
Cabin Heat Thermal Management in Hybrid Vehicles
using Model Predictive Control

Hasan Esen1, Tsutomu Tashiro2, Daniele Bernardini3 and Alberto Bemporad3

Abstract— This paper describes a Model Predictive Control
(MPC) design for the thermal management of cabin heat in
Hybrid Electric Vehicles (HEVs). Due to the augmented com-
plexity of the energy flow in recent energy-efficient vehicles in
comparison to conventional vehicles, control degrees of freedom
are increased, as many components can achieve the same
functionality of heating up the cabin temperature. This paper
proposes an MPC strategy to distribute the workload between
available components in the vehicle, while achieving multiple
objectives, such as fuel efficiency and heat-power reference
tracking, and enforcing various constraints. First, a simplified
linear dynamical model subject to linear time-varying (LTV)
constraints is identified, based on high-fidelity simulations on
a full nonlinear model. Then an MPC controller is designed to
achieve multiple control objectives by manipulating different
inputs. Simulation results indicate that the proposed approach
is suitable for such multi-objective automotive control problems.

I. INTRODUCTION

Energy management in vehicles means minimizing fuel
consumption while satisfying driving and comfort requests
of the driver. Conventional vehicles have only one energy
source, the Internal Combustion Engine (ICE). However
Hybrid Electric Vehicles (HEV) have two sources: an ICE
and a high-voltage electric battery. Thus, the energy flow
becomes more complicated in HEVs, which in return makes
energy management a challenging problem.

There are several works considering energy management
problems in HEVs. Many of them assume “ideal-world”
conditions, i.e., take propulsion and electric energy flows
into account, omitting thermal flow [1]–[9]. In this work, we
focus on energy management in real-world, i.e., considering
all three energy flow domains at the same time, see Figure 1.
In ideal-world energy management, the engine is stopped
frequently to save fuel. However, in real-world one must also
consider using the engine to heat up the cabin, if needed.
In [10] optimal thermal management for HEVs covers the
minimization of energy consumption of the electrified HVAC
auxiliaries, considering their maximum allowed temperature.
The work in [11] underlines the importance of vehicle
thermal management for HEVs/Plug-in HEVs. Rather than
on control strategies, [11] focuses on weight reduction and
aerodynamic improvements. The real-world optimal cabin-
heat thermal management problem is tackled instead in [12],
where the authors define optimal engine operating points,
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considering not only the fuel consumption map of the engine,
but also the heat power transferred from the engine to the
coolant. The approach of [12] is not model-based, and the
optimization is done offline.

This paper presents a complete MPC design for solving
the cabin heat thermal management problem in HEVs. With
the tightening of requirements on engines and vehicles in
terms of emissions, consumption and safety, the automotive
industry is one of the fields where MPC techniques are
rapidly becoming very popular [13]–[18]. The reason of such
a strong interest in MPC is that it is suitable to fulfill such
requirements, as most of them can be stated in the form of a
constrained multiple input, multiple output control problem,
and MPC provides a solution to this class of problems
[19], [20]. The design described in this paper consists of
three steps: first, identify simple linear prediction models,
then formulate an MPC design with a proper selection of
(time-varying) performance index and constraints, and finally
validate the design by simulating the MPC controller in
closed-loop with a high-fidelity nonlinear simulation model.

II. PROBLEM DEFINITION

The cabin can be heated up in a HEV vehicle either by
removing heat-power from the engine coolant through the
Heater Core (HC), or using electrical heaters, such as Pos-
itive Temperature Coefficient (PTC) heaters. The challenge
in cabin heat thermal management is to manage the complex
energy flows that are present, as described in Figure 1, and
to satisfy different objectives simultaneously: provide the
required thermal power, maintain the battery State of Charge
(SoC) within given limits, and minimize fuel consumption.

We aim at formulating an MPC solution to thermal
management for cabin heat control that minimizes fuel
consumption by distributing the workload optimally between
the heater core and an electrical heater (PTC), taking into
account engine start/stop events. We assume that the result-
ing thermal management system operates independently of
the electric management and the HV system. Hence, fuel
consumption is optimized only by mixing the workloads of
the heater core and of the electrical heater. To this end,
three inputs are manipulated: (1) HC power u

1

, (2) PTC
power u

2

, and (3) variation of engine power request u

3

with
respect to baseline. The latter, filtered by a linear first-order
model that accounts for dynamic effects such as coolant
dynamics, mainly dictates bounds on the available heat-core
power. The effect of such inputs in the overall thermal and
electrical dynamics are derived in the next section, in which a
simplified prediction model is obtained based on data from



Fig. 1. Energy flows in hybrid-electric vehicles.

simulations for the only purpose of designing an effective
linear time-varying MPC controller. The variables involved
in the described dynamics are summarized in Table I.

