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A new interpolating control scheme for uncertain linear systems is developed. The interpolation is
done between two saturated control laws, each given with its associated invariant set. A linear search
is performed to compute a sub-optimal interpolation coefficient. Two algorithms are suggested — each
incorporating a different optimization objective. The method guarantees robust stability and recursive
feasibility, also in presence of persistent disturbances.
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1. Introduction

The field of control of constrained discrete-time linear systems
have attracted considerable attention in the control community.
There are several control approaches able to deal with such
systems, e.g., Model Predictive Control (MPC) (Borrelli, Bemporad,
& Morari, 2017; Maciejowski, 2002), Vertex Control (Gutman &
Cwikel, 1986) and Interpolation Control (Nguyen, 2014). Cur-
rently, the most popular approach is MPC that has become one
of the few advanced control techniques employed in industry.
The main potential of MPC is that it offers a systematic approach
to control multivariate constrained systems, however it requires
solving an optimization problem at each time step. This is an im-
portant limitation for systems with fast dynamics, but it may be
circumvented with techniques like explicit MPC methods where
an optimal control law at each state–space region is precom-
puted off-line (Bemporad, Morari, Dua, & Pistikopoulos, 2002),
specialized optimization tools (Wang & Boyd, 2010), and tailored
hardware (Jerez et al., 2014). Even though, for high dimensional
systems, the computational load becomes impractically excessive.
Another limitation of MPC is its feasibility and stability analysis,
which relies on set invariance theory.

The aforementioned limitations of MPC becomes a major chal-
lenges when addressing the problem of uncertain systems. There
exist robust MPC methods, such as the linear matrix inequal-
ities (LMIs) based MPC in Kothare, Balakrishnan, and Morari
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(1996), the tube-based MPC in Langson, Chryssochoos, Raković,
and Mayne (2004), and the min–max MPC approach in Bemporad,
Borrelli, and Morari (2003). These may demand the on-line solu-
tion of large optimization problems, for the first two methods, or
solving a point location problem in a large polyhedral partition,
for the last mentioned method. Robust MPC methods thus are
plagued by an excessive computational load, and therefore are
impractical for implementation. In addition, feasibility and sta-
bility analysis of robust MPC designs are practically impossible to
perform.

Numerous works are aimed at mitigating the computational
load. Some works have succeeded to reduce the computational
burden to some extent: see, e.g. Kouvaritakis, Rossiter, and Schu-
urmans (2000) with a more efficient LMI-MPC algorithm, and Kou-
varitakis, Cannon, and Rossiter (2002) which avoids LMIs com-
pletely. Interpolation based control techniques were also sug-
gested as robust MPC alternatives. By interpolation, simpler con-
trol algorithms may be used for the same class of problems
addressed by MPC. Although optimality is only guaranteed in a lo-
cal sense, these algorithms provide a good compromise between
computational load, size of feasible region, and performance, and
extends well to the uncertain case. A variety of interpolation
based methods, closely related to MPC, are presented by Rossiter,
Pluymers and co-workers in e.g. Pluymers, Rossiter, Suykens,
and Moor (2005) and Rossiter and Ding (2010), which are rec-
ommended as background papers on robust invariant sets and
their use in efficient robust MPC of albeit high dimensionality.
The framework in Pluymers et al. (2005) and Rossiter and Ding
(2010) facilitates the interpolation between two (or more) linear
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state-feedback controllers by solving an online optimization —
typically a Quadratic Program (QP), with constraints given by the
polyhedral invariant set associated with each control law.

An alternative framework based on an interpolation con-
cept, known as Interpolating Control (IC), was recently devel-
oped (Nguyen, 2014; Nguyen, Gutman, Olaru, & Hovd, 2013). It
interpolates between one (or more) local linear controllers and
one global piece-wise-affine contractive control law, generated
by e.g. Vertex Control (Gutman & Cwikel, 1986), or Minkowsky
Functional Minimization Control (Nguyen & Gutman, 2018). The
online implementation demands the solution of a Linear Program
(LP).

Both the interpolation control techniques in Rossiter and Ding
(2010) and IC demand explicit knowledge of the polyhedral in-
variant sets associated with the linear control laws. Unfortu-
nately, the computation of such sets can become very com-
putationally demanding for polytopic uncertain plants, render-
ing some problem impossible for solutions on modern personal
computers (Rubin, Nguyen, & Gutman, 2018a, 2018b). Ellipsoidal
invariant sets, on the other hand, are much easier to compute and
store. However, they make the online solutions significantly more
complex. The optimal solution for the resulting interpolating
problem was developed in Nguyen, Olaru, Gutman, and Hovd
(2011), and requires the online solution of an LMI problem at
each time step. The sub-optimal QP based solutions in Rossiter
and Ding (2010) would require the solution of quadratically-
constrained QPs.

