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explicit receding horizon control (RHC) laws for linear systems subject
to linear constraints on input and state variables. The reason for this
interest is that the solution to MPQP is a piecewise affine function of
the state vector and thus it is easily implementable online. The main
drawback of solving MPQP exactly is that, whenever the number of
linear constraints involved in the optimization problem increases, the
number of polyhedral cells in the piecewise affine partition of the
parameter space may increase exponentially. In this paper, we address
the problem of finding approximate solutions to MPQP, where the
degree of approximation is arbitrary and allows to tradeoff between
optimality and a smaller number of cells in the piecewise affine solution.
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mal RHC law provides closed-loop stability and constraint fulfillment.
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1. Introduction

In industrial applications, the design of feedback controllers must often
cope with the presence of constraints over actuators and other process com-
ponents. Such constraints must be adequately handled by the control design.
Receding horizon control (RHC), also referred to as model predictive con-
trol (MPC) especially in industry, has become the accepted standard for
complex constrained multivariable control problems in the process indus-
tries (Ref. 3). Here at each sampling time, starting at the current state, an
open-loop optimal control problem is solved over a finite horizon. At the
next time step, the computation is repeated starting from the new state and
over a shifted horizon, leading to a moving horizon policy. The solution
relies on a linear dynamic model, satisfies all the input and output con-
straints, and optimizes a quadratic performance index.

Although RHC has long been recognized as the winning alternative for
constrained systems, due to the considerable online computation effort, its
applicability has been limited to relatively slow systems.

For RHC based on linear prediction models and a quadratic perform-
ance index, in Ref. 1 the authors proposed a new approach to move offline
all the computations necessary for the implementation of RHC while pre-
serving all its other characteristics. The approach consists of solving offline
the optimization problem associated with RHC for all the expected
measurement values by using multiparametric quadratic programming
(MPQP) solvers. The resulting feedback controller inherits all the stability
and performance properties of the linear RHC and is piecewise affine. For
this reason, the online computation associated with explicit RHC controllers
reduces to the function evaluation of a piecewise affine mapping. Therefore,
the approach is extremely promising, as it broadens the scope of applica-
bility of linear RHC to small-size, fast-sampling applications. Alternative
approaches for obtaining explicit RHC solutions were investigated in Refs.
4–5.

The problem of reducing online computation, although addressed by
explicit RHC techniques, is not yet solved. In fact, whenever the number of
constraints involved in the optimization problem increases, the number of
linear gains associated with the piecewise affine control algorithm may
increase exponentially, which still makes the online implementation of the
piecewise affine controller prohibitive on low-cost control hardware.

The technique proposed in Ref. 4 attempts to reduce complexity by
reducing a priori the allowed combinations of active constraints, based on
engineering insight on the control problem.

In this paper, we propose a new algorithm for reducing the complexity
of the explicit RHC controller, by computing suboptimal solutions to the
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multiparametric quadratic problem. The idea is based on relaxing the first-
order Karush-Kuhn-Tucker (KKT) optimality conditions (except primal
feasibility, so that the computed move is feasible) by some arbitrary degree
( , which serves as a design knob for tuning the complexity of the controller.
We show that, for (→S, the complexity of the controller is reduced to an
affine control law, highly suboptimal, while for (→0 the controller con-
verges to the explicit RHC controller (Ref. 1), fully optimal with respect to
the chosen performance index. We analyze a general relaxation scheme,
where all the KKT conditions (except primal feasibility) may be relaxed;
also, we analyze a particular relaxation scheme, where only dual feasibility
is relaxed. For the general perturbation scheme, we show how to compute
a posteriori the maximum error between the optimizer and the suboptimizer.
For the particular perturbation scheme, we provide also a criterion for
choosing ( so that the distances between the optimal value and the subopti-
mal value and between the exact solution and the approximate solution are
bounded a priori, and so that the resulting suboptimal RHC law provides
closed-loop stability and constraint fulfillment.

2. Receding Horizon Control

We start by reviewing briefly basic facts on RHC and MPQP; see Ref.
1 for details. Consider the discrete-time linear time-invariant system

x(tC1)GA x(t)CB u(t), (1)

where x∈�n and u(t)∈�nu are the state and input vectors, respectively, and
where the pair (A , B ) is stabilizable. Consider the problem of regulating
the state x(t) to the origin while fulfilling the constraints

D1x(t)CD2u(t)⁄d, (2)

at all time instants t¤0, where d has strictly positive components. Assume
that a full measurement of the state x(t) is available at the current time t.
Then, the following optimization problem:

min
U

x′TPxTC ∑
kG0

TA1

[x′kQxkCu′kRuk ], (3a)

s.t. D1xkCD2uk⁄d, kG0, . . . , TA1, (3b)

xT∈Ω, (3c)

xkC1GA xkCB uk , kG0, . . . , TA1, (3d)

x0Gx (t), (3e)
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is solved with respect to the column vector

U. [u′0 . . .u′TA1 ]′∈�r, r.nuT,

at each time t, where xk denotes the predicted state vector at time tCk,
obtained by applying the input sequence u0 , . . . , ukA1 to the model (1) start-
ing from the state x(t). In (3), we assume that Q and R are symmetric and
positive-definite matrices, that P is symmetric and nonnegative definite, and
that the set of terminal states Ω is polyhedral and contains the origin.

