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Numerical Algorithm for Nonlinear State Feedback Hoo Optimal 
Control Problem 

Vladimir Milic, Alberto Bemporad, Josip Kasac and Zeljko Situm 

Abstract- In this paper, the numerical algorithm based on 
conjugate gradient method to solve a finite-horizon min-max 
optimization problem arising in the Hoo control of nonlinear 
systems is presented. The feedback control and disturbance 
variables are formulated as a linear combination of basis 
functions. The proposed algorithm, which has a backward-in­
time structure, directly finds very accurate approximations of 
these feedbacks. Benchmark examples with analytic solutions 
are provided to demonstrate the effectiveness of the proposed 
algorithm. 

I. INTRODUCTION 

Over the past decades, there has been tremendous progress 
in the development of nonlinear state feedback 1-loo con­
trollers for applications in many different engineering fields, 
see for example [1], [2], [3] to name a few. The formulation 
of the nonlinear 1-loo control theory has been well developed 
[4], [5], [6]. In [7] the 1-loo control theory has been formu­
lated into nonlinear L2-gain optimal control problem, which 
requires the solution of the Hamilton-jacobi-Isaacs equation 
(HJIE). 

The analytic solution of HJIE is difficult or impossible 
to find in most cases. An inversion approach which involves 
solving HJIE like scalar quadratic algebraic equation with the 
gradient of the smooth scalar as unknown has been reported 
in [8]. In [9] the HJIE for systems with input constraints has 
been derived. Authors have introduced a two-player policy 
iteration scheme that results in a framework that allows the 
use of neural networks to approximate optimal policies and 
value functions. In [lO] an application of neural networks to 
find closed-form representation of the feedback strategies and 
the value function that solves the associated HJIE has been 
presented. This approach is computationally expensive since 
the tuning of neural network weights is based on method of 
weighted residuals which includes calculation of Lebesgue 
integrals over domain IRn where n is dimension of the state­
space. In other words, the problem is curse of dimensionality 
when the computational cost increase exponentially with the 
dimension of the state-space system. 

In our approach, the nonlinear state feedback 1-loo problem 
is transformed into a nonlinear finite-horizon optimal state 
feedback control problem with min-max cost. The main aim 
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is to find control variables and disturbance internal/external 
variables such that control variables minimize an optimiza­
tion criterion in the presence of worst-case behaviour of 
disturbance variables. From the standpoint of differential 
games [11], this means that the control input is the minimizer 
player and disturbance input is the maximizer player. 

In contrast to the approaches founded on neural networks 
for approximating solutions of HJIE [9], [lO], in this paper 
the tuning of basis functions weights is based on direct 
minimization of the performance criteria with simultaneous 
maximization of the same performance criteria. A conjugate 
gradient approach is used for minimization/maximization 
of the performance criteria, while the performance criteria 
gradients are calculated exactly using chain rule for ordered 
derivatives. Since the control, disturbance and state variables 
are treated as dependent variables (coupled via plant equa­
tions), the final algorithm has a backward-in-time structure 
similar to the back-propagation-through-time (BPIT) [12] 
algorithm. 

The algorithm presented in this paper is an extension of the 
recent work in [13], [14] toward finite-horizon 1-loo optimal 
state feedback control. In [13], and [14] a conjugate gradient­
based BPIT-like algorithm for optimal open-loop control 
of nonlinear multivariable systems with control and state 
vectors constraints has been presented. The algorithm per­
formance has been illustrated on a realistic high-dimensional 
vehicle dynamics control example. The optimization results 
have demonstrated favourable features of the algorithm in 
terms of accuracy, robust numerical stability, and relatively 
fast execution. 

