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Optimization-based automatic flatness control in cold tandem rolling
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a b s t r a c t

For the problem of automatic flatness control (AFC) in cold tandem mills this paper proposes control
techniques based on quadratic optimization and delay compensation. Three different strategies are pre-
sented and compared: a centralized solution based on a global quadratic programming (QP) problem that
decides the commands to all the actuators, and two decentralized solutions where each actuator com-
mand is optimized locally. All schemes are based on a global exchange of information about the com-
mands generated at the previous time step at each stand to compensate for the numerous delays
present in the mill. Control algorithms are tested in simulation considering a tandemmill with five stands
as a benchmark, and results are shown to demonstrate the performance of the proposed schemes.

! 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Flat cold tandem mills (see [1]) have the purpose of reducing
the thickness of flat steel by means of consecutive rolling passes,
i.e. through 3–5 housings called rolling stands. This type of process
is widely exploited in order to feed a wide variety of industries
from food industry to automotive industry. In the recent years,
the production of steel (and other metals like copper and alumin-
ium as well) by cold rolling has been subject of research efforts to
reach ultra-thin gauges and to increment the production perfor-
mance together with the quality of the material.

The automation behind this process resorts to complex control
technologies and advanced hardware solutions that are often orga-
nized in two hierarchical layers. The PLC automation level (Level 1
automation) is in charge of regulating in closed-loop the thickness
and the flatness by means of real-time operative systems, whereas
the Level 2 automation optimizes the so-called setup that defines,
in particular, the reduction to be performed by each rolling stand,
the prediction of the rolling force applied by each stand, the target
flatness to be realized also by an intermediate rolling stand, and,
finally, the initial best configuration of the flatness actuators. This
calculation is executed offline, i.e. before the beginning of the roll-
ing process, by suitable process computers where complex mathe-
matical models and identification techniques are implemented
(see e.g. [2–4]).

The cold tandem rolling can be included as an example of the
more general field of sheet and film processing (see the survey

[5]). It is necessary to point out that between these processes there
are strong differences related not only to the mechanical and sen-
sors solutions, but also to the characteristics of the treated mate-
rial. Indeed, remaining in the field of steel processing, hot rolling
and cold rolling present significant differences, for instance in the
controller structures, despite they could seem similar processes
(see [1]).

The control tasks realized in the Level 1 automation of cold tan-
dem mills mainly concern the thickness (gauge) (AGC – automatic
gauge control) (see e.g. [6]) and the flatness (AFC –automatic flatness
control) (see [7,8]). It is worthwhile to point out that both AGC and
AFC rationales can change significantly from installation to instal-
lation, according to the mechanical solution considered and the
sensors availability.

The flatness of the material can be defined as its ability to lie on
a flat surface under gravity alone (see [9,10]). For a strip subject to
cold rolling, the flatness can be more properly defined as the
amount of internal stress difference along the width of the mate-
rial. The measurement of the strip internal stresses (the so-called
shape) during coiling can be taken through suitable sensors named
shapemeters or stressometers that until now represent a significant
investment. Due to the cost of these sensors only seldom a plant is
equipped with more than one flatness sensor, i.e. the shapemeter
installed at the exit of the mill.

Despite the cold tandemmill is constituted in general of several
rolling stands with effective flatness actuators, the AFC task is usu-
ally performed by exploiting in closed-loop the flatness actuators
of the last stand only, since it is the nearest to the shapemeter
and it has the most immediate and predictable effect on the coil fi-
nal flatness. In this paper an extension of the traditional AFC task is
presented in order to exploit the compensation properties of other
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stands, and three control techniques based on online optimization
and delay compensation are proposed. Both a centralized control
scheme, where a single controller computes the input signals for
all the actuators, and a decentralized solution, where each stand
of the mill is optimized locally to lower the computational burden,
are investigated.

Including more than one stand in the control loop could lead to
non-negligible advantages. For instance, for ultra-thin gauges (un-
der 0.2 mm), the flatness at exit of some preliminary stands must
be controlled, in order to avoid roll kissing in those stands where
this phenomenon could potentially happen, so as to reduce the risk
of cobbles and improve the final quality of both thickness and
flatness.

As a benchmark example to evaluate the performance of the
presented control approaches, we consider a cold tandem mill
equipped by only one shapemeter and constituted of five stands,
where the last one is of 6-high type. In this work, we will neglect
the physical phenomena that can be observed in a continuous cold
tandem mill (see e.g. [11]), i.e. a cold tandem mill coupled with a
so-called pickling line used to eliminate the oxide scale from the
surface of the black material coming from hot rolling process.
However, results here presented can be easily extended in several
directions to take into consideration other plant configurations.