The MPC control law is based on the following idea. At time t, com-
pute the optimizer

U*(x (t))G[(u*0 )′, . . . , (u*TA1)′]′

to problem (3), apply

u (t)Gu*0 GI1U*(x(t)), I1. [Inu, 0, . . . , 0], (4)

as input to the system (1), and repeat the optimization (3) at the next time
step tC1, based on the new measured or estimated state x(tC1). By
substituting

xkGA
kx(t)C ∑

jG0

kA1

A
j
B ukA1Aj

in (3), this can be written as

min
U

(1�2)U ′HUCx′(t) C ′UC(1�2)x′(t)Yx(t), (5a)

s.t. AU⁄bCFx(t), (5b)

where HGH ′ is positive definite and H, C, Y, A, b, F are easily obtained
from (3), with

H∈�rBr, C∈�rBn, Y∈�nBn, A∈�qBr, b∈�q, F∈�qBn.

The optimization problem (5) is a quadratic program (QP), which depends
on the current state x(t), and therefore is a multiparametric quadratic pro-
gram (MPQP).

3. Multiparametric Quadratic Programming

Consider the optimization problem

(QPx) min
U

(1�2)U ′HUCx′C ′UC(1�2)x′Yx, (6a)

s.t. AU⁄bCF x, (6b)
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where U∈�r is the vector of decision variables, x∈�n is the parameter vec-
tor (for ease of notation, we have removed the explicit reference to time),
and all data are defined as in Section 2. As only the optimizer U* is needed,
the term involving Y is usually removed from (6). Here, we retain such term
since it is essential to the arguments of Section 5.2. We say that a parameter
vector x is feasible if the corresponding problem (QPx) admits a solution,
i.e., there exists a vector U satisfying the constraints of (QPx); we denote
by Xf ⊆�n the set of feasible parameter vectors. As a consequence of the
definition, Xf is the orthogonal projection onto the x-space of the poly-
hedron {(U, x): AUAFx⁄b}, i.e.,

XfG{x: ∃U s.t. AUAFx⁄b}.

Thus, Xf is a convex polyhedron. Let φ*: Xf >� denote the value function,
which associates with every x∈Xf the optimal value of (QPx). As H is posi-
tive definite, for every x∈Xf the corresponding quadratic program has a
unique optimal solution.

Multiparametric quadratic programming (MPQP) amounts to
determining the optimal solution U* and the value function φ* as explicit
functions of x, for all x∈Xf .

Let the rows of A be indexed by M .{1, 2, . . . , q}. For any N⊆M, we
denote by AN the submatrix of A consisting of the rows indexed by N.
Analogously, if s∈�q, we denote by sN the subvector of s consisting of the
entries indexed by N. Finally, we recall that a constraint of (QPx) is active
at a vector U if it is satisfied as an equality by U.

Definition 3.1. Let U*(x) be the optimal solution of (QPx). The opti-
mal partition associated with x is the partition (B (x), N(x)) of M, where
N(x) is the index set of the active constraints at U*(x) and
B (x)GM \N(x).

Definition 3.2. Let (B, N )G(B (x), N(x)) for some x∈Xf . We call criti-
cal region associated with (B, N) the set of parameters

CR*.{x∈Xf : N(x)GN}.

The following result can be found in Ref. 1, Theorem 2. In view of the
following developments, we restate its proof here.

Theorem 3.1. Let H be positive definite. Let (B, N) be an optimal
partition, and let CR* be the associated critical region. Assume that the
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rows of AN are linearly independent. Then, the optimizer U* and the associ-
ated vector of Lagrange multipliers λ* are the following uniquely defined,
affine functions of x over CR*:

U*(x)GZUxCζU ,

λ *N (x)GZλ xCζλ ,

λ *B (x)G0,

where

ZλG−(ANH−1A′N)−1(FNCANH−1C ),

ζλG−(ANH−1A′N)−1bN ,

ZUG−H−1A′NZλAH−1C,

ζUG−H−1A′Nζλ .

Proof. Once an optimal partition (B, N) is fixed, the first-order KKT
conditions for problem (QPx) may be written as follows (Ref. 6, p. 504):

HUCCxCA′λG0, (7a)

ABUCsBGbBCFBx, sB¤0, (7b)

ANUCsNGbNCFNx, sNG0, (7c)

λBG0, (7d)

λN¤0, (7e)

where λ∈�q is the vector of Lagrange multipliers and sB , sN are a partition
of the vector of primal slack variables s∈�q. We solve (7a) for U,

UG−H−1(A′NλNCCx), (8)

and substitute the result into (7c), getting

−ANH−1(A′NλNCCx)AbNAFNxG0.

Assuming that AN is of full row rank, (ANH−1A′N)−1 exists and therefore we
obtain

λNG−(ANH−1A′N)−1[bNC(FNCANH−1C )x] . (9)

Thus, λ is an affine function of x. We can substitute λN from (9) into (8) to
obtain

UGH−1A′N (ANH−1A′N)−1[bNC(FNCANH−1C )x]AH−1Cx, (10)
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and note that U is also an affine function of x. Relations (9) and (10) lead
to the assertion. �

Theorem 3.1 characterizes the solution only locally in the neighbor-
hood of a specific x0 , as it does not provide the construction of the set
CR* where this characterization remains valid. On the other hand, this
region can be characterized immediately. By construction, conditions (7a),
(7c), (7d) are satisfied as identities by U*(x) and λ*(x). By substituting the
expressions of U*(x) and λ*(x) in (7b) and (7e), we get

(ABZUAFB)x⁄bBAABζU , (11a)

−Zλ x⁄ζλ . (11b)

The representation (11) may be improved by removing possible redundant
inequalities. Obviously, CR* is a polyhedron in the x-space and represents
the largest set of x∈Xf such that the combination of the active constraints
at the minimizer corresponds to the chosen index set N.

