time 1 to
time k − Np, but it is fixed to the estimates {σ(t)}k−Np

t=1

obtained from the previous iterations of the moving-horizon
estimation algorithm. In-turn, the sequence of active modes
is optimized only within the considered time horizon in (3a).

Increasing Np increases the information used to cluster
the regressor x(k) and to estimate the model parameters
Θi. On the one hand, increasing Np increases the number
of binary decision variables δi in (3). Thus, the length Np
of the horizon provides a trade off between complexity of
the optimization problem (3), and accuracy in estimating the
model parameters Θi and in clustering the regressor x(k).

Recursive update of the objective function
Note that, at a first glance, the regularization cost (3b)

requires to use, and thus to store, the whole time-history
of observations up to time k − Np (i.e., the sequence of
regressor/output pairs {x(k), y(k)}k−Np

k=1 ). Nevertheless, once
a new observation is available at time k, the term (3b) can
be recursively updated, as described in the following.

Let us rewrite the regularization term (3b) as
k−Np∑
t=1

tr
((
y(t)−Θσ(t)

[
1
x(t)

]) (
y(t)−Θσ(t)

[
1
x(t)

])′)
=

tr

k−Np∑
t=1

Θσ(t)

[
1
x(t)

] [
1
x(t)

]′
Θ′σ(t)

−
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2tr

k−Np∑
t=1

Θσ(t)

[
1
x(t)

]
y(t)′

+tr

k−Np∑
t=1

y(t)y(t)′

 , (5)

with tr(·) denoting the matrix trace. Let us now define the
matrices

Hi(k −Np) =

k−Np∑
t=1

[
1
x(t)

] [
1
x(t)

]′
hi(t), (6a)

Fi(k −Np) =

k−Np∑
t=1

[
1
x(t)

]
y(t)′hi(t), (6b)

with hi(t) = 1, if σ(t) = i or hi(t) = 0, otherwise.
Substituting (6) into the cost (5), we can represent (3b) as
k−Np∑
t=1

∥∥y(t)−Θσ(t)

[
1
x(t)

]∥∥2
= tr

(
s∑
i=1

ΘiHi(k −Np)Θ′i

)

− 2tr

(
s∑
i=1

ΘiFi(k −Np)

)
+ tr

k−Np∑
t=1

y(t)y(t)′

 . (7)

Note that the matrices Hi(k −Np) and Fi(k −Np) can be
recursively computed as

Hi(k −Np) =Hi(k −Np − 1)+[ 1
x(k−Np)

] [ 1
x(k−Np)

]′
hi(k −Np), (8a)

Fi(k −Np) =Fi(k −Np − 1)+[ 1
x(k−Np)

]
y(k −Np)′hi(k −Np). (8b)

Thus, processing the observation {x(k), y(k)} just requires
to update the matrices Hi(k − Np − 1) and Fi(k − Np −
1) through (8), with no need to store the time history of
observations {x(k), y(k)}k−Np−1

t=1 .

MIQP formulation
To reformulate (3) as an MIQP problem, let us define the

vector zi(k) ∈ Rny with δi(k)∈{0, 1} as

zi(k) =
(
y(k)−Θi

[
1

x(k)

])
δi(k). (9a)

Note that:

zi(k) =

{
y(k)−Θi

[
1

x(k)

]
if δi(k) = 1

0 if δi(k) = 0
(9b)

Let M and m be an arbitrary large (resp. small) upper (resp.
lower) bound of the elements of the vector y(k)−Θi

[
1

x(k)

]
,

m ≤ y(k)−Θi

[
1

x(k)

]
≤M. (9c)

Based on conditions (7) and (9), problem (3) can be equiv-
alently written as the MIQP problem

min
{Θi}si=1

{δi(k − t)}
s,Np−1
i=1,t=0

{zi(k − t)}
s,Np−1
i=1,t=0

Np−1∑
t=0

s∑
i=1

z2
i (k − t)+ (10a)

tr

(
s∑
i=1

ΘiHi(k−Np)Θ′i

)
−2tr

(
s∑
i=1

ΘiFi(k−Np)

)
, (10b)

s.t. zi(k − t) ≤Mδi(k − t), (10c)
zi(k − t) ≥ mδi(k − t), (10d)

zi(k−t)≤ y(k−t)−Θi

[
1

x(k−t)
]
−m(1− δi(k−t)), (10e)

zi(k−t)≥ y(k−t)−Θi

[
1

x(k−t)
]
−M(1− δi(k−t)), (10f)

s∑
i=1

δi(k − t) = 1, t = 0, . . . , Np − 1, (10g)