Furthermore, with aim to enhance the accuracy of the solu­
tion, the higher-order Adams numerical integration schemes 
[15] are used. One of the reason for using multistep Adams 
method, among other one-step methods like Runge-Kutta, is 
that it can be easily transformed to the causal state-space 
form. The second reason, when compared to the Runge­
Kutta method, is that the vector function must be calculated 
only once in the sampling time. In the other words, the 
application of the explicit Adams method has no influence on 
the algorithm complexity except on extension of the overall 
state-space system dimension. 

The rest of paper is organized as follows. In Section 
II the state feedback nonlinear 1-loo control problem is 
transformed into feedback min-max optimal control problem. 
We formulate the feedbacks as a linear combination of 
basis functions. In Section III the backward-in-time min­
max control algorithm is derived. Section IV illustrates 
the effectiveness of the proposed algorithm on a nonlinear 
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benchmark examples with analytic solution. Finally, Section 
V concludes the paper. 

Notation: The notation used is fairly standard. Matrices are 
represented as bold upper case. All vectors are intended as 
column vectors and represented as bold lower case. Scalars 
are represented as italic lower case. The symbol T denotes 
transposition, and I is identity matrix and 0 is null matrix 
of appropriate dimensions. The derivative of the vector (of 
order m) with respect to vector (of order n) is the matrix 
(of order n x m). The operator II . II denotes the Euclidean 
norm. We denote by u*(x) and d*(x) the exact solutions of 
nonlinear state feedback Hco control problem and by u(x) 
and d(x) its numerical solutions. We avoid to explicitly show 
the dependence of the variables from the time when not 
needed. 

II. PROBLEM FORMULATION 

Consider the following affine nonlinear dynamical system 
of the form 

x(t) = f(x) + GI(x)u(t) + G2(x)d(t), x(O) = Xo, 
T (1) 

z(t) = [gI(x) uT(t)] , f(O) = 0, g3(0) = 0, 
where x E ]Rna is the state vector, u E ]Rn" is the control 
input, d E ]Rnd is the vector representing internal/external 
disturbance, z E ]Rnz is the to-be-controlled output or penalty 
variable. The functions fC), G 1C), G 2C), g3C) are smooth 
functions of x. It is assumed that d E L2 [0, t f], t f 2: 
0, where L2 [0, t f] denotes the standard Lebesgue space of 
vector valued square integrable functions over [0, t f]. 

The objective is to determine a state-feedback controller 
u(x), when all the states of the system are available, and de­
termine "worst case" disturbance internal/external variables 
d(x), such that finite L2-gain from d to z is less than or 
equal to some positive number "( > O. In other words, for 
every initial conditions x(O) = Xo 

tf tf 

J IIzl12dt :s; "(
2 J II dl12dt + J(xo). (2) 

o 0 

The original idea behind this approach was to formulate 
the Hco disturbance attenuation problem as a differential 
game in which u and d are two opposing players [16]. 
It is well known [5] that this problem is equivalent to the 
solvability of the following min-max optimization problem 

J' (xo) � mJn m%" {I (II zll' - �' Il dll') <it } , 
subject to (1). 

The above problem is solved by the feedbacks [7] 

u*(x) = -Gi(x) 
a
aV, d*(x) = �GJ(x) 

a
aV, x "( x 

where V 2: 0 is a solution of the HJIE 
aTv 1 aTv [ 1 -a f(x) + --a 2G2(x)GJ(x) -x 2 x "( 

T ] av 1 T - G1(X)GI (x) ax + "2g3(X)g3(X) = 0, 
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(3) 

(4) 

(5) 

with V(O) = O. 
Lemma 1: If the nonlinear system (1) is (i) asymptotically 

stable with d = 0 and u = u*, (ii) has L2-gain less than "( 
when d i- 0, (iii) the cost function (3) is smooth then the 
closed-loop dynamic is asymptotically stable. 