It is of-course useful to reduce online computation require-
ments to the minimum possible. A sub-optimal interpolation
framework, which requires no on-line optimization, was intro-
duced by the authors in Mercader, Rubin, Nguyen, Bemporad,
and Gutman (2018). That, so called Simple Interpolating Control
(SIC), is easy to implement, but closed loop stability is, in general,
not guaranteed. Although the stability of the closed loop can be
analyzed off-line, it is more ‘idiot-proof’ to have it systematically
guaranteed. This work is aimed to extend the results from Mer-
cader et al. (2018) by providing a computationally modest in-
terpolating scheme which also guarantees closed-loop stability.
Three new algorithms are proposed.

The reminder of this text includes some preliminary mathe-
matical background in Section 2; main results are reported in Sec-
tion 3; extension for plants with persistent disturbances is doc-
umented in Section 4; finally, numerical examples are presented
in Section 5, and the conclusions are given in Section 6.

2. Preliminaries

Consider the discrete-time uncertain and possibly also time-
varying linear system,

x(k+ 1) = A(k)x(k)+ B(k)u(k)+ D(k)w(k) (1)

The state x(k) ∈ Rn is bounded by a symmetrical polytope, while
the control and disturbance inputs u(k) ∈ Rm, and w(k) ∈ Rd,
respectively are bounded as

x(k) ∈ X = {x ∈ Rn
: |Lx| ≤ 1}, (2a)

u(k) ∈ U = {u ∈ Rm
: |u| ≤ ū}, (2b)

w(k) ∈ W = {w ∈ Rd
: ∥w∥2 ≤ 1}. (2c)

In (2), 1 is a column vector of h ones, L ∈ Rh×n and ū ∈ Rm; the
inequalities and absolute values in (2a), (2b) are to be interpreted
element-wise. The matrices A(k) ∈ Rn×n and B(k) ∈ Rn×m, and
D(k) ∈ Rn×d are given with polytopic uncertainty, without loss of
generality (Nguyen, 2014), as follows,

A(k) =
s∑

i=1

αi(k)Ai, (3a)

B(k) =
s∑

i=1

αi(k)Bi, (3b)

D(k) =
s∑

i=1

αi(k)Di, (3c)

s∑
i=1

αi(k) = 1, αi(k) ≥ 0, ∀i = 1, . . . , s, (3d)

where αi(k) is unknown, and possibly also time-varying.
For a given positive definite matrix Q we define a correspond-

ing ellipsoid,

E(Q ) = {x : x⊤Q−1x ≤ 1}. (4)

Definition 1. An ellipsoid E(Q )⊂X is robustly contractive w.r.t
system (1) subjected to the constraints (2), if there exist a control
law u(x)∈U such that

x(k+ 1)⊤Q−1x(k+ 1)− x(k)⊤Q−1x(k) < 0 (5)

for every k and for all x(k) ∈ E(Q ) \ 0 and w(k) ∈ W .

Definition 2. An ellipsoid E(Q )⊂X is robustly invariant w.r.t
system (1) subjected to the constraints (2), and w.r.t a given
control law u(x)∈U , if

x(k+ 1)⊤Q−1x(k+ 1) ≤ 1 (6)

for every k and for all x(k) ∈ E(Q ) and w(k) ∈ W .

Remark 1. For persistent disturbances a contractive set as per
Definition 1 cannot be found, as ∄Q such that inequality (5) holds
in the proximity of the origin. A definition for this case can be
formulated by replacing x(k) ∈ E(Q ) \ 0 with x(k) ∈ E(Q ) \ Ωm
where Ωm is the minimal robustly positively invariant set.

The function sat(·) denotes the standard vector valued satura-
tion

sat(u) =

⎡⎢⎢⎣
sign(u1) ·min {ū1, |u1|}

sign(u2) ·min {ū2, |u2|}

...

sign(um) ·min {ūm, |um|}

⎤⎥⎥⎦ . (7)

This nonlinear function can be represented by linear differential
inclusions (LDI) (Boyd, Ghaoui, Feron, & Balakrishnan, 1994). Let
{Ej}, j = 1, . . . , 2m be the set of all diagonal matrices of dimension
m with diagonal elements equaling 0 or 1. For example, for m =
2:

{E1, E2, E3, E4} =
{[

0 0
0 0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 1

]}
.