III. PREDICTION MODEL

A. Thermal model

The total heat power y

1

(t) provided to cabin is given
by the sum of powers provided by HC and PTC, i.e.,
y

1

(t) = u

1

(t) + u

2

(t). The thermal model considered for
MPC design purposes is driven by the heat-core power input
u

1

(t). It is assumed that the heater core power can be directly
manipulated by the controller.

From the simulations reported in Figure 2, it is apparent a
saturation of the heat-core power approximately at 5800 W.
It is also noticed a transient behavior of the heat-core
power x

1

(t) deliverable at full blower speed before reaching
its steady-state. As the rise-time depends on the steady-
state value, the dynamics are clearly nonlinear. Nonetheless,
we approximate the dynamics of the maximum heat-core
power x

1

(t) that can be delivered with full blower level as
the first-order linear system

x

1

(t) =

1

1 + ⌧

1

s

(u

3

(t) + v

3

(t)) (1)

via nonlinear scalar optimization of the time constant ⌧

1

.
In (1), u

3

(t)+v

3

(t) is the actual engine power request, being
v

3

(t) a measured disturbance corresponding to the baseline
engine power request.

B. Electrical model

A dynamical model of the battery is needed for imposing
constraints on the SoC of the battery, x

2

(t), and to track
a desired SoC set-point. We model the SoC dynamics as
an integrator with state x

2

(t) driven by the total electrical
power z

2

(t) and the recharging effect z

1

(t) of the engine on
the battery:
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Fig. 2. Time evolution of heat-core power at full blower level for different
engine power requests.

dx

2

(t)

dt

= k

2

z

2

(t) + z

1

(t), (2)

where
z

1

(t) = k

1

v

1

(t)(u

3

(t) + v

3

(t)), (3)

v

1

(t) is a measured disturbance denoting engine ON (v
1

(t) =

1) or OFF (v
1

(t) = 0), z

2

(t) is the total electrical power

z

2

(t) = u

2

(t) + v

2

(t), (4)

v

2

(t) is the total electrical power (voltage by current) minus
the power drained by the PTC at time t, and k

1

, k

2

are
suitable constants obtained by fitting simulation data.

We denote by y

2

(t) = x

2

(t) the SoC, that is the output of
model (2). The quantity k

1

v

1

(t)(u

3

(t) + v

3

(t)) in (3) takes
into account that the battery is recharged by increasing the
engine power request. We assume that the PTC electrical
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Fig. 3. Block diagram of prediction model.

TABLE I
VARIABLES RELEVANT TO THE MPC PREDICTION MODEL

Description Model variable
Inputs
Thermal power delivered by HC u1

Thermal power delivered by PTC u2

Variation of engine power request u3

States
Filtered max heat-core power at full blower level x1

Battery state of charge x2

Outputs
Total heat power y1 = u1 + u2

Battery state of charge y2 = x2

Measured disturbances
Engine ON/OFF request v1

Total electrical power minus PTC v2

Engine baseline power request v3

Aux. variables
Battery charge due to engine power z1

Total electrical power z2

Max heat-core power at full blower level z3

Set-points
Total heat power request r1

Desired state of charge r2

Desired additional power request r3

power signal u

2

(t) is also equal to the heat power supplied
by the PTC to the cabin. The block diagram of the overall
simplified prediction model is shown in Figure 3.

IV. CONSTRAINED OPTIMAL CONTROL PROBLEM
FORMULATION

A. Set-points and cost function

Let r

1

(t) be the desired set-point on total heat power
y

1

(t) and r

2

(t) the desired battery level for y

2

(t). An
engine characteristics map is used to determine the optimal
set-point r

3

(t) for additional power requests u

3

(t), aiming
to move the engine Operating Point (OP) by minimizing
marginal fuel consumption rates. We consider the general
case where the MPC controller can request both positive and
negative additional power. Negative additional power can be
commanded in order to shift part of the power request from
the engine to the electrical motor and the generator, with the
goal of reducing fuel consumption and, at the same time,
tracking the desired set-point on the battery state of charge.

To determine the set-point r

3

(t) in real-time, an appro-
priate simple selection algorithm (omitted in this paper) is
run at each time step t based on the current heat-core power
and battery SoC, and on optimal torque functions f

+

T , f

�
T

computed offline describing, respectively, optimal positive
and negative torque variations. These are defined as

f

+

T = arg minT2
K

�1

F (!

2

, T

2

) � F (!

1

, T

1

)

!