Proof See [7]. • 

III. ALGORIT HM DERIVATION 

In order to numerically solve problem (3) subject to (1), 
we consider a special form of i-th component of u and d 
from (4) as a linear combination of the basis functions on a 
compact set n c ]Rna as follows 

nO" 
Ui(X) = L Vkak (X) , 

k=1 

n", 
di(x) = L Qk1/;k (X) , (6) 

k=1 
with ak(x) E CI(n), 1/;k(X) E CI(n), and ak(O) = 
0, 1/;k(O) = O. 

Weierstrass's theorem [17] says that any continuous func­
tion on a bounded domain in ]Rna can be approximated 
by a complete independent basis set. Standard usage of 
Weierstrass's approximation theorem uses polynomial basis 
functions. Non-polynomial basis sets have been considered 
in [IS]. 

The performance criteria (3) implicitly depends on Vk and 
qb so they can be determined according to the performance 
criteria. The numerical algorithm for tuning Vk weights is 
based on direct minimization of the performance criteria with 
simultaneous tuning of qk weights based on maximization of 
the same performance criteria. 

A. Time discretization 

To compute numerical approximation of the nonlinear 
state feedback Hco problem, we perform discretization of 
the system dynamics (1) based on explicit Adams method. 

Assume that the time interval [0, t f] is divided into N -1 
sub-intervals of equal length. Then the time grid consists of 
points ti = iT for i = 0, I, 2, ...  , N -1 where T = tt/N 
is the time step length. 

The discrete-time form of the equation (1) with (6) is 

x(i + 1) = <l>d (X(i), u(i), d(i)) , x(O) = Xo, (7) 

where u( i), d( i) denote the control and disturbance sequence 
over the interval 0, I, 2, . . .  , N - I, respectively, while 

k 
<l>d (x(i), u(i), d(i)) = x(i) + T L aj<l>(i - j + I), (S) 

j=1 
is the k-th order Adams approximation of the continuous­
time state equation for i = k - 1, k, k + 1, ...  and initial 
conditions x(O) = Xo, x(l) = Xl, . . .  , x(k - 1) = Xk-l, 
where <l>C) = f(xC))+GI(xC))uC)+G2(xC))dC). aj are 
constant coefficients (for their numerical values see [15]). 

The explicit Adams method (S) is a k-th order vector 
difference equation, which can be conveniently transformed 
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into the following discrete-time state-space form 

Xj(i + 1) = xj(i) + TaI1Jj(i) + TXno +j(i) , 
xrno +j(i + 1) = ar+1 ¢j(i) + X(r+l ) no +j(i) , (9) 

X(k-l ) no +j(i + 1) = ak¢j(i) , 
for r = 1, 2, ...  , k-2, j = 1, 2, . . .  , no, i = k -1, k, k+ 
1, ...  , and the initial conditions 

Xj(k -1) = Xj(k-l ) , 
k 

xqno +j(k -1) = L al¢j(k -1 + q -I), 
l=q+l 

(10) 

for q = 1, 2, ...  , k -1. Using the vector notation, the state­
space form of the k-th order Adams method reads 

X(i+1) =ci> (X(i) , U(i) , d(i)) , x(O) = xo , (11) 

where x( t) is the extended (na = no . k )-dimensional state 
vector 

and 

The Adams method of the k-th order, as a multistep 
method, requires knowledge of k initial conditions. In this 
work, to determine these initial conditions the fourth-order 
Runge-Kutta method is used. In the case of ordinary dif­
ferential equations system described by (1), the fourth-order 
Runge-Kutta method is stated as follows. Start with initial 
point (to, xo) and generate the sequence of approximations 
using x(i + 1) = x(i) + � (kl + 2k2 + 2k3 + k4)' where 

kl = <I> (X(i) , U(ti), d(ti)) , 
k2 = <I> (X(i) + �k l ' U(ti + �), d(ti + �)), 
k3 = <I> (X(i) + �k2 ' u(ti + �), d(ti + �)), 
k4 = <I> (X(i) + Tk3, U(ti + T), d(ti + T)) . 