δi(k − t) ∈ {0, 1}, i = 1, . . . , s, (10h)

Based on the constructed problem (10), different MIQP
solvers can be chosen to solve (10). For small-scale prob-
lems, the accelerated dual gradient projection (GPAD for
short) [21] coupled with Branch and Bound (B&B) method
(GPAD-B&B) can be used. The GPAD algorithm is very
simple as it only needs basic arithmetic computations, which
is used to solve the Quadratic Programming (QP) relaxations
arising in B&B [16]. GUROBI solver can be used to solve
medium and large-scale problems.

Summary and iterative refinement
The steps described so far for recursive clustering of

the regressors {x(k)}Nk=1 and for model parameters Θi

estimation are summarized in Algorithm 1. At the beginning
of Algorithm 1, a mini-batch identification problem is solved
to estimate the sequence of active modes σ(t) from time
1 up to time Np and to assign the regressor {x(t)}Np

t=1 to
the cluster {Cσ(t)}

Np

t=1 (stages 2-6). Then, the observations
{x(k), y(k)} are processed iteratively. Besides updating the
model parameters Θi at each time k (stage 7.3), the active
mode σ(k) is estimated (stages 7.4-7.6) and the regressor
x(k) is consequently assigned to cluster Cσ(k) (stage 7.7).

It is worth pointing out that, at the first iterations of Algo-
rithm 1 (i.e., for k̄ � N ), the observations {x(t), y(t)}k̄t=1

may be wrongly classified, as the learning phase is based on
a “small” set of observations. An error in the classification
of the pairs {x(t), y(t)}k̄t=1 (i.e., an incorrect estimate of the
mode sequence {σ(t)}k̄t=1) also influences the estimate of
the active modes and of the model parameters Θi at the next
time samples k > k̄, as the regularization cost (3b) depends
on the estimated sequence {σ(t)}k̄t=1. When working in a
batch mode, the effect of the initial classification error may
be reduced by running Algorithm 1 multiple times, including
in the regularization term (3b) also the sequences of active
modes estimated at the previous runs. More specifically, at
the nq-th run of Algorithm 1, the following cost is considered
instead of (3a)-(3b):

s∑
i=1

Np−1∑
t=0

γ1

∥∥(y(k−t)−Θi

[
1

x(k−t)
])
δi(k−t)

∥∥2
+ (11a)

γ2

k−Np∑
t=1

∥∥y(t)−Θσ(t,nq)

[
1
x(t)

]∥∥2
+ (11b)

nq−1∑
q=1

λnq−q−1

N−Np∑
t=1

∥∥y(t)−Θσ(t,q)

[
1
x(t)

]∥∥2
, (11c)

with σ(t, q) (q = 1, . . . , nq) being the estimate of the active
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Algorithm 1 Recursive clustering of the regressors and
model parameters estimation

Input: Observations sequence {x(k), y(k)}Nk=1; number of
modes s; horizon Np.

1. let Hi(0)← 0, Fi(0)← 0, Ci ← ∅, i = 1, . . . , s;
2. let k ← Np;
3. solve the MIQP problem (10);
4. let {δ∗i (t)}s,Np

i=1,t=1 be the optimal parameters minimiz-
ing (10);

5. for t = 1, . . . , Np do
5.1. let i∗(t) be the index such that δ∗i∗(t) = 1;
5.2. let σ(t)← i∗(t);
5.3. let Cσ(t) ← Cσ(t) ∪ {x(t)};

6. end for
7. for k = Np + 1, . . . , N do
7.1. update the matrices Hi(k − Np) and Fi(k − Np)

through (8);
7.2. solve the MIQP problem (10);
7.3. let Θ∗i (k) be the optimal parameters minimizing (10),

i = 1, . . . , s;
7.4. let {δ∗i (k − t)}Np−1

t=0 be the optimal parameters min-
imizing (10), i = 1, . . . , s;

7.5. let i∗ be the index such that δ∗i∗(k) = 1;
7.6. let σ(k)← i∗;
7.7. let Cσ(k) ← Cσ(k) ∪ x(k);

8. end for;

Output: Estimated parameters Θ∗1(N), . . . ,Θ∗s(N); clus-
ters C1, . . . , Cs; sequence of active modes {σ(k)}Nk=1.