3.1. Degeneracy. So far, we have assumed that the rows of AN are
linearly independent. It can happen that, by solving (QPx), one determines
a set of active constraints for which this assumption is violated. For
instance, this happens when more than r constraints are active at the optim-
izer U*(x)∈�r, i.e., in the case of primal degeneracy. In this case, the vector
of Lagrange multipliers λ* might not be uniquely defined, as the dual prob-
lem of (QPx) is not strictly convex (instead, dual degeneracy cannot occur,
because we assumed H positive definite, which implies that the minimizer is
always unique). In Ref. 1, the authors suggest a simple way to handle
degeneracy by extracting from AN an arbitrary maximal subset of linearly
independent rows and then proceed with the corresponding reduced set of
active constraints.

3.2. Continuity and Convexity Properties. The result stated below
makes use of the following definition.

Definition 3.3. A function z: X >�m, where X⊆�n is a polyhedral
set, is piecewise affine [resp. piecewise quadratic] if the following conditions
hold:

(a) it is possible to partition X into finitely many convex polyhedral
regions CRi , iG1, . . . , p;

(b) inside CRi , z is an affine [resp. quadratic] function, for all
iG1, . . . , p.
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Continuity of the value function φ* and the solution U* can be shown
as simple corollaries of the linearity result of Theorem 3.1. Together with
the convexity of the set of feasible parameters Xf and of the value function
φ*, this fact is proved in the next theorem (Ref. 1, Theorem 4).

Theorem 3.2. Consider the multiparametric quadratic program
(QPx), and let H be positive definite. Then, the optimizer U*: Xf >�r is
continuous and piecewise affine, and the value function φ*: Xf >� is con-
tinuous, convex, and piecewise quadratic.

We note that the same continuity and convexity results can be obtained
as special cases of the general nonlinear results in Ref. 7, Chapter 2.

4. Approximate MPQP

Let the parameter vector x∈Xf be arbitrarily chosen4, and let (B, N)
be the corresponding optimal partition. In order to obtain a suboptimal
solution to (QPx), we relax the KKT conditions (7) as

−(1⁄HUCCxCA′λ⁄(1 , (12a)

ABUCsBGbBCFBx, sB¤0, (12b)

ANUCsNGbNCFNx, 0⁄sN⁄(2 , (12c)

−(4⁄λB⁄(4 , λN¤A(3 , (12d)

where

(1∈�r, (2 , (3∈��N�, (4∈��B�

are the relaxation vectors that determine the degree of approximation, with
(k¤0 (componentwise) for kG1, . . . , 4. The relaxed KKT conditions (12)
define a polyhedron in the (U, x, λ , s)-space. The approximate critical region
is defined as the projection onto the x-space of such a polyhedron, and it is
denoted by CR((1 , (2 , (3 , (4), or in short, by CR( .

Assume for the time being that CR( has been computed (this issue will
be discussed in Section 4.1). Then, the rest of the space Xf \CR( has to be
explored and new critical regions have to be generated. An effective
approach for partitioning Xf \CR( by polyhedral sets is based on the follow-
ing theorem; see Ref. 1, Theorem 3.

4A vector x∈Xf can be computed by finding a pair (U, x) satisfying AUAFx⁄b, e.g., via linear
programming.
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Theorem 4.1. Let X⊆�n be a polyhedron, and let CR(G

{θ∈X: Gx⁄g} be a nonempty polyhedral subset of X, where G∈�hBn. Also,
let

RiG{x∈X: G{i}xHg{i}, G{j}x⁄g{j}, ∀jFi}, iG1, . . . , h,

where G{i} denotes the i th row of G and g{i} denotes the i th entry of g.
Then:

(i) XG�*
iG1

h

Ri�∪CR( ;

(ii) CR(∩RiG∅, for all i, and Ri∩RjG∅, for all i ≠ j; i.e.
{CR( , R1 , . . . , Rh} is a partition of X.

After partitioning the rest of the space, we proceed recursively: for each
region Ri , we choose a new vector x0 , compute the approximate critical
region CR( , compute the rest of the space Ri \CR( , and so on. Clearly, in
order to minimize the number of regions Ri generated at each recursion,
before applying Theorem 4.1 it is convenient to remove all redundant
inequalities from the representation of CR( .

4.1. Orthogonal Projections. Before proceeding further, it is useful to
rewrite the approximate KKT conditions (12a) in the form

HUCCxCA′NλNCA′BλBCνG0, −(1⁄ν⁄(1 , (13)

where û∈�r represents the violation of the first KKT condition (7a). From
(13), we obtain

UG−H−1(A′NλNCA′BλBCCxCν);

thus, by substitution into (12c) and under the assumption that ANH−1A′N is
invertible,

λNGEûνCEssNCEλ λBCZλ xCζλ , (14)

where

Es. (ANH−1A′N)−1, Eν.AEsANH−1, Eλ.EνA′B .

The approximated critical region CR( is now the projection onto the
x-space of the polyhedron in the (ν, sN , λB , x)-space described by the
inequalities

−(1⁄ν⁄(1 , (15a)

−ABH−1[A′N (EννCEssNCEλ λBCZλ xCζλ)CA′BλBCCxCν]

⁄bBCFBx, (15b)
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0⁄sN⁄(2 , (15c)

−(4⁄λB⁄(4 , (15d)

EννCEssNCEλ λBCZλ xCζλ¤A(3 . (15e)

Rather than projecting with respect to the whole set of variables ν, sN , λB ,
we can restrict the amount of relaxations and accordingly consider the fol-
lowing three cases.

Case A: (2G0. This special case implies sNG0, and therefore
amounts to fixing the index set N of constraints which are active at the
optimizer of (QPx). The projection is performed only with respect to ν, λB .