The paper is organized as follows. Section 2 describes the phys-
ical structure of a 6-high rolling stand, whereas Section 3 is dedi-
cated to the mathematical models used for flatness setup
optimization. In Section 4 novel approaches for control of flatness
based on quadratic optimization and delay compensation are pre-
sented. The performances of the proposed control schemes are
illustrated by simulation results reported in Section 5, and conclu-
sions are drawn in Section 6.

2. Structure of a 6-high stand

Each rolling stand of the mill is composed of a stack of rolls. For
a 6-high mill the rolls are named respectively work roll – WR (i.e.
the roll in contact with the material), back-up roll – BUR (the big-
gest roll at the top controlled by an hydraulic cylinder) and the
intermediate roll – IR, placed in the middle between the work and
the back-up roll (see Fig. 1). A 4-high stand has not the intermedi-
ate roll and consequently it has not the flatness actuators con-

nected with it. Of course, a 6-high stand is expected to have the
possibility to correct a wider set of flatness defects, because of
the wider availability of flatness actuators.

Hereafter the flatness actuators which are available on a 6-high
type stand are briefly described (see Fig. 2):

(1) The work roll bending (WRB). It allows applying a curvature
on the work rolls. This actuator is fast but can reach
saturation.

(2) Differential work roll bending (DWRB). The applied WRB can
be different between the two sides of the stand (non-drive
side/drive side).

(3) The intermediate roll bending (IRB). It is similar to the WRB,
the difference is that it acts on the rolls placed in the middle
of the roll stack.

(4) The work roll shifting (WRS). It has an influence on the flat-
ness on the strip edges.

(5) The intermediate roll shifting (IRS). In case the intermediate
rolls have a tapered-crown profile, its effect is similar to that
of WRB and IRB.

(6) The intermediate roll crossing (IRC). The intermediate roll
can be crossed with respect to the work rolls, producing a
curvature of them.

(7) The tilting (T). It is the difference in gap between the two
sides of the stand.

(8) Selective cooling (SC). The stand is provided of water nozzles
distributed along the length of the work roll, in order to
selectively cool parts of the work rolls.

Some of these flatness actuators can only be moved offline (i.e.
before strip threading, at the setup generation) due to the direct
contact with the material or to mechanical limitations. Among
them, the WRS, as far as the authors know, has never been used
in closed-loop in any installation. Indeed, it is in general used to
control the thickness edge-drop (see e.g. [12]).

The other flatness actuators can be moved both offline (accord-
ing to the material characteristics and the shape target) and in
closed-loop during rolling (WRB, DWRB, IRB, IRC, T, SC). In partic-
ular, the IRC is an extremely powerful actuator which on the other
hand presents a slow dynamical response. For this reason it is
mainly used offline to compensate the thermal condition of the

Fig. 1. A 6-high type stand for cold rolling.
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plant during setup calculation, even if it can also be moved during
rolling in order to recover from possible positive bending satura-
tion (i.e. on WRB and/or IRB). The 4-high stands are not provided
of the intermediate roll, and consequently only a subset of flatness
actuators are available for them: WRB, DWRB, T, and SC.

In the following part of this paper a novel AFC technique is
introduced, which allows to compensate measured flatness defects
during rolling, on the basis of the measurements provided by a
shapemeter.

In the AFC task of a tandemmill that will be discussed in the fol-
lowing these points need to be taken into account:

– Each actuator is subject to a dynamical response.
– The actuators commands are bounded. When a saturation limit

is reached in a given stand, it is possible to use alternative flat-
ness actuators in the same stand (for instance, IRC can be used to
recover WRB/IRB from saturation), or to modify the configura-
tion of other stands that are far from saturation in order to
recover the saturation in the considered stand.

– Each stand presents a different transport delay from the shape
sensor, since this is placed at the exit side of the tandem mill,
i.e. after the last stand. These delays need to be suitably compen-
sated in order to guarantee closed-loop stability (see Fig. 3).

3. The use of mathematical models for setup optimization

The automation system includes a supervision system (Level 2
automation). The main purpose of Level 2 automation is to super-
vise the plant and to compute a plant setup on the basis of the pri-

mary data of the product to be realized. It needs to include the
following functions:

– The definition of the shape targets to be realized by each stand.
– The predicted optimal values for all the flatness actuators (in

particular for the stands not optimized in closed-loop).
– The sensitivities on the coil shape of each flatness actuator for all

the stands.