1

(T

2

� T

1

)

(5)

s.t. 0 < T

2

� T

1

 �T

max

f

�
T = arg maxT2

K

�1

F (!

2

, T

2

) � F (!

1

, T

1

)

!

1

(T

2

� T

1

)

(6)

s.t. ��T

max

 T

2

� T

1

< 0

where K =

⇡
30

· 10

�3, F (!, T ) is the engine fuel consump-
tion rate mapping [g/h] at a given engine OP (!, T ), the
pair (!

1

, T

1

) is the current engine OP, the pair (!

2

, T

2

) is
the optimal engine OP, and the value �T

max

= 30 Nm
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Fig. 4. Optimal engine torque for different engine torque/speed pairs
(r3(t) � 0).

describes the maximum allowed variation from the current
engine torque T

1

. Problems (5)-(6) are solved offline for
the whole range of admissible engine speed and torque
values, considering constant engine speed (!

1

= !

2

), and
approximated by lookup tables for real-time implementation.
The optimal engine OP maps resulting by the solution of (5)-
(6) and the related torque values are shown in Figures 4
and 5.

The main idea behind the selection of the incremental
engine power request r

3

(t) is that power request is increased
(r

3

(t) > 0) if the SoC y

1

(t) is relatively low or more
heat-core power is needed, while it is decreased otherwise
(r

3

(t) < 0).
The overall stage cost `(y(t), u(t)) to be minimized in the

MPC problem is defined as

`(y(t), u(t)) = ⇢

1

(y

1

(t) � r

1

(t))

2

+ ⇢

2

(t)(y

2

(t) � r

2

(t))

2

+ ⇢

3

u

2

2

(t) + ⇢

4

(u

3

(t) � r

3

(t))

2

+ �

1

�u

2

1

(t) + �

2

�u

2

2

(t) + �

3

�u

2

3

(t), (7)

where ⇢

1

, ⇢

3

, ⇢

4

, �

1

, �

2

, �

3

are constant weights, and
�uj(t) = uj(t) � uj(t � 1) denote input increments,
for all j 2 {1, 2, 3}. The time-varying weight ⇢

2

(t) on
SoC deviations from the desired set-point allows one to
admit larger variations of the battery state of charge at the
beginning of the drive cycle and penalize deviation towards
the end of the cycle.

B. Constraints

The input u

1

(t) must be generated under the constraint

u

1

(t)  z

3

(t),

where the upper bound z

3

(t) , �x

1

(t) corresponds to a
conservative (0 < � < 1) approximation of the maximum
heat-core power x

1

(t) at full blower level. The thermal power
u

2

(t) produced by PTC is subject instead to the constraint

0  u

2

(t)  PTC

max

(t), (8)
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Fig. 5. Optimal engine torque for different engine torque/speed pairs
(r3(t)  0).

The maximum available PTC power PTC

max

(t) is defined at
each time step t as a function of the air flow rate from blower
and the air temperature at the heater core outlet. Since we
treat the heat-core power as a manipulated input, u

1

(t), there
is a dynamic correlation between u

1

(t) and PTC

max

(t),
which is accounted for in the prediction model. We modified
the upper bound on PTC power request to reflect such
correlation, resulting in the time-varying constraint (8).

The variation u

3

(t) of engine power request is constrained
as

dEGlow  u

3

(t)  dEGup. (9)

In order to allow negative additional power requests, the
bounds on u

3

(t) are defined as

dEGlow = min{0, max{r

3

(t), v

3

(t)}}
dEGup = v

3,max � v

3

(t) (10)

where r

3

(t) is the set-point on additional power request and
v

3,max

is the maximum engine power request. Moreover, the
SoC x

2

(t) must satisfy the constraint

0.35  x

2

(t)  0.75 (11)

V. MPC FORMULATION

The control problem at time t can be stated as follows.
Given the current on/off status v

1

(t) of the engine, the
baseline electrical consumption v

2

(t), the engine baseline
power request v

3

(t), and some other engine and heat-core
related measurements, select the manipulated variables HC
power u

1

(t), PTC heat power u

2

(t), incremental engine
power request u

3

(t) so that the best compromise between the
following three objectives is achieved: y

1

(t) = r

1

(t) (desired
total heat power), y

2

(t) = r

2

(t) (desired battery level), and
fuel consumption is minimized.