Denote E−j = I − Ej. Following Hu and Lin (2001), sat(Kx) can be
written as

sat(Kx) =
2m∑
j=1

σj
(
EjKx+ E−j Hx

)
,

2m∑
j=1

σj = 1, σj ≥ 0, (8)

where |Hx| ≤ ū ∀x ∈ E(Q ). Note that the above LDI representation
from Hu and Lin (2001) is used here for simplicity, and the
results below may also be derived using the LDI models given
in Alamo, Cepeda, Limon, and Camacho (2006) or in Molchanov
and Pyatnitskiy (1989). For more details on the different LDI
models see e.g. Tarbouriech, Garcia, Gomes da Silva, and Queinnec
(2011).

Finally, the following version of S-procedure is used for the
disturbed plant case in Section 4.
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Lemma 1 (S-procedure, Khlebnikov, Polyak, & Kuntsevich, 2011,
pp. 2231-2231). Consider Ai = A⊤i ∈ Rn×n. If there exist real numbers
τi ≥ 0, i = 1, . . . ,m, such that

A0 ≤

m∑
i=1

τiAi, α0 ≥

m∑
i=1

τiαi, (9)

then the inequalities

x⊤Aix ≤ αi, i = 1, . . . ,m, (10)

imply the inequality

x⊤A0x ≤ α0. (11)

3. Main results

For simplicity, the disturbance-free case, i.e., w = 0 in (1), is
considered first. Let u(k) = sat(Kax(k)) be a robustly stabilizing
saturated control law, designed to satisfy given performance re-
quirements. A robustly contractive ellipsoid associated with this
controller exists (Blanchini & Miani, 2008, p. 142), and is denoted
as E(Qa). To extend the feasible region of the control law to be
admissible outside E(Qa), a second, stabilizing, controller u(k) =
sat(Kbx(k)) is synthesized. To have the feasible region as large as
possible, the gain Kb should be chosen such that the associated
robustly contractive ellipsoid, E(Qb), is maximized, see Lemma 3.
This is however not a requirement, and Kb can be chosen in
some different way, as long as it is robustly stabilizing. The only
demand is that E(Qa) ⊂ E(Qb). These two saturated control laws
are denoted as inner and outer, respectively.

Inside E(Qa) the inner control law is admissible and therefore
should be used. In E(Qb)\E(Qa) the control law u(k) = sat(Kbx(k))
can be used; however, the performance might be poor, and chat-
tering might occur when switching between the two control
laws. Therefore, we present an interpolation scheme to blend the
controller actions in E(Qb) \ E(Qa).

The control input at time k is decomposed as

u(k) = c(k)ub(k)+ (1− c(k))ua(k), (12)

with ua(k) = sat(Kax(k)) and ub(k) = sat(Kbx(k)). It is desirable to
have c(k) as small as possible, thus making the high-performance,
inner, controller as dominant as possible. Such a minimization
problem demands however the solution of an LMI problem at
every time step (Nguyen et al., 2011). This is impractical for
most real-time implementations, thus we resort to a subopti-
mal approach to reduce the computational burden. A simplistic
approach, with very simple calculations, which uses geometrical
relations to interpolate was presented by the authors in Mercader
et al. (2018). Sufficient stability conditions are presented, and can
be used to analyze the robust stability for a given plant and given
inner and outer controllers. However, stability cannot, in general,
be guaranteed à priori. The method presented in this paper aims
to resolve that issue, with minimal computational burden.

The idea is to find c(k) such that the applied control law at
time k, for x(k) ∈ E(Qb) \ E(Qa), guarantees that

x⊤(k+ 1)Q−1b x(k+ 1)− x⊤(k)Q−1b x(k) < 0, (13)

i.e., that E(Qb) is contractive.
To avoid complex optimization, a one-dimensional grid of

possible choices of c(k) ∈ [0, 1] is considered, i.e.,

C =
[
0 δc 2δc · · · 1

]
, (14)

where δc defines the grid distance. The number of grid points
is q = 1/δc + 1. Denote the q-dimensional row vector, 1⊤ =[
1 1 · · · 1

]
. A 1-step prediction of all possible values of the

future state is given as

R1 =
[
r1 r2 · · · rs

]
, (15)

where ri ∈ Rn×q is the 1-step prediction for a given extreme case
(Ai, Bi), for all q cases in C,

ri =
[
ri1 · · · riq

]
=

[
Aix(k)+ Bi ua(x(k)) · · · Aix(k)+ Bi ub(x(k))

]
= Aix(k)1⊤ + Bi ub (x(k)) C + Bi ua (x(k)) (1⊤ − C). (16)

For every possible future state in (16), condition (13) can be
checked. All the predictions that do not meet (13) are ruled out.
The interpolation coefficient, c(k), is chosen as the first instance
of C for which (13) is satisfied for every pair (Ai, Bi). Note that
such a c(k) always exists since c(k) = 1 is feasible. By doing so,
we guarantee that the state trajectory will always reach E(Qa),
and prioritize the inner control law. If the state is inside E(Qa),
the inner controller is admissible, and no interpolation is needed.