Case B: (2G0, (4G0. This special case implies λBG0, sNG0, and
corresponds to avoiding the relaxation of the second KKT condition (7b).
Equivalently, it implies that the given optimal partition (B, N) is maintained.
The simplification of the projection procedure is obvious: we need only to
project with respect to ν.

Case C: (1G0, (2G0, (4G0. In this final special case, we relax only
the nonnegativity condition on the Lagrange multipliers corresponding to
nonactive constraints of (QPx). Hence, we need no projection, as similarly
to (11) for the exact case, the approximated critical region reduces to

(ABZUAFB)x⁄bBAABζU , (16a)

−Zλ x⁄(3Cζλ . (16b)

4.2. Properties of Approximated Critical Regions. Since the primal
feasibility of the optimizer is never relaxed, the approximate critical region
is always contained in Xf. It is of interest to study its behavior as a function
of the amount of relaxation.

Lemma 4.1. Let (B, N )G(B (x), N(x)) for some x∈Xf , and let
CR((1 , (2 , (3 , (4) be the associated approximate critical region. Then, the
following statements hold:

(i) if (k⁄( ′k , ∀kG1, . . . , 4, then

CR((1 , (2 , (3 , (4)⊆CR(( ′1 , ( ′2 , ( ′3 , ( ′4);

(ii) )
δ1 ,δ2 ,δ3 ,δ4¤0

CR(δ1 , δ2 , δ3 , δ4)GCR*,

where δ1∈�r, δ2 , δ3∈��N�, δ4∈��B�, and CR* is the exact critical
region represented by (11);
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(iii) ∀(3 , (4¤0, *
δ1¤0

CR(δ1 , 0, (3 , (4)GXN ,

where XN is the projection onto the x-space of

{(U, x): ABUAFBx⁄bB , ANUAFNxGbN};

(iv) ∀(3 , (4¤0, *
δ1 ,δ2¤0

CR(δ1 , δ2 , (3 , (4)GXf .

Proof. In order to prove the lemma, we refer to the relaxed KKT
conditions (12). Statements (i) and (ii) follow immediately from (12).

To prove statement (iii), we show that

(a) *
δ1¤0

CR(δ1 , 0, (3 , (4)⊆XN ,

(b) *
δ1¤0

CR(δ1 , 0, (3 , (4)⊇XN .

Take a vector

x̄∈ *
δ1¤0

CR(δ1 , 0, (3 , (4).

Then,

x̄∈CR(δ̄1 , 0, (3 , (4), for some δ̄1¤0,

and hence there exists a vector Ur such that (Ū, x̄) satisfies (12b), (12c),
implying that x̄∈XN and proving (a).

Viceversa, take x̄∈XN . Then, there exists a vector Ur such that (Ū, x̄)
satisfies (12b), (12c). (12d) is satisfied for instance by taking λ̄G0, while
(12a) is satisfied, e.g., for (1Gδ̄1G�HŪCCx̄�, where � · � is intended compo-
nentwise, implying x̄∈CR(δ̄1 , 0, (3 , (4) and therefore proving (b).

The proof of statement (iv) is similar to the proof of (iii) and thus is
omitted. �

4.3. Approximate Optimizer. So far, we have described a suboptimal
method for partitioning the parameter set Xf , but contrarily to the exact
case described in Theorem 3.1, we have not specified yet an approximate
optimizer, which will be denoted by Û(x). Similarly to the exact case, we
wish to have Û(x) to be a piecewise affine function of x, defined over the
partition into approximate critical regions given by the recursive method
mentioned above, such that Û(x) is primal feasible for all x∈CR( , for each
approximate critical region CR( . Moreover, we wish Û(x) to be as close as
possible to the exact solution U*(x).
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For Case C, it turns out that, for any given index set N, a good choice
is to set Û(x) as in (10), because it provides primal feasibility for all
x∈CR( and optimality for x∈CR*⊆CR( , i.e.,

Û(x)GU*(x), ∀x∈CR*.

For Cases A and B, primal feasibility should be enforced explicitly. To
this end, the following lemma may be useful.

Lemma 4.2. Let VG{V1 , . . . , Vh} be a set of vectors of �n such that
CR( ⊆ conv (V ). Let Û(x) be an affine function of x. Then,

AÛ(Vi)⁄bCFVi , for all Vi∈V,

implies

AÛ(x)⁄bCFx, for all x∈CR( .

Proof. It is straightforward, by convexity. �

A natural choice for V is the set of vertices of CR( . Although good
packages exist for determining the set of vertices of CR( (see Ref. 8), for
high-dimensional x-spaces this might be computationally too expensive.
Alternatively, the set V can be obtained by determining a union of hyper-
rectangles which outer approximates CR( (Ref. 9). After a set V fulfilling
Lemma 4.2 is chosen, we compute the affine suboptimal solution

Û(x)GẐxCζ̂ ,

where Ẑ and ζ̂ are obtained by solving the following constrained quadratic
least squares problem

min
Z∈�

rBn,ζ∈�
r

∑
iG1

h

��W [U*(Vi)A(ZViCζ )]��2, (17a)

s.t. A(ZViCζ )⁄bCFVi , iG1, 2, . . . , h, (17b)

which provides the best fit to the optimal solutions U*(Vi) under the con-
straint of primal feasibility over conv(V )⊇CR( , where W is a weighting
matrix. When the approximate MPQP is used to solve an RHC problem, a
sensible choice for W is

W G�Inu 0

0 0� ,

as only the first nu components of the solution are used to build the subopti-
mal explicit RHC law. Moreover, for the approximate region which con-
tains the origin (i.e., the region corresponding to the empty combination of
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the active constraints), in (17) we impose ζG0, so that it is possible to
achieve asymptotic convergence to the origin.