mode at time t obtained at the q-th run of Algorithm 1. Note
that (11c) is a regularization term based on the past runs
of Algorithm 1, while (11b) plays the same role of (3b),
as it regularizes the parameters Θi based on the estimate
{σ(t)}k−Np

t=1 obtained at the current run of Algorithm 1.
A forgetting factor λ ∈ R : 0 < λ ≤ 1 is also in-
cluded in (11c) to exponentially downweight the estimates
{σ(t, q)}Nt=1 obtained at past runs of Algorithm 1. The
regularization parameters γ1, γ2 ∈ R are introduced in (11a)
and (11b), respectively.

Similar to the original regularization term (3b), the
cost (11) can be also recursively updated as a new sample
{x(k), y(k)} is processed, without the need to store the
whole time history of estimates {σ(k, q)}N,nq−1

k=1,q=1 obtained
at the previous runs of Algorithm 1. As a matter of fact, the
cost (11) can be written as

s∑
i=1

Np−1∑
t=0

γ1

∥∥(y(k−t)−Θi

[
1

x(k−t)
])
δi(k−t)

∥∥2
+ (12a)

γ2

{
tr

(
s∑
i=1

ΘiHi(k −Np, nq)Θ′i

)
− (12b)

2tr

(
s∑
i=1

ΘiFi(k −Np, nq)

)
+ (12c)

tr

k−Np∑
t=1

y(t)y(t)′

+ (12d)

nq−1∑
q=1

tr

(
s∑
i=1

Θiλ
nq−q−1Hi(N −Np, q)Θ′i

)
− (12e)

2

nq−1∑
q=1

tr

(
s∑
i=1

Θiλ
nq−q−1Fi(N −Np, q)

)
+ (12f)

nq−1∑
q=1

tr

λnq−q−1

N−Np∑
t=1

y(t)y(t)′

 , (12g)

where Hi(N−Np, q) and Fi(N−Np, q) (q = 1, . . . , nq) are
defined similarly to (6) and computed based on the estimates
σ(t, q) computed at the q-th run of Algorithm 1. Specifically:

Hi(N −Np, q) =

N−Np∑
t=1

[
1
x(t)

] [
1
x(t)

]′
hi(t, q),

Fi(N −Np, q) =

N−Np∑
t=1

[
1
x(t)

]
y(t)′hi(t, q),

with hi(t, q) = 0, if σ(t, q) = i or hi(t, q) = 1, otherwise.
When the pair {x(k), y(k)} is processed, the matrices

Hi(k − Np, nq) and Fi(k − Np, nq) in (12b)-(12c) can be
recursively updated through (8), while only the matrices
Hi(N −Np, q) and Fi(N −Np, q) (with q = 1, . . . , nq − 1)
are needed to construct the terms (12e)-(12f).

B. Construction of the state partition

The partition {Xi}si=1 of the regressor space X can be
found along with the estimation of the model parameters
{Θi}si=1 and the sequence of active modes {σ(k)}Nk=1. This
is done by separating the computed clusters {Ci}si=1 using
linear multicategory discrimination.

In the following subsection, we briefly describe the algo-
rithms recently presented in [10], which are suited both for
offline and online (i.e., recursive) computation of the state
partition.

Linear multicategory discrimination: problem formulation
According to the formulation introduced in [7], the linear

multicategory discrimination problem is tackled by searching
for a convex piecewise affine separator function φ : Rnx →
R discriminating between the clusters C1, . . . , Cs. The sepa-
rator function φ is defined as

φ(x) = max
i=1,...,s

(
[ x′ −1 ]

[
ωi

γi

])
, (14)

where ωi ∈ Rnx and γi ∈ R are the parameters to be
computed. Let mi denote the cardinality of the cluster Ci
and let Mi ∈ Rmi×nx , for i = 1, . . . , s, which is obtained
by stacking the regressors x(k)′ belonging to Ci in its rows.

If the clusters {Ci}si=1 are linearly separable, then the
separator function φ satisfies the following conditions:[

Mi −1mi

] [
ωi

γi

]
≥
[
Mi −1mi

] [
ωj

γj

]
+ 1mi

, (15)

i, j = 1, . . . , s, i 6= j,
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where 1mi
is an mi-dimensional vector of ones.