In order to achieve the optimal setup, the Level 2 system is
equipped of several mathematical models (see also [2,3]):

– A roll thermal crown model (RTCM). This model simulates in a
dynamical way the evolution of the thermal condition of the
work rolls and, in particular, it allows to estimate the work roll
profile variations due to thermal expansion (thermal crown).
Typically this model is implemented in terms of a time-based
integration of a power balance equation applied to the mass of
the roll, and complemented with a discrete element method
(DEM) based algorithm. The output of the model is represented
by the thermal expansion profile of the roll.

– A roll stack deflection model (RSDM). It is a static model whose
purpose is to evaluate the deflection of the rolls according to
the rolling force and the roll thermal crown estimation provided
by RTCM. Furthermore, it allows to estimate how the rolling
pressure is distributed in the contact surfaces between rolls.
This model can also be implemented through a DEM algorithm
that allows to compute the distribution of the pressure in the
contact surface.

Fig. 2. Effects of bending and crossing on the shape.

Fig. 3. Structure of a 5-stand tandem mill with 4-high stands, and a 6-high stand as last stand.
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– The shape model (SM) is a static model that is in charge of esti-
mating the strip internal stresses due to the pressure distribu-
tion in the contact surface between the WR and the material,
given the estimated deflections provided by the RSDM. Besides,
it provides an estimation of the material profile and, in particu-
lar, of the thickness edge-drop (i.e. the thickness variation at the
strip edges with respect to the average value, see [12]) to be pos-
sibly compensated with a work roll shifting.

In general all the flatness models are exploited during setup
computation but not during AFC closed-loop execution, due to
the high involved computational complexity. The AFC task is in
any case provided by a linearized version of these models, in order
to implement additional predictive compensation effects. In the
following, this linearized model will be referred to as ‘‘sensitivity
matrix” or ‘‘actuator influence matrix”. Of course, the sensitivity ma-
trix generated in the setup computation is a representation of the
shape phenomena in a given working point, hence that matrix
needs to be recomputed coil-by-coil together with each plant
setup.

The mentioned computational complexity of the shape models
is not an issue for exploiting these models in an offline simulation
of the complete AFC task, that can be used to evaluate the perfor-
mance of the controller. For this reason, the simulations that will
be presented in the following will take into account all the nonlin-
ear phenomena predicted by means of these physical models.

As anticipated, one of the main contents of the setup is repre-
sented by the shape targets to be realized by each rolling stand.
Each stand contributes through the shape control not only to the
quality of the material but also to the stability of the mill.

The optimal flatness actuators configuration during setup calcu-
lation can be achieved by exploiting the shape estimations ob-
tained from the SM (and the other flatness models, i.e. the RSDM
and the RTCM) in a iterative algorithm whose purpose is to bring
the SM shape estimation of every stand as near as possible to the
corresponding shape target.

The Level 1 automation system implements the closed-loop
control starting from the reference values generated by Level 2
and the feedback provided by the measurement system. As already
pointed out, it is unlikely to have more than one shapemeter in a
plant.

The following subsections are dedicated to the description of a
shapemeter and the conventional implementation of the closed-
loop AFC.

3.1. Shape measurement system

A conventional shapemeter used in cold rolling is constituted of
an array of load cells distributed along the width of the strip. Each
load cell produces a signal representing the pressure exercised by
the slice of strip in contact with it. Consequently, the shapemeter
produces an array of tension signals whose dimension is the num-
ber L of load cells placed on the sensor:

Shape ¼ ½T1 T2 . . . TL#0: ð1Þ

The presence of a gradient in the specific tensions associated to two
different strip slices implies that the two slides will present differ-
ent elongation values (see Fig. 4). In turn, a difference in the elonga-
tion between the strip slices could imply a flatness defect that
should be corrected.

The shapemeter dynamics are extremely fast with respect to
other dynamical effects such as the transport delay between the
last stand and the exit shapemeter. For this reason, in the following
part of the paper possible dynamics associated to the shapemeter
will be neglected.

3.2. The conventional AFC system based on least mean squares

The problem of correcting a flatness defect, i.e. a deviation of the
measured shape with respect to the desired shape target, can be
properly faced if the influence of each flatness actuator on each
tension measurement Ti is known, i ¼ 1;2; . . . ; L. In other words,
it is necessary to know the relation

DShapeðActÞ ¼ ½DT1ðActÞ DeltaT2ðActÞ . . . DeltaTLðActÞ#0

¼ MðActÞDeltaAct ð2Þ

for each actuator, where Act is a generic flatness actuator and
MðActÞ is a vector of dimension L representing the sensitivity matrix
of actuator Act on the shape. As reported before, the sensitivity
matrices MðActÞ are computed by the Level 2 automation flatness
models (SM, RSDM and RTCM).