Remark 4.1. Consider the original RHC problem of Section 2. If the
constraints (2) have the popular form

umin⁄u(t)⁄umax (hard constraints ),

yminAσ⁄y(t)⁄ymaxCσ (soft constraints ),

with

umin⁄0⁄umax, ymin⁄0⁄ymax,

and if σ¤0 is an additional slack optimization variable, then problem (17)
is always solvable. Indeed, at least the input sequence UG0 is feasible for
all x∈conv (V ) for some sufficiently large σ . In general, unless some other
particular hypotheses on A, b, F are assumed, problem (17) may be infeas-
ible, especially for large ( . In this case, a possibility is to reduce iteratively
(e.g., halve) the entries of ( until feasibility of (17) is reached.

Remark 4.2. Contrarily to the exact case, the overall piecewise affine
function may not be continuous. Note that the approximate critical regions
that we obtain are always closed sets, whereas by Theorem 4.1 we should
apply our method to a partition of Xf formed by sets Ri which are defined
by both strict and nonstrict inequalities. Actually, we propose to apply the
search for an approximate critical region in the closure of such sets Ri. The
resulting approximate descriptions of the optimizer is then redundant, in
the sense that it may be defined more than once for some x∈Xf . For such
vectors x, we define arbitrarily Û(x) as one of the possible values.

4.4. Approximate Value Function. Because of the property of primal
feasibility given by (17b) (see Cases A and B) or (16a) (see Case C), the
following proposition follows immediately.

Proposition 4.1. Let φ̂ (x). (1�2)Û(x)′HÛ(x)Cx′C ′Û(x)C(1�2)x′Yx
be the approximate value function, and let φ* be the (exact) value function
of problem (QPx). Then, φ̂ (x)¤φ*(x) for all x∈Xf ; i.e., φ̂ (x) is an upper
bound for φ*(x).

In Lemma 4.3, we will give a bound on the gap between φ̂ (x) and
φ*(x), valid for Case C.
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4.5. Suboptimality Figures. Once the suboptimal solution to the
MPQP problem has been determined, it is interesting to compute (a pos-
teriori) the degree of suboptimality of the resulting approximate explicit
RHC controller with respect to the original RHC problem; in other words,
it is of interest to compute the difference between the first nu components
of Û(x) and U*(x). To this end, we define the absolute error

eabs. max
x∈Xf∩X̄

��I1[Û(x)AU*(x)]��S

and the relative error

erel. max
x∈Xf∩X̄

{��I1[Û(x)AU*(x)]��S���x��1},

where X̄⊂�n is a bounded polyhedron, containing the state vector of inter-
est. Typically, X̄ is a box,

X̄G{x: x¡ ⁄x⁄ x̄}.

The following proposition shows that such errors can be computed numeri-
cally. A constructive proof can be found in Ref. 10.

Proposition 4.2. Let the exact optimizer U*(x) and the approximate
optimizer Û(x) be given. The absolute error eabs can be computed by solving
2nu mixed integer linear programs (MILPs). Furthermore, the relative error
erel can be computed by solving 2nu monoparametric mixed integer linear
programs (MPMILPs) and one maximization of a piecewise hyperbolic
scalar function.

4.6. A Priori Error Bounds. Analytic forms for expressing the error
between the optimizer and a feasible vector can be found in Refs. 11–12 for
linear complementarity problems. Although in principle these results may
be applied to our MPQP context, they rely on the existence of constants
whose determination is not given constructively. Therefore, in this paper,
we follow a different route and develop a direct approach to analyze the
error between the optimal solution and the suboptimal solution.

Consider the special case (1G0, (2G0, (4G0 (Case C). Inside CR( ,
defined by (16), we take as approximate optimizer

Û(x).ZUxCζU ,

and we take as approximate vector of Lagrange multipliers

λ̂N (x).Zλ xCζλ , λ̂B (x).0,
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where ZU ,ζU , Zλ ,ζλ are defined as in Theorem 3.1. As mentioned already,
this choice provides primal teasibility for all x∈CR( and optimality for all
x∈CR*⊆CR( . Accordingly, we take as approximate value function

φ̂ (x). (1�2)Û′(x) HÛ(x)Cx′C ′Û(x)C(1�2)x′Yx.

Our goal is to impose an a priori bound ρ on the absolute error,

max
x∈Xf

��I1[Û(x)AU*(x)]��S⁄ρ.

Lemma 4.3. Let (1G0, (2G0, (4G0. Then, for all x∈CR( ,

φ̂ (x)Aφ*(x)⁄ (1�2)( ′3ANH−1A′N(3 . (18)

Proof. Since

UG−H−1(CxCA′λ ),

the Dorn dual (QDx) of problem (QPx) may be written as (Ref. 6, pp. 232–
233)

max
λ

{−(1�2)λ′AH−1A′λA[bC(FCAH−1C )x]′λ

A(1�2)x′C ′H−1Cx:λ¤0}C(1�2)x′Yx.

By convexity, (QPx) and (QDx) have the same optimum φ*(x). Since

λ̂N (x)C(3¤0, λ̂B (x)G0

is feasible for (QDx) for all x∈CR( , and by noting that

bNC(FNCANH−1C )xG−ANH−1A′N λ̂N (x),

we have

φ*(x)A(1�2)x′Yx

¤A(1�2)[λ̂N (x)C(3 ]′ANH−1A′N [λ̂N (x)C(3 ]

A[bNC(FNCANH−1C )x]′[λ̂N (x)C(3 ]A(1�2)x′C ′H−1Cx

G(1�2)λ̂N (x)′ANH−1A′N λ̂N (x)A(1�2)( ′3ANH−1A′N(3

A(1�2)x′C ′H−1Cx.