(14) 

From expression (14) it can be seen that fourth-order 
Runge-Kutta method requires the calculation in mid-points 
u(i + 1/2) == U(ti + T/2) and d(i + 1/2) == d(ti + T/2). A 
rough approximation U(ti +T /2) ;::::; U(ti) and d(ti +T /2) ;::::; 
d(ti) would significantly deteriorate the algorithm accuracy. 
The value of control and disturbance vector in mid-points 
c:an be approxim�ted by �(ti+TZ2);::::; (U(ti) + u(tHl)) /2, 
d(ti + T /2) ;::::; ( d(ti) + d(tHd) /2. This approximation is 

verified by simulations and provides satisfactory accuracy 
in the range of fourth order approximation. More details on 
Adams and Runge-Kutta methods can be found in [15]. 

The discrete-time form of the Hoo performance criteria 
reads 

N-l 
J(xo) = T L (1Iz(i)112 - 'lll d(i)112) . (15) 

i=O 
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B. Conjugate gradient algorithm 

In this work the optimization approach is based on conju­
gate gradient descent/ascent algorithm in the following form 

(1+1 ) (l) + (I) (I) (16) wk = wk T) sk ' 
(l+1 ) _ A oj + (3(l) (I) sk - (l+I) sk , 

oWk 
(17) 

where Wk is a k-th component of the vector which contains 
the basis function weights from equations (6). A = -1 if Wk 
corresponds to weights of basis function for control variables, 
and A = 1 if Wk corresponds to weights of basis function 
for disturbance variables. 

Furthermore, Sk is k-th component of the search direction 
vector, and I = 1, 2, ... , M is the number of gradient 
algorithm iterations. 

Note that maximization of the performance criteria is 
provided by simple change of sign in front of gradient of 
cost function with respect to Wk in (17). 

The standard method for computing T)(l) is line search 
algorithm which requires one-dimensional minimization of 
the performance criteria. This is a computationally expensive 
method which may require many evaluations of the perfor­
mance criteria during one iteration of the gradient algorithm. 
Also, if the performance criteria is not appropriately scaled, 
the line search algorithm may exhibit poor convergence 
properties [14]. In order to avoid these issues, in this work 
we use the SuperSAB approach [19] which requires only the 
information on gradient directions in two consecutive itera­
tions of the gradient algorithm. The algorithm is modified 
in terms of using a scalar convergence rate T)(I) (as oppose 
to a matrix formulation), in order to avoid discontinuities in 
disturbance vector d and optimized control vector u. The 
modified SuperSAB algorithm is given by 

nw oj oj d+ T)(I-I) if '"' > 0 � '" (I) '" (1-1 ) , 
k=1 uWk uWk nw oj oj T)(l) = d-T)(l-I) if '"' <0 (18) �� '" (1-1 ) , 
k=1 uWk uWk nw oj oj T)(I-I) if '"' = 0, �� '" (1-1 ) k=1 uWk uWk 

where 0 < d- < 1 < d+ are dilatation coefficients 
(decreasing/increasing factors). 

Scalar (3(l) is determined by 

T J.lg(l+l)g(l+l)T + [1 _ J.l]gCl+l) [g(l+l) _ gCl)] (3(1) = 
T ' (19) vg(l)gCl)T + [1 - v]s(l) [g(l+l) - g(l)] 

where g = [ &
&J 

&
&J ... &

&J ], J.l E [0, 1], v E [0, 1]. WI W2 W'nw 
If the scalars f.J. and v take only their extreme values, 0 or 
1, then four possible combinations are obtained: Fletcher­
Reeves method [20] for f.J. = 1 and v = 1, Polak-Ribere 
method [21] for f.J. = 0 and v = 1, Hestenes-Stiefel method 
[22] for f.J. = 0 and v = 0, Dai-Yuan method [23] for f.J. = 1 
and v = O. The numerical comparison of these methods are 
reported in [24]. 
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It is important to say that, in order to ensure numerical 
stability of the algorithm the parameter f3(l) is limited to 
f3max. If the parameter f3(l) has a constant value, 0 < f3(l) < 
1, then the conjugate gradient algorithm becomes equivalent 
to a standard gradient algorithm with momentum. 