This new algorithm for one time step is summarized as Al-
gorithm 1. Note that the algorithm always terminates with c ∈
[0, 1]. In the worst case, the number of points that need to
be evaluated is sq. Hence, the number of grid elements q, and
the number of uncertain extreme cases s, play a large part in
determining the computational demand; for systems without un-
certainty i = s = 1. Following are feasibility and robust stability
proofs.

Algorithm 1 Interpolating Control

1: procedure u(x)
2: c = 0
3: if x⊤(k)Q−1a x(k) > 1 then
4: for i← 1 to s do
5: while c ≤ 1 do
6: uc ← c ub(x)+ (1− c) ua(x),
7: ric ← Aix(k)+ Biuc
8: if r⊤ic Q−1b ric − x⊤(k)Q−1b x(k) ≥ 0 then
9: c ← c + δc

10: goto line 4
11: end if
12: end while
13: end for
14: end if
15: u← c ub(x)+ (1− c) ua(x)
16: end procedure

Theorem 1 (Feasibility). Consider the system (1)–(3), Algorithm1
guarantees a feasible control law for all initial states x(0) ∈ E(Qb).

Proof. Algorithm1 always terminates with c ∈ [0, 1]. Since
the inner and outer control laws are saturated, ua ∈ U and
ub ∈ U . Therefore, by the properties of convex combinations,
u = c ua + (1− c) ub ∈ U . □

Theorem 2 (Robust Stability). Consider the system (1)–(3), Algo-
rithm1 guarantees robust stability for initial states x(0) ∈ E(Qb).

Proof. Let V (x) = x⊤Q−1b x ≥ 0 be a Lyapunov function candidate
in E(Qb) \ E(Qa). Since the outer control law, ub, is robustly
contractive in E(Qb), we have that for c(k) = 1, V is decreasing.
Algorithm1 only returns c < 1 for x ∈ E(Qb)\E(Qa) if the resulting
control input is contractive. From Theorem 1 the obtained control
input is admissible for every x(k) ∈ E(Qb). Hence, V (x(k + 1)) <

V (x(k)) ∀x(k), and the system is robustly stable in the Lyapunov
sense for every x ∈ E(Qb)\E(Qa). The trajectories are thus destined
to reach E(Qa); once x(k) ∈ E(Qa) the applied inner control law is
robustly stabilizing. □
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3.1. A quick and dirty alternative

The proposed algorithm may become too computationally de-
manding for control systems involving limited computation ca-
pabilities, fast plant dynamics, or uncertainty. In this section we
present another algorithm that, on an average for many cases,
should be faster than Algorithm1. This new approach is com-
posed from Algorithm1 and Mercader et al. (2018) as Algorithm2.

In Mercader et al. (2018), the state x(k) ∈ E(Qb) \ E(Qa) is
decomposed as

x(k) = c(k)xb(k)+ (1− c(k))xa(k), (17)

where xa(k) ∈ E(Qa), xb(k) ∈ E(Qb), and 0 ≤ c(k) ≤ 1. Then, xa(k)
and xb(k) are selected on the line from the origin through x(k),
i.e., xa(k) = x(k)/a(k) and xb(k) = x(k)/b(k). The interpolation
coefficient is c(k) = c0(k), where

c0(k) =
b(k)(a(k)− 1)
a(k)− b(k)

, (18)

a(k) =
√
x(k)⊤Q−1a x(k), and b(k) =

√
x(k)⊤Q−1b x(k). The control

input is then given as (12).
While this method is easy to implement, there are some

cases in which the closed-loop exhibits limit cycles (Mercader
et al., 2018). The following solution is proposed: use the method
in Mercader et al. (2018) while checking at each step k if (13)
holds for the computed c(k) for every plant case. This means
that instead of checking for every point in the grid C, we only
check for a single c. In case the inequality is false, we seek a new
c(k) ∈ (c0(k) 1], This can be performed by a search over e.g the
grid C = [c0 + δc · · · 1 − δc 1], like in Algorithm1. However,
a binary search (‘‘bisection’’) can in general find a suitable c
with fewer computations (Knuth, 2014, Sec. 6.2.1). This ’‘quick
and dirty’’approach is summarized as Algorithm2.