Once the matrices MðActÞ are known, the closed-loop control
problem is conventionally solved by means of least mean squares
(LMS) (see Fig. 5). At each time instant the shape error, computed
as the difference between the shape measurement and the shape
target, is provided to an optimization tool based on LMS which
computes the optimal variation of each actuator status with refer-
ence to their current status (see [13]). As discussed before, the IRC

Fig. 4. The flatness defect is induced by differential internal tensions causing differential elongations.
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is a slow actuator and consequently its dynamics can be hardly ne-
glected. For this reason the IRC control action cannot be computed
by means of the just described LMS algorithm, and it is in general
computed in cascade to the LMS algorithm in order to prevent sat-
uration of WRB and/or IRB.

The use of LMS in the field is actually complemented of addi-
tional logic, often considered reserved know-how, that is in charge
of avoiding several problems that LMS cannot solve by itself: as an
example, it is necessary to execute the control algorithm even
when two flatness actuators have similar yet not identical effects
(sensitivities). In line of principle, in such a situation the bare
LMS algorithm could produce as optimal result a flatness actuators
configuration having some actuators uselessly fighting between
them, or a configuration that cannot be actually implemented
due to actuators saturation. Similar reasons motivate the adoption
of model predictive control in order to explicitly take into account
constraints without the use of additional logic.

In the rest of the paper three novel control algorithms based on
online optimization are proposed, aiming to overcome the above
issues.

4. Control algorithms

We start giving some preliminaries on model predictive control
(MPC), a technology diffused in the general field of control of sheet
and film processes, whose cold rolling mills control is an example
[5].

MPC is widely spread in industry for control design of highly
complex multivariable processes under constraints on input and
state variables [14–16]. The idea behind MPC is to solve at each
sampling time an open-loop finite-horizon optimal control prob-
lem based on a given prediction model of the process, by taking
the current state of the process as the initial state. Only the first
sample of the sequence of future optimal control moves is applied
to the process. At the next time step, the remaining moves are dis-
carded and a new optimal control problem based on new measure-
ments is solved over a shifted prediction horizon. When the
prediction model and the constraints are linear, and the control
objective is expressed through a quadratic function, the computa-
tion of the control action requires the solution of a quadratic pro-
gramming (QP) problem. An alternative approach to evaluate the
MPC law was proposed in [17]: rather than solving the QP problem
on line for the current state vector, by employing techniques of
multiparametric QP the problem is solved offline for all state vec-
tors within a given range, providing the explicit dependence of the
control input on the state and reference, which is piecewise affine
and continuous.

The straightforward application of the basic MPC algorithm to
the whole tandem mill dynamical model is not viable because of
the excessive computational burden involved (for instance, in
[10] the authors implement an MPC scheme only on the last three
stands of the mill and make assumptions on the strip structure to
lower complexity). Neither the decentralized MPC approach re-
cently proposed in literature (see [18–20]) is realizable, owing to
the presence of delays between stands. Henceforth, relying on

the model introduced below in Section 4.1, different solutions for
control of tandem mills based on quadratic optimization and delay
compensation are examined. The three alternative QP-based con-
trol schemes presented in the following will be referred to as Glo-
bal QP controller (Section 4.2), Decentralized QP controller
‘‘Optimize & Push” (Section 4.3), Decentralized QP controller ‘‘Pull
& Optimize” (Section 4.4).

4.1. Model of tandem mill for control

A single stand is modeled as the linear system depicted in Fig. 6,
where

– V 2 RL is the input shape, where L is the number of zones the
strip surface is divided.

– Y 2 RL is the output shape, corresponding to the input shape of
the following stand.

– D is a transport delay, representing the strip rolling time from
stand i to stand iþ 1 (or to the shapemeter, for the last stand)
expressed as a number of sampling steps, where the sampling
time is Ts ¼ 10 ms. The delay of stand #i is denoted by DðiÞ
and is assumed to be known during a specific coil rolling.