Furthermore, by noting that

Û(x)G−H−1(A′N λ̂N (x)CCx),
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we get

φ̂ (x)A(1�2)x′Yx

G(1�2)Û′(x)HÛ(x)Cx′C ′Û(x)

G(1�2)λ̂N (x)′ANH−1A′N λ̂N (x)A(1�2)x′C ′H−1Cx.

Clearly, inequality (18) follows.

Lemma 4.4. Let (1G0, (2G0, (4G0, and let ∆U(x).Û(x)AU*(x).
Then, for all x∈CR( ,

∆U ′(x) H∆U(x)⁄( ′3ANH−1A′N(3 . (19)

Proof. We have

φ̂ (x)Aφ*(x)

G(1�2)Û′(x)HÛ(x)Cx′C ′Û(x)A(1�2)U*′(x)HU*(x)Cx′C ′U*(x),

and so,

φ̂ (x)Aφ*(x)

G−(1�2)∆U ′(x)H∆U(x)C∆U ′(x)[HÛ(x)CCx]. (20)

Define the function

f (t). (1�2)[Û(x)At∆U(x)]′H [Û(x)At∆U(x)]

Cx′C ′[Û(x)At∆U(x)]C(1�2)x′Yx.

Note that f(t) is the objective value of (QPx) associated with
Û(x)At∆U(x), which is feasible for (QPx) for all t∈[0, 1], as Û(x) and
U*(x) are both feasible. Since f (1)Gφ*(x), then f(t) must be decreasing on
a left neighbor of tG1. Hence,

f ′(t)G∆U ′(x) H∆U(x) tA∆U ′(x)[HÛ(x)CCx]⁄0, if tG1,

and so,

∆U ′(x)[HÛ(x)CCx]¤∆U ′(x) H∆U(x). (21)

From (20), we then obtain

φ̂ (x)Aφ*(x)¤ (1�2) ∆U ′(x) H∆U(x), (22)

which in addition to (18) implies the thesis. �
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Lemma 4.5. Let z∈�r, and consider the following optimization
problem:

V*Gmax
z

��I1z��S (23a)

s.t. z′Hz⁄α , (23b)

where H is positive definite. Then,

V*Gmax
α

{1α [H−1]ii , iG1, . . . , nu},

where [ · ]ij denotes the (i, j)th entry of [ · ].

Proof. Consider the optimization problem

max
z

{c′z: z′Hz⁄α}.

Since the quadratic constraint must be active at the optimizer z*, the optim-
ization problem is equivalent to

max
z

{c′z: z′HzGα}.

For the latter problem, denoting by β the Lagrange multiplier associated
with the quadratic constraint, the necessary optimality conditions are

cC2H zβG0, z′HzAαG0,

from which we obtain

zG−(H−1c)�2β , βGJ(1c′H−1c)�2 1α ,

and finally the KKT points

zGú(H−1c 1α )�1c′H−1c.

The maximum is therefore 1αc′H−1c. By letting

cGJI1
{i}, iG1, . . . , nu ,

where I1
{i} denotes the i th row of I1, we prove the lemma. �

Theorem 4.2. Let (1G0, (2G0, (4G0. Assume that, for each optimal
partition (B, N), the corresponding approximated critical region CR( is gen-
erated by setting (3G( (N )1, where 1. [1, 1, . . . , 1]′ and

( (N )⁄ [ρ�11′ANH−1A′N1]. min
iG1, . . . , nu

[1�1[H−1]ii ]. (24)
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Then,

max
x∈Xf

��I1[Û(x)AU*(x)]��S⁄ρ.

Proof. As a consequence of Lemma 4.4, zGÛ(x)AU*(x) satisfies the
ellipsoidal constraint (19) for all x∈CR( . By setting

αG(2(N )1¡ ′ANH−1A′N1¡ ,

Lemma 4.5 guarantees that

��I1[Û(x)AU*(x)]��S⁄ max
iG1, . . . , nu

{1(2(N )1¡ ′ANH−1A′N1¡ [H−1]ii}⁄ρ,

for all x∈CR( , and for all approximated critical regions CR( . �

5. Suboptimal Receding Horizon Control

This section discusses the two main issues regarding RHC policies,
namely, the feasibility of the optimization problem (3) at each time step
t¤0 and the stability of the resulting closed-loop system.

5.1. Feasibility. As stressed in the previous section, primal feasibility
is maintained in the approximate MPQP solution. Note that, when the RHC
setup of Section 2 is augmented by additional constraints aimed at guaran-
teeing feasibility at each time step t (Ref. 13), such constraints will be ful-
filled also by the suboptimal RHC solution. For instance, if constraints
which enforce the predicted terminal state xT to lie in a polyhedral invariant
set are included (Ref. 14), feasibility at each time step t is guaranteed. This
point is clarified below in the proof of Theorem 5.2, where we indeed show
that Xf is an invariant set. In conclusion, the feasibility of the RHC problem
at each time t does not depend on optimality.

5.2. Stability. The suboptimal controller proposed in this paper does
not inherit directly intrinsic nominal stability properties of its optimal RHC
counterpart based on the exact minimization of (3).

As the closed-loop suboptimal RHC system, composed by a linear
plant in feedback with the suboptimal explicit RHC controller, is a piecewise
affine system, a posteriori stability criteria based on piecewise or common
quadratic Lyapunov functions (Ref. 15–17) or on reachability analysis (Ref.
16) can be applied to analyze if a certain suboptimal RHC controller is
stabilizing; this will be exemplified in Section 6.
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On the other hand, we are interested in synthesizing suboptimal RHC
controllers that, by construction and independently on the particular value
of the tuning parameters, are stabilizing; or in other words, we are interested
in providing a priori stability guarantees.