Algorithm 2 Quick n’ Dirty

1: procedure u(x)
2: c = 0
3: if x⊤(k)Q−1a x(k) > 1 then

4: a ←
√
x(k)⊤Q−1a x(k), b ←

√
x(k)⊤Q−1b x(k), c ← b(a −

1)/(a− b)
5: for i← 1 to s do
6: uc ← c ub(x)+ (1− c) ua(x),
7: ric ← Aix(k)+ Biuc
8: if r⊤ic Q−1b ric − x⊤(k)Q−1b x(k) ≥ 0 then
9: c ← (1− c)/2

10: goto line 5
11: end if
12: end for
13: end if
14: u← c ub(x)+ (1− c) ua(x)
15: end procedure

Algorithm2 is guaranteed to terminate at each time step with
c ∈ [0 1]. The binary search will find a suitable c in less
operations than the linear search of Algorithm1 provided that
rounding in line 9 is done with accuracy δc . Feasibility and robust
stability of the algorithm can be proven following the same lines
as the proofs of Theorems 1 and 2, respectively.

4. Plants subject to disturbances

We now consider the disturbed case, i.e. the general case
described in (1), with w ∈ W =

{
w ∈ Rn

: w⊤w ≤ 1
}
. Recall

that from Remark 1, a contractive ellipsoid cannot be found in

presence of persistent disturbances. However, we show below
that a method, similar to Algorithms 1, 2, may be used with an
invariant set taking the role of the (contractive) outer set. The
computation of the required invariant set is newly developed in
Section 4.1; the new control algorithm is given in Section 4.2 as
Algorithm3.

It may be argued that strict assumptions on the disturbance
sizes cannot be made, although much research exists to control
systems under such assumptions (see e.g. Blanchini & Miani,
2008; Borrelli et al., 2017; Shingin & Ohta, 2004; Tahir, 2010;
Tarbouriech et al., 2011; Trodden, 2016). Here we provide some
theoretical results. A control practitioner may however choose to
neglect some disturbances.

4.1. Computing ellipsoidal invariant sets

The proposed scheme requires the knowledge of ellipsoidal
invariant set for the two saturated control laws. Various methods
for computation of ellipsoidal invariant sets can be found in the
literature (Alamo et al., 2006; Boyd et al., 1994; Hu, Lin, & Chen,
2002; Nguyen et al., 2011; Shingin & Ohta, 2004), but, to the best
of the authors’ knowledge, not for saturated control laws in the
presence of additive disturbances. Following is a method for the
computation of the above required sets.

From (6), E(Q ) is invariant w.r.t. system (1)–(3) under the
control law u = sat(Kx), if and only if for every x ∈ E(Q ) and
for every w ∈ W ,

(Aix+ Bisat(Kx)+ Diw)⊤ Q−1 (Aix+ Bisat(Kx)+ Diw) ≤ 1, (19)

for every i = 1, . . . , s. Using (8), we can write

Aix+ Bisat(Kx)+ Diw =

2m∑
j=1

σj
(
Aix+ BiEjKx+ BiE−j Hx+ Diw

)
.

(20)

Denote Aij = Ai + BiEjK + BiE−j H . Substituting (20) into (19)
and rearranging in matrix form yields, with stars (⋆) denoting the
corresponding transposed elements,[

x
w

]⊤[A⊤ij Q
−1Aij ⋆

D⊤i Q
−1Aij D⊤i Q

−1Di

][
x
w

]
≤ 1,

∀ i = 1, . . . , s, j = 1, . . . , 2m,

(21)

where σj is subsumed into the inequality due to its definition in
(8), making (21) a sufficient condition for (19) to hold. By using
Eq. (11), (21) holds if x⊤Q−1x ≤ 1, w⊤w ≤ 1 and there exist
non-negative scalars τ1 and τ2 such that[
A⊤ij Q

−1Aij ⋆

D⊤i Q
−1Aij D⊤i Q

−1Di

]
⪯ τ1

[
Q−1 0
0 0

]
+ τ2

[
0 0
0 I

]
(22)

and τ1 + τ2 ≤ 1 for every i = 1, . . . , s and j = 1, . . . , 2m. If
(22) holds for τ1 + τ2 = 1, it holds for any τ1 + τ2 < 1, τ1 ≥ 0,
τ2 ≥ 0. Therefore, we can set τ = τ1, τ2 = 1 − τ . Hence, with
some algebraic manipulations, (22) yields[

A⊤ij
D⊤i

]
Q−1

[
Aij Di

]
−

[
τQ−1 0
0 (1− τ )I

]
⪯ 0,

∀i = 1, . . . , s, ∀j = 1, . . . , 2m.