The piecewise-affine separator φ thus satisfies the condi-
tions:

φ(x) = [x′ − 1]
[
ωi

γi

]
, ∀x ∈ Ci, i = 1, . . . , s

φ(x) ≥ [x′ − 1]
[
ωj

γj

]
+ 1, ∀x ∈ Ci, i 6= j

(16)

From (16), the polyhedra {Xi}si=1 are defined as

Xi=
{
x∈Rnx : [x′ −1]

[
ωi−ωj

γi−γj

]
≥1, j=1, . . . , s, j 6= i

}
.

Off-line multicategory discrimination
The parameters {ωi, γi}si=1 are calculated by solving the

optimization problem which is convex [10] (instead of solv-
ing a robust linear programming (RLP) problem as in [7]),

min
ξ

κ

2

s∑
i=1

(
‖ωi‖22 + (γi)2

)
+

s∑
i=1

s∑
j = 1
j 6= i

1

mi

∥∥∥∥([Mi −1mi ]
[
ωj−ωi

γj−γi

]
+ 1mi

)
+

∥∥∥∥2

2

, (17)

with ξ = [ (ω1)′ ... (ωs)′ γ1 ... γs ]
′. Problem (17) minimizes

the averaged squared 2-norm of the violation of the in-
equalities in (15). The regularization parameter κ > 0
guarantees that the objective function (17) is strongly con-
vex. Problem (17) is then solved through the Regularized
Piecewise-Smooth Newton (RPSN) method explained in [10]
and originally proposed in [3].

Recursive multicategory discrimination
An online approach can be used, either in place of the

off-line approach or to refine the partition φ online based on
streaming data. A recursive approach using on-line convex
programming can be used to solve (17).

Considering the data-points x ∈ Rnx as random vectors
and let us assume that there exists an oracle function i :
Rnx :→ {1, . . . , s} that assigns the corresponding mode
i(x) ∈ {1, . . . , s} to a given x ∈ Rnx . By definition, function
i describes the clusters in the data-point space Rnx . Let us
also assume that the following probabilities

πi = Prob[i(x) = i] =

∫
Rnx

δ(i, i(x))p(x)dx,

are known for all i = 1, . . . , s, where δ(i, j) = 1 if
i = j, zero otherwise. Problem (17) can be the generalized
as the following convex regularized stochastic optimization
problem

ξ∗ = min
ξ
Ex∈Rnx [`(x, ξ)] +

κ

2
‖ξ‖22 (18)

`(x, ξ) =

s∑
j = 1

j 6= i(x)

1

πi(x)

(
x′(ωj − ωi(x))− γj + γi(x) + 1

)2

+
,

where Ex [·] denotes the expected value w.r.t. x. Problem (18)
aims at violating the least, on average over x, the condition
in (15) for i = i(x). The coefficients πi can be estimated
offline from a data subset, specifically πi = mi

N , and can

be updated iteratively. Nevertheless, numerical experiments
have shown that uniform coefficients π = 1

s work equally
well. Problem (18) can be solved online using convex op-
timization algorithm, Averaged Stochastic Gradient Descent
(ASGD) method described in [10].

IV. SIMULATION EXAMPLE

The performance of the proposed PWA regression algo-
rithm is shown via identification of PieceWise Affine au-
toRegressive with eXogenous input (PWARX) systems in this
section. The output sequence used for training is corrupted
by a zero mean white Gaussian noise process eo. The Signal-
to-Noise Ratio (SNR) index

SNR = 10 log

∑N
t=1(y(t)− eo(t))2∑N

t=1(eo(t))2
, (19)

quantifies the effect of the measurement noise on the output.
The quality of the identified models is assessed on a noiseless
validation dataset (not used for training) through the Best Fit
Rate (BFR) index

BFR = max

1−

√√√√∑Nval

k=1 (y(k)− ŷ(k))
2∑Nval

k=1 (y(k)− ȳ)
2
, 0

 , (20)

with Nval being the length of the validation set and ŷ being
the estimated model output and ȳ the sample mean of the
output signal. All the simulations are carried out using a
desktop computer with MATLAB R2015a, Intel Core i7-
4700MQ CPU with 2.40 GHz and 8 GB of RAM.