Lemma 5.1. Let dH0 in (2); i.e., the interior of the polyhedron given by
(2) contains the origin. Then, the critical region CR∅ corresponding to the
empty combination of active constraints is a full-dimensional subset of �n.

Proof. We prove that there exists a scalar αH0 such that

Φα. {x∈�n: ��x��⁄α}⊂CR∅ .

This is equivalent to showing that, for each state x0∈Φα , the unconstrained
optimal control sequence UG−H−1Cx0 satisfies the constraints in (3) and
therefore is optimal also for the constrained problem (3). To this end, it is
enough to find a small enough positive scalar α such that x0 and
UG[u′0 , . . . , u′TA1 ]′ satisfy the constraints in (3). Let

Θ.AH−1C,

and let

ukGΘ{k}x0

denote the kth control move, kG0, . . . , TA1. Since

xkGA
kx0C ∑

jG0

kA1

A
j
B ukA1Aj ,

if αH0 is sufficiently small, we obtain

D1xkCD2ukG�D1A
kCD1 ∑

jG0

kA1

A
j
B Θ{kA1Aj}CD2Θ{k}�x0⁄d,

for all kG0, . . . , TA1 and for all x0∈Φα . �

Before proceeding further, we recall the following from Ref. 18.

Definition 5.1. Consider the linear autonomous system x(tC1)G
Ar x(t) and the polyhedron P .{x: Bx⁄c}. The set Ω.{x: BAr tx⁄c,
∀t¤0} is called the maximum output admissible set (MOAS) contained in
P .

Theorem 5.1. Let Ar be a strictly Hurwitz matrix (all eigenvalues con-
tained in the interior of the unit disk), let P be bounded, and let 0∈int(P ),
where int(P ) denotes the interior of P. Then, the MOAS Ω contained in
P is determined by a finite number of facet inequalities.
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Proof. See Ref. 18, Theorem 4.1.

We concentrate now on the following special class of suboptimal RHC
laws, that will be referred to as SRHC:

(a) P is the solution of the Riccati equation

PG(A CB K )′P (A CB K )CQCK ′RK ,

where

K .−(RCB ′PB )−1B ′PA ;

(b) the set

P .{x: (D1CD2K )x⁄d}

is bounded and contains the origin in its interior5;

(c) the terminal set Ω is the MOAS contained in P ;
(d) only dual feasibility is relaxed ((1G0, (2G0, (4G0) and (3.(1¡ ,

(¤0;
(e) the first critical region generated by the suboptimal multipara-

metric solver is

CR∅.{x: Wx⁄w}, w∈�nw,

associated with the void combination of active constraints
(B1 , N1). (M,∅).

Note that assumption (e) implies that the critical region associated with
(M,∅) is not approximated.

Definition 5.2. The function f: X >� is said to be positive definite
if f (x)H0 for all x∈X and f (x)G0 if and only if xG0. The function f is
said to be negative definite if Af is positive definite.

Theorem 5.2. Consider the SRHC controller defined above, and let
γ be the maximum positive number for which the ellipsoid E .{x: x′Qx⁄γ }
is contained in CRi∅ . Let (Bh , Nh), hG2, . . . , l̂, be the optimal partitions of
the approximate solution to the MPQP problem (6), and let CR( (Nh) denote
the associated approximate critical regions. If ( (Nh) is chosen satisfying

( (Nh)⁄12γ �(1¡ ′ANhH
−1A′Nh1¡), (25)

5This hypothesis is satisfied for instance when the constraints (2) have the popular form
umin⁄u(t)⁄umax, xmin⁄x(t)⁄xmax, with uminF0Fumax, xminF0Fxmax.
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for all hG2, . . . , l̂, then SRHC asymptotically stabilizes the system (1) while
fulfilling the constraints (2) at each time t¤0, for all x(0)∈Xf .

Proof. In order to prove the theorem, we show that the exact value
function φ* is a Lyapunov function for the system (1) in closed-loop with
the suboptimal controller SRHC. Let

Û. [û′0 , . . ., û′TA1 ]′

be the suboptimizer at time t, t¤0. At time tC1, consider the vector of
inputs

Ũ . [û′1 , . . . , û′TA1(K x̂T)′]′,

where

x̂k.A
kx(t)C ∑

kA1

jG0

A
j
B ûkA1Aj , kG0, . . . , T.

By the definition of Ω, the condition x̂T∈Ω implies that

x̂TC1. (A CB K )x̂T∈Ω,

which together with the feasibility of Û at time t implies the feasibility of Ũ
at time tC1, which also proves that

x(tC1)∈Xf .

Then,

φ*(x(tC1))Aφ*(x(t))

⁄ (1�2)Ũ′HŨCx′(tC1)C ′ŨC(1�2)x′(tC1)Yx(tC1)Aφ*(x(t))

Gx̂′TC1Px̂TC1C ∑
kG1

T

(x̂′kQx̂kCû′kRûk)Aφ*(x(t))

Gx̂′T (A CB K )′P(A CB K )x̂TC ∑
kG0

TA1

(x̂′kQx̂kCû′kRûk)

Cx̂′TQx̂TC(K x̂T)′R(K x̂T)Ax̂′0Qx̂0Aû′0Rû0Aφ*(x(t))

Gx̂′T [(A CB K )′P(A CB K )CQCK ′R K ]x̂T

C ∑
kG0

TA1

(x̂′kQx̂kCû′kRûk)Ax(t)′Qx(t)Au(t)′Ru(t)Aφ*(x(t))

Gx̂′TPx̂TC ∑
kG0

TA1

(x̂′kQx̂kCû′kRûk)Ax(t)′Qx(t)Au(t)′Ru(t)Aφ*(x(t))

Gφ̂ (x(t))Ax(t)′Qx(t)Au(t)′Ru(t)Aφ*(x(t)).
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For all x(t)∈CR∅ , we have

φ̂ (x(t))Gφ*(x(t)),

and therefore,

φ*(x(tC1))Aφ*(x(t))F0, for all x(t)∈CR∅ \{0}.