C. Gradient calculation 

The gradient of the performance criteria (3) according to 
the Wk in the l-th iteration of the gradient algorithm is given 
by 

oj 
= T 

N-1 ( no of(i) oXr(i) + OWk � � oXr(i) OWk 

+ 
nu of(i) our(i) + 

nd of(i) odr(i) ) � our(i) OWk � odr(i) OWk ' 
(20) 

for k = 1, 2, ... , na + n'IjJ. Note that if Wk corresponds 
to weights of basis function for control variables then 
odr(i)/OWk = 0, and if Wk corresponds to weights of basis 
function for disturbance variables then our(i)/OWk = O. 

From (11) it follows that 

oXr(i) _ f o¢r(i - 1) oXj(i - 1) 
OWk -. ox)(i - 1) OWk + 

)=1 
� o¢r(i - 1) oum(i - 1) + �1 oum(i - 1) OWk + (21) 

� o¢r(i - 1) odn(i - 1) + � . . 

n=l odn(i - 1) OWk 

Further, from (6) it follows that 

oum(i) = � ( OWjCJ+W � oCJj OXp(i) ) 
OWk � OWk) ) � oXp( i) OWk ' (22) 

)=1 p=l 
for k = 1, 2, ...  , na, and 

for k = na + 1, na + 2, ... , na + n'IjJ. 

D. lacobians calculation 

The extended Jacobian matrix for Adams method can be 
expressed based on (9) as functions of the basic Jacobian 
matrix as follows 

8<i>(i) 
8x(i) 

8<i>(i) 
8fI(i) 

I 0<1> (i) + Tal ox(i) o<l>(i) a2 ox(i) 

o<l>(i) ak-l oxSi) o<l>(i ak ox(i) 
o<l>(i) Tal ou(i) 0<1> (i) a2 oU(i) 

0<1> (i) ak ou(i) 

TI 0 0 0 
0 I 0 0 

0 0 0 I 
0 0 0 0 (24) 

o<l>(i) Tal od(i) 
8<i>(i) 

o<l>(i) a2 od(i) 
8d(i) 

o<l>(i) ak od(i) 

Similarly, the gradient of function in the sum from (15) 
with respect to extended state vector is related to the basic 
gradient as follows 

of( i) of( i) 

T 
[ ]

T 

ox(i) = ( OX(i) ) 0 . . .  0 (25) 

These basic Jacobians and gradient can be calculated using 
automatic differentiation. Automatic (or algorithmic) differ­
entiation (AD) is now a widely used tool within scientific 
computing. The standard reference is the book [25]. Over the 
past decades, extensive research activities led to a through 
understanding and analysis of two basic modes: the forward 
and reverse modes. For the previously derived algorithm the 
forward mode has been chosen. 

A variety of tools exist for AD of the standard pro­
gramming languages. In this work, TOMLABIMAD [26] 
mathematical software is used. 

Application of AD comparing with numerical differen­
tiation [14] provide significant reduction of the algorithm 
computational time. 

E. Algorithm summary 

The following steps summarize the previously derived 
algorithm: 
Step 1: Initialization: starting with I = 0 set initial state 
vector Xo; choose a complete set of C1 basis function and 
initial weights defined in (6); set initial time to, final time t f, 
number of time intervals N, time step length T; set number 
of gradient algorithm iterations M, initial convergence rate 
1](0), dilatation parameters d- and d+, and f3max. 
Step 2: Calculation of state vector (11) using Adams method. 
Step 3: Calculation of extended Jacobians (24) and gradient 
(25) using automatic differentiation. 
Step 4: Backward-in-time calculation of (21), (22) and (23). 
Step 5: Calculation of gradient (20). 
Step 6: Calculation of new basis functions weights using 
conjugate gradient methods (16) and (17). 
Step 7: Shift the index I = 1+1 and go back to step 2. 