By discretizing the system models derived in Section III
with sampling time Ts, we obtain the following prediction



model at time t for each prediction step t + k:

x

1

(t + k + 1) = e

�Ts
⌧1

x

1

(t + k) (12a)

+ (1 � e

�Ts
⌧1

)v

1

(t)(u

3

(t + k) + v

3

(t))

x

2

(t + k + 1) = x

2

(t + k) + Tsz1

(t + k) (12b)
+ Tsk2

z

2

(t + k)

y

1

(t + k) = u

1

(t + k) + u

2

(t + k) (12c)
y

2

(t + k) = x

2

(t + k) (12d)
z

1

(t + k) = k

1

v

1

(t)u

3

(t + k) (12e)
z

2

(t + k) = u

2

(t + k) + v

2

(t) (12f)
z

3

(t + k) = �x

1

(t + k) (12g)

subject to the constraints

0  u

1

(t + k)  z

3

(t + k) (13a)
0  u

2

(t + k)  PTC

max

(t) (13b)
dEGlow  u

3

(t + k)  dEGup (13c)
0.35  x

2

(t + k)  0.75 (13d)

The performance index J(t) to be minimized at each
time t is defined over a prediction horizon of N steps in
accordance with (7):

J(t) =

N�1X

k=0

⇢

1

(y

1

(t + k) � r

1

(t))

2 (14)

+ ⇢

2

(t)(y

2

(t + k) � r

2

(t))

2

+ ⇢

3

u

2

2

(t + k)

+ ⇢

4

(u

3

(t + k) � r

3

(t))

2

+

P
3

j=1

�j�u

2

j (t + k)

A. MPC Algorithm

At a given sampling time t, given the current estimated
maximum heat-core power at full blower level x

1

(t), the
current SoC x

2

(t), the current engine ON/OFF status v

1

(t),
electrical power consumption v

2

(t), engine baseline power
request v

3

, weight ⇢

2

(t), and set-points r

1

(t), r

2

(t), r

3

(t),
we solve the following MPC problem via standard quadratic
programming (QP):

min

U
J(t) (15a)

s.t. Eqs. (12), (13), 8k = 0, . . . , N � 1, (15b)
uj(t + k) = uj(t + Nu � 1),

8k = Nu, . . . , N � 1, 8j = 1, 2, 3, (15c)

where U = {u

1

(t + k), u

2

(t + k), u

3

(t + k)}Nu�1

k=0

and Nu

is the control horizon, Nu  N .
The constraints on the battery state of charge x

2

(t) are
implemented as soft constraints to prevent the possible infea-
sibility of the MPC problem (15) at some time t. Since future
set-points on total heat power r

1

(t+k), desired battery level
r

2

(t+k) and additional power request r

3

(t+k) are assumed
to be not known in advance, we simply keep them constant in
prediction, ri(t+ k) = ri(t), 8k = 0, . . . , N � 1, i = 1, 2, 3.
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Fig. 6. Time-varying weight ⇢2(t) on SoC deviations from desired set-
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Note that r

1

(t) and r

2

(t) are user-defined signals, while r

3

(t)

is dynamically computed as described in Section IV-A.
The MPC problem (15) is linear time-varying, in that

signal v

1

(t) 2 {0, 1} and v

2

(t) 2 R may change the dynamic
equations from one time step to another, the upper bound on
the available PTC power depends on t, and the weight on
battery SoC tracking is also time-varying.

VI. SIMULATION RESULTS

The developed controller is tested in a HEV simulation
model under MATLAB/Simulink. The simulation conditions
to test the developed controller are set as follows: New
European Driving Cycle (NEDC) as the drive cycle, ambient
temperature 5�C, cold-start, A/C on, initial SoC at 60%. The
time-varying weight ⇢

2

(t) is defined as

⇢

2

(t) =

8
<

:

0.001 if t  600

0.1 if 600 < t  900

10 otherwise
(16)

and it is shown in Figure 6. The reference heat-power
trajectory is depicted in Figure 7 (dotted black line), while
the reference battery SoC is r

2

(t) ⌘ x

2

(0) = 0.6.
As illustrated in Figure 7, MPC achieves a good tracking

of the given heat-core power reference r

1

(t). Figure 8 indi-
cates that the battery SoC level x

2

(t) is always maintained
within its limits, and the final SoC value is very close to the
initial value. Simulation results have shown remarkable im-
provements with respect to the reference baseline controller
also regarding fuel consumption, up to 3%.

VII. CONCLUSION

In this work a linear time-varying MPC formulation for
HEV thermal management of cabin heat has been devised.
Presented results have shown improvements (up to 3% fuel
savings) with respect to a reference baseline controller,
therefore demonstrating the benefits of MPC. The proposed
implementation grants a high degree of reusability and
maintainability: for example, it is easy to change bounds
on input or state variables, modify dynamics equations, or
revise the cost function after having observed changes in the
model.
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