A. Identification of SISO PWARX system

As a first example, we consider a single-input single-
output (SISO) PWARX system for the data generation,
described by the difference equation

y(k) =0.8y(k−1) + 0.4u(k−1)− 0.1 + max {−0.3y(k−1)

+0.6u(k−1) + 0.3, 0}+ eo(k),

with s̄ = 2 modes, based on the possible combinations
generated by the sign of the “max” operator. To gather the
data, the system is excited by an input u(k) which is chosen
to be white noise with uniform distribution U(−1, 1) and
length N = 1000, eo(k) ∈ R is a zero-mean white Gaussian
noise with variance σ2

e = 6.25 · 10−4. This corresponds to a
SNR on the output channel equal to 20 dB.

For identification, Algorithm 1 is run for 3 iterations (i.e.
nq = 3) with s = s̄ = 2 and with prediction horizon Np = 5,
forgetting factor λ = 0.01, γ1 = 10, γ2 = 1. The resultant
MIQP problem (10) consists of 26 variables out of which
10 are binary, 40 inequality and 5 equality constraints. The
MIQP problem is solved with the recently proposed GPAD-
B&B algorithm [16] and the performance is compared with
the commercial solver GUROBI. In the second stage, off-
line multicategory discrimination algorithm (section III-B)
is executed for the partitioning of the regressor space, with
parameter κ = 10−5. The BFR on the noise-free validation
data-set of length Nval = 300 are summarized in Table (I).
The mean time taken to process a single training sample
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TABLE I
BFR ON THE VALIDATION DATA SET FOR SISO PWARX SYSTEM.

runs(nq) GUROBI GPAD-B&B
1 0.86 0.86
2 0.90 0.89
3 0.92 0.90

by GPAD-B&B is 0.13 sec with the feasibility tolerance
εG=1 · 10−3, optimality tolerance εV=1 · 10−3, infeasibility
detection tolerance εI = 1 · 10−3, whereas GUROBI with
default settings takes 0.09 sec. GPAD-B&B makes a trade
off between the execution time and quality of solution, by se-
lecting appropriate tolerance values. It is simple library-free
solver, yet rendered comparable performance with respect to
the commercial solver for the given problem.

5 10 15 20 25
0.80
0.85
0.90
0.95
1.00

Np

B
FR

Fig. 1. BFR vs Np : nq = 1, nq = 2, nq = 3.

The effect of increasing the prediction horizon Np on the
BFR is shown in fig. 1, for nq = 1, 2 and 3 runs respectively.

B. Identification of MIMO PWARX system
As a second example, the following Multiple-Input

Multiple-Output (MIMO) PWARX data generating system,
taken from [9], is considered[
y1(k)
y2(k)

]
=

[
−0.83 0.20
0.30 −0.52

] [
y1(k−1)
y2(k−1)

]
+

[
−0.34 0.45
−0.30 0.24

] [
u1(k−1)
u2(k−1)

]
+

[
0.20
0.15

]
+ max

{[
0.20 −0.90
0.10 −0.42

] [
y1(k−1)
y2(k−1)

]
+

[
0.42 0.20
0.50 0.64

] [
u1(k−1)
u2(k−1)

]
+

[
0.40
0.30

]
,

[
0
0

]}
+ eo(k),

described by s̄ = 4 modes, based on the possible combi-
nations generated by the sign of the vector-valued “max”
operator. To gather the data, the input sequence u(k) is
chosen to be a white noise process of length N = 3000,
having uniform distribution in the boxes [−2 2] × [−2 2].
The noise signal eo ∈ R2 is a white Gaussian noise with
covariance matrix Λe =

[
2.5 · 10−3 0

0 2.5 · 10−3

]
. This results in

SNRs equal to 27 dB and 26 dB for the first and the second
output channel, respectively.

Algorithm (1) is run for one iteration (i.e. nq = 1) with
s = s̄ = 4 and with a prediction horizon Np = 10, γ1 =
1, γ2 = 1. GUROBI is used to solve the MIQP problem (10).
In the second stage, off-line multicategory discrimination
algorithm (reported in section III-B) is run with parameter
κ = 10−5, for the partitioning of the regressor space. The
achieved results in terms of BFR are 0.95 and 0.94 for
channel 1 and 2 respectively on a noise-free validation data
set of length Nval = 500.

V. CONCLUSIONS

A novel moving-horizon algorithm for PieceWise Affine
regression has been described in this paper. The proposed
method combines the advantages of the mixed-integer pro-
gramming method [22] (namely, simultaneous choice of the

model parameters and of the optimal sequence of active
modes within a relatively short time horizon) and the re-
cursive algorithm [10] (namely, computational efficiency and
iterative processing of the training samples).
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