– Uj 2 R is the actuation command input, j ¼ 1; . . . ;n. The effect of
actuator#j on Y is modeled through a sensitivity vectorMj 2 RL,
pre-calculated from Level 2 automation flatness models by line-
arization, and a first order dynamics

f ðsÞ ¼ 1
1þ ss ð3Þ

with time constant s ¼ 0:1 s. The choice of the dynamical model (3)
can be reviewed according to the characteristics of the considered
actuator, however, using a first order dynamics can be considered
a fair approximation for hydraulically controlled actuators like
WRB and IRB (see e.g. [13,21]). If a stand has more than one active
actuator, the order of the actuators in the vector U is assumed to be
the one listed in Section 2.
– RTC is the roll thermal crown disturbance input, modeled again

as the cascade of a sensitivity vector and a first order dynamics.

The overall tandem mill model consists of the series cascade of
the single stand models described above. In general, different
stands are equipped with different combinations of active actua-
tors. By letting n be the total number of actuators, the global sensi-
tivity matrix M 2 RL'n for the whole system model is defined by
collecting the column sensitivity vectors from each stand. M maps
statically the effect of each actuator on the output shape at the end
of the tandem mill and takes into account the thickness reduction
effects realized by each stand. This is measured through a shape-
meter sensor placed at the exit of the last stand providing L values,
one for each zone along the width of the strip.

As told, the assumption of having only one shapemeter after the
last stand corresponds to the most common plant configuration,
but the use of intermediate shapemeters could be considered and
managed by the control techniques proposed hereafter.

Fig. 5. AFC by means of least mean squares.
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Since usually L > n, a common approach proposed in literature
is to parameterize the shape profile in order to obtainM as a square
matrix and simplify calculations [13,21,22,5]. In the following, we
do not take into consideration strip parametrization explicitly, as it
can be implemented independently of the specific control scheme
adopted.

Since the linearized model of the tandemmill refers to a specific
working point of the process, in presence of coil changes or sub-
stantial variations of coil properties such as speed, temperature
or lubrication, the performances can degrade due to a non-optimal
tuning of controller data M and D.

The re-calculation of D is trivial being the distance between
stands fixed, whereas M is updated by Level 2 automation. More
precisely the Level 2 automation models are provided also of
complex auto-adaptation algorithms that exploit the measured
feedback and are in charge of coil-by-coil automatically and
recursively re-tuning the models exploited for computing M. This
auto-adaptation task is executed online and will influence AFC
only for the following coil, by modifying the ‘‘actuator influence
matrix” M to be generated together with the setup (in general,
it turns out counterproductive to perturb the AFC task for the cur-
rent coil).

Fig. 6. Block diagram of one stand.

Fig. 7. Bending sensitivity variability in a 6-high mill.
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In order to clarify the effects of the model uncertainties on the
controller performances, it is worth concentrating on the variabil-
ity of the parts of matrixM concerningWRB and IRB influence coef-
ficients. As an example, Fig. 7 shows typical predicted influence
coefficients for a strip of 1600 [mm] wide for a 6-high mill when
the WRB is varying from (750 [kN] to +750 [kN]. As can be seen,
the sensitivity coefficients are subject to significant variations de-
spite the concave characteristic remains positive. In general, this
effect leads to the practice that unreliable initial predictions of
the setup produce inaccurate shape control actions, even though
the stability is hardly compromised. Typically, in that case a poor
shape regulation at the strip edges may occur, because the control-
ler is not able anymore to discern between the effects of WRB and
IRB.

4.2. Global QP controller

The Global QP control algorithm considers a single QP problem
for the whole tandem mill (see Fig. 8). The idea is to have a central
unit solving the following optimization problem at each time step
k

min
UðkÞ

YðkÞ ( RðkÞ þMðUðkÞ ( UoldðkÞÞk k22 ð4aÞ

s:t: Umin 6 UðkÞ 6 Umax ð4bÞ

involving the overall delay-free model of the tandemmill composed
of N stands, where:

– YðkÞ 2 RL is the vector of output zones measured at the end of
the tandem mill.

– RðkÞ 2 RL is the set point for Y.
– UðkÞ 2 Rn is the vector collecting all actuator values.
– UoldðkÞ is the filtered version of the vector of previous actuator

values Uðk(
PN

i¼1DðiÞÞ that contributed to generate the output
YðkÞ at the current time k. The filtering is obtained through
the first order dynamics (3), in order to consider the actual
(low-pass filtered) values applied by actuators.

– Umin and Umax are lower and upper bounds for the control signal
UðkÞ, respectively. Constraint (4b) is intended in a component-
wise fashion.