IV. SIMULATION RESULTS 

In this section we test the performance of the proposed nu­
merical approach on two benchmark examples with analytic 
solution. 

A. Benchmark examples with analytic solution 

Example 1. Consider the scalar nonlinear system [7] 

i; = u + x d, Z = [x uJ 

T 
. (26) 

For this example, the HJIE only has solution for I x l  < T If 
"( = 1 then analytic solution of HJIE leads to feedbacks 

u*(x) = -vb, 
1- x2 

x2 
d*(x) = � , 

v1- x2 
for -1 < x < 1. One selects the basis functions as 

(27) 

{CJk} = {'IJ'!k} = {x, x3, x5, x7, x9 } . (28) 
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To numerically compute weights of these basis functions, 
we carry out proposed algorithm from Section III in MAT­
LAB program which is executed by utilizing a portable 
(notebook) PC computer with Intel Core Duo CPU (2.00 
GHz). The terminal time is t f = 20 sec and the number 
of optimization time intervals is N = 20000 so that the 
sampling interval is T = 0.001 sec. The conjugate gradient 
Hestenes-Stiefel method is used, and the number of iterations 
of the gradient algorithm is M = 400. The average algorithm 
execution time is about 0.14 sec per iteration. The numerical 
values of the algorithm parameters in (18) and (19) are 
chosen as: d+ = 1.05, d- = 0.95, 1](0) = 1.0, (3max = 1.0. 

The state variable initial condition is Xo = 0.8 and the 
initial basis functions weights are chosen as Vko = qko = 
-5. After 400 iterations of the algorithm the final numerical 
values of weights for control variable u are: VI = -1.0011, 
V2 = -0.4532, V3 = -0.8197, V4 = 1.1990, V5 = -2.1017; 
and for disturbance variable dare: ql = 0.0825, q2 = 3.0317, 
q3 = -6.6278, q4 = 11.2674, q5 = -5.5801. 

Fig. 1 shows the maximum errors between the numerical 
solutions U, d and the exact analytical solutions given by (27) 
for the Adams method of 1st and 4th order. It can been seen 
that the error progressively decreases as the Adams method 
of 4th order is applied. 

� 10-4 
7, " 
810-6 

10-10'----�_�_�---' 
o 100 200 300 400 

Number of iteration 

� 10-4 
Y,' " 
:=:10-6 

10-10'----�_�_�----' 
o 100 200 300 400 

Number of iteration 

Fig. l. Maximum errors of control and disturbance variables depending 
on the number of iterations for first (grey line) and fourth (black line) order 
Adams method. 

Example 2. Consider the second order nonlinear system 
[27] 

(29) 

If 'Y = 1 then by solving the corresponding HJIE analytical 
feedbacks are 
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The following basis functions are chosen: 

(31) 

In this example the terminal time is t f = 3 sec and 
the number of optimization time intervals is N = 3000 so 
that the sampling interval is T = 0.001 sec. The conjugate 
gradient Dai-Yuan method is used, and the number of iter­
ations of the gradient algorithm is M = 500. The average 
algorithm execution time is about l.3 sec per iteration. The 
numerical values of the algorithm parameters in (18) and 
(19) are chosen as: d+ = 1.05, d- = 0.95, 1](0) = 1.0, 
(3max = 1.0. 