(23)

By the Schur complement (Boyd et al., 1994, p. 28), we obtain⎡⎣ τQ ⋆ ⋆

0 (1− τ )I ⋆

(Ai+BiEjK+BiE−j H)Q Di Q

⎤⎦ ⪰ 0. (24)
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Introducing new variables: Y = KQ and Z = HQ , we obtain the
LMI⎡⎣ τQ ⋆ ⋆

0 (1− τ )I ⋆

AiQ+BiEjY+BiE−j Z Di Q

⎤⎦ ⪰ 0,

∀i = 1, . . . , s, ∀j = 1, . . . , 2m.

(25)

To satisfy the state and input constraints we use the known
LMI conditions from e.g. Hu and Lin (2001). For state constraint
satisfaction[

1 liQ
Ql⊤i Q

]
⪰ 0, ∀i = 1, . . . , h, (26)

where li is the ith row in L. For inputs constraint[
ū2
i zi

z⊤i Q

]
⪰ 0, ∀i = 1, . . . ,m, (27)

where zi is the ith row of Z .
Inequalities (25)–(27) can be readily used to solve various

control problems. Perhaps the most basic of which is given in
Lemma 2.

Lemma 2. The smallest ‘‘size’’ invariant ellipsoid E(Q ) w.r.t. system
(1) under constraints (2) and a given saturated control u(k) =
sat(Kx(k)), can be computed by solving the semi-definite program
(SDP),

min
Q ,Z

trace(Q ) (28)

subject to (25)–(27).

Often, it is beneficial to compute the control gain K which
results in the maximal invariant ellipsoid. This can be done fol-
lowing Lemma 3.

Lemma 3. The largest ‘‘size’’ invariant ellipsoid E(Q ) w.r.t. sys-
tem (1) under constraints (2) and any saturated control u(k) =
sat(Kx(k)), can be computed together with K = YQ−1 by solving
the SDP,

max
Q ,Y ,Z

trace(Q ) (29)

subject to (25)–(27).

In the above Lemmas, each SDP is solved for a pre-chosen τ in
(25). In practice one should conduct a linear search on τ ∈ (0, 1)
to optimize the objective.

4.2. Algorithm for plants subject to disturbances

It is assumed that a performance driven inner control law
ua = sat(Kax) is given, and that it robustly stabilizes the un-
constrained system (1) in the presence of disturbances. The as-
sociated invariant set E(Qa) can be computed by solving the SDP
in Lemma 2 with objective given as max{trace(Q )} instead of
min{trace(Q )}. To achieve maximal feasibility of the interpolating
control scheme we seek an outer control law u(k) = sat(Kbx) such
that its associated invariant set is of maximal size; the above is
facilitated by solving the SDP in Lemma 3, yielding Kb = YQ and
the corresponding maximal invariant ellipsoid E(QM ). Solving the
SDP from Lemma 2 with the obtained Kb, a minimal invariant
ellipsoid E(Qm) is computed. We show in Theorems 3, 4 below
that the norm

V (x) = x⊤Q−1m x ≥ 0, (30)

is suitable for a robustly stabilizing and recursively feasible inter-
polating control scheme.

With some conservativeness, W assumed to be a hypercube
bounding w⊤w < 1. Hence, W can be written as the convex hull
of 2n vertices,

W = conv ([W1 . . .W2n ]) , (31)

with conv(·) denoting the convex hull of a given array of points
in Rn, and Wj, j = 1, . . . , 2n, denotes a vertex of W . The one-
step prediction of all possible future states in (16) is modified to
account for the additive disturbances as

ri = (Aix(k)1+ Bi ub ((k)) C + Bi ua (x(k)) (1− C))⊕ DiW. (32)

The Minkowski addition in (32) is carried out by adding each ver-
tex of W to each disturbance-free prediction point. The number
of points in R is thus 2nsq.

Hence, modified versions of Algorithm1 or Algorithm2 can
be used for the control in presence of disturbances. A modified
version of Algorithm1 is given as Algorithm3.