In order to take into account the relevant delays in the system, a
Synchronizer block supplies each actuation command at the right

time. Once the input for stand #i has been calculated, it is placed
into a buffer with a delay Dbuf ðiÞ, such that

Dbuf ðiÞ ¼
Xi(1

j¼1

DðjÞ; i ¼ 1; . . . ;N: ð5Þ

The drawback of the Global QP control approach is the amount of
computations involved in solving the centralized problem (4), espe-
cially when a large number of stands and actuators is involved.
Decentralized, computationally lighter approaches are therefore ex-
plored in the next sections.

4.3. Decentralized QP controller ‘‘Optimize & Push”

The first solution consists of a simpler QP controller placed at
every stand, working in parallel with the others. The principle is
the same as the global one because every single QP optimizes a de-
lay-free system and send its data to the Synchronizer (see Fig. 9).
As no information exchange among QP controllers happens during
the decentralized computation at time k, every QP controller oper-
ates under the assumption that at time k the other QP controllers
maintain applied their values, which have been previously calcu-
lated at time k( 1, therefore leading to sub-optimal solutions.
For a generic stand #i at time step k the optimization problem to
be solved is

min
Uv ðkÞ

kYðkÞ ( ðRðkÞ (McUprevðkÞÞ þMvUvðkÞ (MUoldðkÞk22 ð6aÞ

s:t: Uv ;min 6 UvðkÞ 6 Uv;max ð6bÞ

where Y ; R; Uold are defined as in (4), and

– Mv is the sensitivity matrix of stand #i composed by extracting
the column vectors of the global sensitivity matrix M corre-
sponding to the actuators that are actively used at that stand.

– Mc is the complement of Mv , related to actuators that are not
optimized at stand #i, ordered by stand number, from the input
shape to the shapemeter.

– UvðkÞ are the actuators values for stand #i.
– Uprev ðkÞ is the filtered version through (3) of the actuators sig-

nals optimized at the other stands and computed at the previous
time step k( 1.

– Uv ;min; Uv ;max are respectively the elements of Umin; Umax

referred to the actuators optimized by stand #i.

Fig. 8. Virtual delay-free model for Global QP controller.
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Note that, while communication among stands takes place to
obtain Uprev , no exchange of information happens during the opti-
mization of each stand.

A variation of the above scheme leading to an improved overall
closed-loop response consists of including the dynamics (3) of the
WRB actuator in the optimization of the first stand. This is achieved
by considering the input values obtained from the static QP mini-
mization as set-points to an explicit MPC controller based on the
actuator dynamics (3) of the first stand.

The MPC problem is formulated using the model predictive con-
trol toolbox [23] as:

min
DU1

Xp(1

j¼0

kyðkþ jjkÞ ( Uqp
1 k22 ð7aÞ

s:t: yðkþ jþ 1jkÞ ¼ e(Ts=syðkþ jjkÞ þ ð1( e(Ts=sÞuðkþ jjkÞ; ð7bÞ
uðkþ jþ 1jkÞ ¼ uðkþ jjkÞ þ Duðkþ jjkÞ; ð7cÞ
U1;min 6 uðkþ jjkÞ 6 U1;max; 8j ¼ 0; . . . ;m( 1; ð7dÞ
Duðkþ jjkÞ ¼ 0; 8j ¼ m; . . . ; p; ð7eÞ

Fig. 9. Virtual delay-free model for Decentralized QP controller ‘‘Optimize & Push”.

Fig. 10. Explicit MPC controller (7e). Section of the controller partition in the ðyðkÞ;Uqp
1 ðkÞÞ-space obtained for uðk( 1Þ ¼ 0.
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where yðkþ jjkÞ 2 R is the output of the WRB actuator at prediction
time kþ j obtained by sampling dynamics (3), uðkþ jjkÞ 2 R and
Duðkþ jjkÞ 2 R are the predicted command to the actuator and its
finite difference, respectively, DU1 ¼ fDuðkjkÞ; . . . ;Duðkþ m( 1jkÞg,
and Uqp

1 is the input value commanded to WRB by the first stand
QP. The prediction horizon p ¼ 20 and the control horizon m ¼ 3
have been tuned to achieve a desirable trade-off between closed-
loop performance and involved computational load. The MPC con-
troller is converted to its explicit form by using the hybrid toolbox
[24], resulting in a piecewise affine control law depicted in Fig. 10,
defined over 7 polyhedral partitions of the ðyðkÞ; uðk( 1Þ;Uqp

1 ðkÞÞ-
space (see Fig. 10).

As no sensor is available to measure the actual command yðkÞ
delivered at each time step k by the WRB actuator, the above
MPC controller works purely in feedforward, having the effect of
filtering theWRB command Uqp

1 by taking into account the actuator
dynamics (3) and its upper and lower bounds.