The state variables initial conditions are Xo = [1 l]T 
and the initial basis functions weights are chosen as Vko = 
qko = -0.1. After 500 iterations of the algorithm the final 
numerical values of weights for control variable UI are: 
VI = -0.9997, V2 = -0.0243, V3 = 0.0792, V4 = -0.0683, 
V5 = -3.0584, V6 = 0.0428, V7 = -0.0003, Vs = 0.0291; 
for control variable U2 are: VI = 0.0004, V2 = -6.0325, 
V3 = 0.1246, V4 = -9.1230, V5 = -0.1557, V6 = 0.1033, 
V7 = -0.0009, Vs = 0.0838; and finally for disturbance 
variable d are: ql = 0.4995, q2 = 2.0478, q3 = -0.1576, 
q4 = 3.1370, q5 = 1.6151, q6 = -0.0847, q7 = 0.0008, 
qs = -0.0579. 

As can be seen from Fig. 1 a relatively small error of 
the numerical solution compared to the analytical solution is 
achieved. 

10-'0'-----�10-:- 0 
-----::2�OO

--�30-:-0 --4
�
00:---

-c:'
5 00 

Number of iteration 

Fig. 2. Maximum errors of control and disturbance variables depending 
on the number of iterations for first (Euler method) and fourth order Adams 
method. 

B. Discussion on numerical robustness and computing effi­

ciency 

The algorithm contains several free parameters such as the 
time step T, and the parameters 1](0) , d-, d+ , and (3max of the 
modified conjugate gradient methods. The numerical stability 
is not affected by decreasing the time step T. But, naturally, 
there is a minimal value of the time step T which guaranties 
numerical stability of the Adams integration methods. 

With respect to parameters d-, d+, and (3max, the tuning 
region is known in advance, while the initial learning rate 
1](0) is dependent on specific optimization problem. The 
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algorithm convergence is more sensltlve to the choice of 
parameter (3max than to choice of other parameters. The 
larger the parameter (3max, the faster the convergence. The 
algorithm convergence is largely insensitive to the choice 
of dilatation parameters d+ and d-, if they lie in the 
intervals 0.85 � d- � 0.95 and 1.05 � d+ � 1.15. 
Similar values of dilatation coefficients are reported in the 
neural networks literature [19]. A recOlmnended relationship 
between dilatations parameters is d+ � 1/ d-. 

According to the literature dealing with the conjugate 
gradient algorithm there is no a general rule how to chose 
the appropriate method for calculating the quantity (3(1). 
The Hestenes-Stiefel and the Dai-Yuan methods have shown 
the best convergence properties and related accuracy on 
benchmark examples (26) and (29). The limit value of (3(1) 
which guaranties numerical stability is (3max = 1, but 
depending on particular optimization problem this limit can 
be increased (e.g. (3max = 1.2), in order to provide a faster 
convergence of the algorithm. 

It is illustrated in [13] that the conjugate gradient methods 
are less sensitive to the choice of initial learning rate T)(O ) 
than the standard gradient algorithm. The conjugate gradient 
method reaches a similar level of solution accuracy for 
various initial learning rate values T)(O ) , while for the standard 
gradient algorithm the choice of T) = T)(O ) largely affects the 
algorithm convergence and can cause numerical instabilities. 

V. CONCLUSION 

In this paper a numerical algorithm for solving the 
nonlinear state feedback Hoo control problem has been 
presented. A backward-in-time conjugate gradient optimal 
control algorithm with min-max cost has been proposed and 
tested on first and second-order affine nonlinear benchmark 
examples with analytic solutions. The results have illustrated 
favourable features of the algorithm in terms of accuracy and 
consistent numerical stability. The algorithm can easily be 
applied to higher-order system with increasing complexity. 

While the individual methods such as backward-in­
time technique, conjugate gradient optimization algorithms, 
Adams method for solving ODEs, and AD are known from 
the literature, in our approach they are integrated together to 
provide an effective, novel algorithm for numerical solution 
of the state feedback Hoo control problems. 

Comparison of the algorithm with other existing methods 
is a subject of ongoing work and future publications. Also, 
the future research will be oriented towards extension of the 
proposed algorithm to the case of noisy state measurements 
and the proposed algorithm for Hoo feedback control will 
be extended with dynamic observer providing optimal output 
feedback control. 
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