Algorithm 3 Interpolating Control for Plants With Additive
Disturbance
1: procedure u(x)
2: c = 0
3: if x⊤(k)Q−1a x(k) > 1 then
4: for i← 1 to s do
5: while c ≤ 1 do
6: uc ← c ub(x)+ (1− c) ua(x),
7: xic ← Aix(k)+ Biuc
8: for j← 1 to 2n do
9: rijc ← xic + DiWj

10: if r⊤ijc Q
−1
m rijc − x⊤(k)Q−1m x(k) ≥ 0 then

11: c ← c + δc
12: goto line 4
13: end if
14: end for
15: end while
16: end for
17: end if
18: u← c ub(x)+ (1− c) ua(x)
19: end procedure

Theorem 3 (Feasibility with disturbances). Consider the system (1)–
(3), Algorithm3 guarantees a feasible control law for all initial states
x(0) ∈ E(QM ) and W ∈ W .

Proof. The proof follows the lines of Theorem 1. □

Theorem 4 (Robust Stability). Consider the system (1)–(3), Algo-
rithm3 guarantees robust stability for initial states x(0) ∈ E(QM ).

Proof. The first part of the proof follows (Khlebnikov et al., 2011).
Let V (x) = x⊤Q−1m x ≥ 0 be a Lyapunov function candidate. It is
required that

V (x(k+ 1)) < V (x(k)), ∀x ∈
{
x : x⊤Q−1m x > 1

}
,

∀w ∈
{
w : w⊤w ≤ 1

}
.

The above is equivalent to

V (x(k)) ≤ 1, ∀(x(k), w(k)) s.t. V (x(k+ 1)) ≥ V (x(k)),

w(k)⊤w(k) ≤ 1.

By the S-procedure, the above is shown to be equivalent to LMI
(25) with Q replaced by Qm. Hence, E(Qm) is attractive in E(QM ) \
E(Qm) for the control law ub = sat(Kbx). In other words, for c = 1,
(30) is a Lyapunov function in E(QM ) \ E(Qm).

Algorithm3 only returns c ∈ [0, 1] for x ∈ E(QM ) \ E(Qm) if
the resulting control input is contractive, and c = 1 is always
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Fig. 1. Simulation results of example 1, for simple interpolating control (Mercader et al., 2018) (SIC), Algorithm3 (EIC-1), and Algorithm2 with disturbances (EIC-2).
Points of entry into E(Q−1a ) are marked by ▽’s. Note that after entering E(Qa) interpolation ceases and x⊤Q−1m x may increase.

a feasible solution. By Theorem 3, the obtained control input is
admissible for every x(k) ∈ E(QM ). Hence, the system is robustly
stable in the Lyapunov sense for every x ∈ E(QM ) \ E(Qm).
Assuming E(Qm) ⊆ E(Qa), the trajectories are bound to enter
E(Qa); once x(k) ∈ E(Qa) the applied inner control law is robustly
stabilizing, guarantying convergence to a minimal invariant set
whose size depends on the disturbances in (1). □

Remark 2. The assumption E(Qm) ⊆ E(Qa) is non-trivial and
indeed painful. In the case where no Kb which corresponds to an
appropriate set E(Qm) can be found, the inner controller ua might
have to be detuned to satisfy the assumption, by e.g., reducing its
gain.

5. Examples

In this section some numerical examples are presented. The
simulations have been performed on an Intel Xeon E3 V5 (2.8GHz)
with 32GB RAM, running Matlab 2017a. The required SDPs were
solved using the Yalmip (Löfberg, 2004) parser with the SDPT-
3 (Toh, Todd, & Tütüncü, 1999) solver.

5.1. Example 1

Consider the constrained double integrator with disturbances
adapted from Mayne, Seron, and Raković (2005),

x(k+ 1) =
[
1 1
0 1

]
x(k)+

[
0.5
1

]
u(k)+

[
0.1 0
0 0.1

]
w(k).

−10 ≤ x2 ≤ 10, − 1 ≤ u ≤ 1, w⊤w ≤ 1.
The inner and outer control gains are selected as

Ka =
[
−0.3175 −1.1664

]
, Kb =

[
−0.0527 −1.0280

]
,

to achieve required performance (H∞ norm minimization (Boyd
et al., 1994)) and to maximize the domain of attraction (by
Lemma 2), respectively. The two saturated control law are asso-
ciated with invariant ellipsoids given by

Qa =

[
393.5250 −93.8734
−93.8734 33.6350

]
,

QM =

[
1.8024 −0.0950
−0.0950 0.0100

]
104,

Qm =

[
47.7039 −2.5731
−2.5731 0.2391

]
.
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Fig. 2. Simulation results of example 2, for simple interpolating control (Mercader et al., 2018) (SIC), Algorithm1 (EIC-1), Algorithm2 (EIC-2), and the robust MPC
scheme (Kothare et al., 1996) (R-MPC). Points of entrance into E(Qa) are marked by ▽’s.