Note that adding an (explicit) MPC control action on all stands
has the negative consequence of requiring a global coordination
among all MPC controllers, which is avoided here in order to main-
tain the computational simplicity of the decentralized scheme.

4.4. Decentralized QP controller ‘‘Pull & Optimize”

A rather different control approach that still maintains the de-
sired low computational effort of the Decentralized QP solution
presented above consists of getting rid of the global Synchronize
block. After an input vector computed by a QP is calculated, it is ap-
plied to the stand without buffering. The basic idea is to formulate
the optimization problems so that the ith QP is responsible to com-
pute the command inputs to be actuated with no delay, consider-
ing the effects that other stands have had or will have on the same
section of the strip which is currently being processed at the ith
stand. Hence, a global delay-free model is no more employed
(see Fig. 11).

As a consequence, the optimization of a generic stand#i at time
k only requires the information about what the QPs at the previous
stands 1; . . . ; i( 1 have applied on its current strip section in the
past (which in general is different from the actuators values at
the previous time step k( 1), and a prediction of what the follow-
ing stands iþ 1; . . . ;N will apply on it. Accordingly, the problem
solved at stand #i at time k is

min
Uv ðkÞ

kYðkÞ ( ðRðkÞ (McUi
prevðkÞÞ þMvUvðkÞ (MUoldðkÞk22 ð8aÞ

s:t: Uv ;min 6 UvðkÞ 6 Uv;max ð8bÞ

where now UprevðkÞ is defined as UprevðkÞ ¼ ½U1
prev U2

prev . . . UN
prev #,

Ui
prevðkÞ ¼

U1ðk(
Pi(1

j¼1
DðjÞÞ

U2ðk(
Pi(1

j¼2
DðjÞÞ

..

.

Ui(1ðk( Dði( 1ÞÞ
Uiþ1ðk( 1Þ
Uiþ2ðk( 1Þ

..

.

UNðk( 1Þ

!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!

; ð9Þ

Uj is the input vector computed for stand #j, and the values
Ujðk( 1Þ; j ¼ iþ 1; . . . ;N, are determined at time step k( 1 as in
the ‘‘Optimize & Push” scheme.

In principle, as for the ‘‘Optimize & Push” approach, an explicit
MPC controller could be added for generating the actual actuator
signals from the input values computed by the QP. However, in this
case the first components U1ðk(

Pi(1
j¼1DðjÞÞ of Ui

prev in (9) would
contain the values generated by the MPC controller. During the
transient, such values may be wildly oscillating from one step to
another. In the static optimization (8b) they are treated as stea-
dy-state values, a certainly wrong assumption during such tran-
sients. Henceforth, in this control scheme we will not include an
MPC action on the first stand. Similarly, the MPC action on the first
stand is not conveniently applicable in the Global QP control ap-
proach, as filtering the input values generated by the Global QP
to stand #1 through an MPC feedback loop would make the whole
coordinated scheme clash. Note that, instead, in the ‘‘Optimize &
Push” approach Ui

prev contains signals computed at the previous
time step k( 1, so that old transient values generated by the
MPC controller at the first stand disappear immediately after they
have been issued (even after one step if the filter (3) were not
applied).

Fig. 11. Virtual model for Decentralized QP controller ‘‘Pull & Optimize”.
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5. Numerical results

The control algorithms described in the previous section have
been tested on a nonlinear simulator exploiting the same flatness
models used in a real automation system (i.e. SM, RTCM, and
RSDM), with N ¼ 5 stands and the following actuators configura-
tion: stands 1–4 are of 4-high type and are equipped with WRB
only, while the 5th stand is of 6-high type and it is equipped with
WRB, IRB and IRC. The resulting delay vector is given by
D ¼ ½15;11;9;7;6#. The strip shape is desired to assume the con-
stant profile with zero mean shown in Fig. 12. The nonlinear sim-
ulation model includes the roll thermal crown dynamics, which
affect the work rolls on all the stands of the mill. This disturbance
is due to the thermal expansion of the rolls, which heat up during
the rolling process, and produces an increased roll bending action.
An example of thermal crown effects is illustrated in Fig. 13. To
take into account other disturbances than roll thermal crown, the
unmeasured disturbance

dðkÞ ¼
0 if k < 2 s
R=2 if k P 2 s

"
ð10Þ

is added on the output signal in the simulation model. This type of
disturbance can be considered as a material sudden variation dur-
ing weld transition in a continuous tandem rolling mill.

Fig. 12. Target strip shape R used in simulation.

Fig. 13. Open-loop evolution of output shape of zones 1, 15, 20 and 25 due to roll
thermal crown only (solid line), with respect to a given initial condition (dashed
line).

Fig. 14. Global QP control action, output shape of zones 1, 15, 20 and 25. Solid line:
output, dashed line: target.

Fig. 15. Decentralized QP ‘‘Optimize & Push” control action, output shape of zones
1, 15, 20 and 25. Solid line: output, dashed line: target.

Fig. 16. Decentralized QP ‘‘Pull & Optimize” control action, output shape of zones 1,
15, 20 and 25. Solid line: output, dashed line: target.
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Both the Global QP and the Decentralized QP ‘‘Optimize &
Push” + MPC approaches, whose performances are, respectively,
depicted in Figs. 14 and 15, show a smooth behavior with no out-
put oscillations, thanks to the coordinated action between stands.
Their delayed reaction to the disturbance is due to the delay-free
model employed for the static QP optimization. The decentralized
solution shows a much better rising time with respect to the global
control thanks to the MPC action, which exploits partial knowledge
of the process dynamics.

On the other hand, the Decentralized QP ‘‘Pull & Optimize”
exhibits a faster reaction to the disturbance, see Fig. 16. The inde-
pendence of the stands let them react more promptly to the distur-
bance. Such an increased autonomy is paid in terms of larger
settling time and higher output oscillations, due to local models
mismatches.

Moreover, we compared the proposed control schemes with a
traditional LMS-based controller where only the WRB and IRB

actuators equipped on the last stand are optimized online, and
where no information on the actuator dynamics is exploited. In
other words, at time k the LMS input command is obtained by
the solution of problem (8b) for stand #5, where the variable cor-
responding to the IRC actuator is fixed to an optimal value com-
puted offline (as well as the commands of all the actuators
equipped on the stands #1 to #4), and no filtering through (3) is
used to compute UoldðkÞ. Closed-loop behavior of this control ap-
proach is shown in Fig. 17. Table 1 reports comparative numerical
results for Tsim ¼ 1000 simulation steps, where performances have
been evaluated using the cumulated norm of the tracking error as a
benchmark, defined as J ¼

PTsim
k¼1kR( YðkÞk2.

Finally, Fig. 18 compares some significant input trajectories for
the three proposed control techniques. The allowed minimum and
maximum values for the showed actuators signals are (1.5 kN and
1.5 kN, respectively. The sub-optimality of the decentralized
schemes with respect to the global controller is observable from
the different steady-state input levels. Also, it is possible to see
how MPC drives the controlled WRB actuator to saturation for
short time intervals, in order to achieve fast reference tracking.

From a computational point of view, for the considered process
setup the Global QP optimizes 7 variables subject to 14 constraints,
while the Decentralized QPs optimize only 1 variable (3 for the last
stand) subject to 2 constraints (6 for the last stand).

Of course, the simulations just presented can lead to degraded
performance in presence of strong model uncertainties i.e. in case

Fig. 17. LMS-based control action, output shape of zones 1, 15, 20 and 25. Solid line: output, dashed line: target.

Fig. 18. Input signals of (a) WRB on stand #1, (b) IRB on stand #5, for Global QP (solid line), Decentralized QP ‘‘Optimize & Push” (dashed line), and Decentralized QP ‘‘Pull &
Optimize” (dash-dotted line).

Table 1
Simulation results.

Controller Perf. index J

LMS-based controller 17.89
Global QP controller 16.35
Decentralized QP ‘‘Optimize & Push” 16.59
Decentralized QP ‘‘Pull & Optimize” 8.39
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the steady-state tuning condition associated to the flatness model
auto-adaptation algorithm has not been fully achieved. This perfor-
mance degradation in such a case affects all the control algorithms
considered and the performance classification presented in Table 1
does not change.

6. Conclusions

This paper has proposed three different control techniques
based on quadratic optimization and delay compensation for con-
trol of flatness in cold tandem mills. Despite the fact that the pro-
cess is multivariable, constrained and has numerous delays, all
three approaches provide good closed-loop performance with lim-
ited computation requirements. In particular the decentralized
solutions proposed in the paper present a computational complex-
ity which is linearly increasing with the number of stands. The
promising closed-loop performance obtained in simulation on a
nonlinear mill model from one hand, and the limited software
complexity for implementation on the other, provide significant
encouragement for proceeding on the experimental validation of
the design.
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