The offline computation times of the above ellipsoids are given
as 0.37 s, 0.87 s, and 0.28 s, respectively. Simulation results for
an initial condition x(0) = [−134.2520 7.0957]⊤ are given in
Fig. 1. At each time step the worst case disturbance, in terms of
maximizing the V (x) = x⊤Q−1m x norm, is applied. The resulting
w(k) are presented in Figs. 1e and 1f. The algorithms used are
Algorithm3 – the extension of Algorithm1 for the disturbed case
(EIC-1), and a similar extension for Algorithm2 (EIC-2). The SIC
method (Mercader et al., 2018) was also simulated, and shown
for reference.

For the given initial conditions SIC and Algorithm2 obtained
similar results until t = 14; for t > 14 Algorithm2 achieved
better performance w.r.t. the norm V (x), but entered the set
E(Q−1a ) later. EIC-1 yields the fastest convergence into E(Q−1a )
even though its V (x) norm is larger. That is expected since EIC-1
does not aim at minimizing c . As expected, the SIC computation
is fastest with 0.14 [ms] on average, followed by EIC-1 and EIC-2
with 0.41 [ms] and 0.44 [ms], respectively.

5.2. Example 2

Consider the two masses–spring system benchmark example
from Kothare et al. (1996) and Reinelt (2000). It consists of two
masses coupled by a linear spring. A discrete state–space model
is given in Kothare et al. (1996) as

x(k+ 1) =

⎡⎢⎣ 1 0 0.1 0
0 1 0 0.1

−0.1K 0.1K 1 0
0.1K −0.1K 0 1

⎤⎥⎦ x(k)+

⎡⎢⎣0
0
1
0

⎤⎥⎦ u(k)

y(k) =
[
0 1 0 0

]
x(k)

corresponding to the masses being 1 kg each, and the sample
time equal to 0.1 s. The states are, respectively, the position of
the 1st mass, position of the 2nd mass, velocity of the 1st mass,
and velocity of the 2nd mass. The spring coefficient K ∈ [0.5 1.5]
N/m is constant yet unknown. We introduce the state and input
constraints
− 2 ≤ x1 ≤ 2, − 2 ≤ x2 ≤ 2, − 10 ≤ x3 ≤ 10,
− 10 ≤ x4 ≤ 10, − 1 ≤ u ≤ 1.

The inner control law gain was designed as static H-infinity
state-feedback (Cao, Lam, & Sun, 1998) with weighting Q = R =
1,

Ka =
[
−13.4535 7.6441 −6.1226 −5.7299

]
.

The outer control law was designed to assign largest invariant
ellipsoid, and given as

Kb =
[
−8.2475 7.6813 −11.0494 3.5357

]
.

These two control gains were used in interpolating control
schemes given in Algorithm1 and Algorithm2, as well as in the
simple interpolating scheme from Mercader et al. (2018). Simula-
tion results for an initial condition x(0) = [−1.60 −1.83 0 0]⊤
are given in Fig. 2. Simulation results of the robust MPC in Kothare
et al. (1996) are also given as reference.

It is shown that Algorithm1 brought the output faster to the
origin (Fig. 2a) and to the inner invariant set (Fig. 2c). Algo-
rithm2 and SIC achieved similar results and approximately the
same convergence time as the robust MPC. Algorithm2 was also
the slowest of the interpolating controllers with 0.1 ms mean
computation time — rendering the ‘‘quick n’ dirty’’ solution just
dirty. SIC and Algorithm1 had similar mean computation times:
0.067 ms and 0.075 ms, respectively. The robust MPC comes last
with a 118 ms – just above the system sampling time – which
means that a stronger computer has to be used if this robust MPC
were to be implemented in real time.

6. Conclusion

A sub-optimal interpolating control scheme for uncertain lin-
ear systems using ellipsoidal invariant sets was presented. The
method extends the SIC scheme of Mercader et al. (2018), and
guarantees robust stability, and recursive feasibility. Two variants
were presented: the first aims to minimize the interpolating
coefficient using a sub-optimal linear search, whereas the second
attempts the solution from Mercader et al. (2018) first. Both
algorithms can be extended to deal with persistent disturbances
as showed in Section 4. Numerical simulations show no particular
advantage for the second aforementioned method (Algorithm2)
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over SIC. The first method (Algorithm1) provides fastest conver-
gence and guaranteed stability, however it is more complicated
for implementation compared to SIC. A comparison between SIC,
polyhedral based IC, and MPC is found in Komarovsky and Had-
dad (2019). A comparison between the algorithms in this paper,
polyhedral based IC, and robust MPC is under preparation. The
extension of the proposed algorithms to handle reference tracking
is due in future research.
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