Consider now

x(t)∈CR( (Nh), hG2, . . . , l̂.

Since

x(t)′Qx(t)Hγ , for all x(t)∉CR∅ ,

if ( (Nh) satisfies (25), then

φ*(x(tC1))Aφ*(x(t))

⁄ φ̂ (x(t))Aφ*(x (t))Ax(t)′Qx(t)Au(t)′Ru(t)

⁄ (1�2)( (Nh)
21¡ ′ANhH

−1A′Nh1¡Ax(t)′Qx(t)Au(t)′Ru(t)

FγAγAu(t)′Ru(t)⁄0. (26)

By letting

∆φ*(x).φ*(A xCB I1Û(x))Aφ*(x),

Eq. (26) proves that ∆φ* is a negative-definite function. Since

φ*(x)¤ x′Qx,

and since Q is positive definite, it follows that φ* is positive definite and
radially unbounded [φ*(x)→S, for ��x��→S]. Therefore, we can apply
LaSalle invariance principle for discrete-time systems (Ref. 19, Theorem 4.2)
on the level sets of φ* to conclude that the origin is asymptotically stable
with domain of attraction Xf. �

In conclusion, whenever a new optimal partition (Bh , Nh) is generated
by the recursive algorithm, Lemma 4.3, Theorem 4.2, and Theorem 5.2 pro-
vide constructive criteria for choosing the relaxation ( (Nh), so that error
bounds on the value function and the optimizer as well as stability can be
guaranteed a priori.

5.3. Complexity. The suboptimal RHC control law is

û0(x)GI1Û(x).
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As approximate critical regions where the first nu components of Û(x) are
the same and whose union is a convex set can be joined during a post-
processing phase (Ref.20), similarly to the exact explicit solution of RHC
(Ref. 1), û0(x) has the following piecewise affine form:

û0(x)GF̄ ixCḡ i, if H̄ ix⁄ k̄ i, iG1, . . . , l̂rhc, (27)

where the polyhedral sets

{x: H̄ ix⁄ k̄ i}, iG1, . . . , l̂rhc,

partition Xf ; clearly, l̂rhc⁄ l̂.
While offline complexity of the suboptimal RHC algorithm can be

investigated similarly to (Ref. 1), online complexity of (27) is more interest-
ing, especially from an application point of view. The simplest way to
implement the piecewise affine feedback law (27) is to store the polyhedral
cells {x: H̄ ix⁄ k̄ i}, perform an online linear search through them to locate
the one which contains the current state x(t), look up the corresponding
F̄ i, ḡ i, and evaluate F̄ ix(t)Cḡ i. This search procedure can be easily paral-
lelized or more efficiently organized according to a balanced search tree, a
research topic currently under investigation.

6. Examples

Example 6.1. A second-order nonminimum phase system with trans-
fer function 2(sA1)�(s2C2sC5) is sampled with TsG0.1 s to obtain the
discrete time state-space representation

x(tC1)G�0.7969 −0.2247

0.1798 0.9767� x(t)C�0.1271

0.0132�u(t), (28a)

y(t)G[1.4142 −0.7071] x(t). (28b)

The task is to regulate the system to the origin while fulfilling the input
constraint

−1⁄u(t)⁄1.

To this aim, we design an RHC controller based on the optimization prob-
lem (3) with

TG6, RG0.1, QG�1 0

0 1� ,

D1G0, D2G� 1

−1� , dG�11� , ΩG�2,
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and P solves the Lyapunov equation

PGA ′P A CQ.

Note that this choice of P corresponds to setting

ukG0, for k¤6,

and to minimize ∑S

kG0x′kxkC0.1u2
k . The MPQP problem associated with the

RHC law has the form (QPx) with rG6, qG12, and nG2; see Ref. 10 for
details. The explicit RHC controller was computed using the exact MPQP
algorithm of (Ref. 1), and the corresponding polyhedral partition of the
state-space is depicted in Fig. 1(a).

In order to reduce the number of regions, we apply the approximate
MPQP algorithm. By setting (1G0, (2G0, (4G0, and choosing a constant
(3 , we get the solutions shown in Figs. 1(b)–1(e) (for simplicity, from now
on, we let all the components of (k to be equal, and denote by (k the single
component). Each approximate MPQP solution was computed in less than
15 s of CPU time on a Pentium III 650 MHz running Matlab 5.3. Note
that, despite the relaxation of dual feasibility ((3H0), the region containing
the origin does not change with respect to the exact solution. This is justified
by the fact that, since NG∅, the constraints defining the critical region are
all of the form

AU*(x)⁄bCFx,

and therefore are not affected by the relaxation. For all the suboptimal
RHC laws, we computed the maximum absolute errors eabs according to
Proposition 4.2 running CPLEX 7.0 (Ref. 21) on the same machine (about
10 s of CPU time per computation) and verified that the closed-loop system
is quadratically stable with common quadratic Lyapunov function U ′LU
(Ref. 17):

for (3G0.03, LG�8.0052 3.8681

3.8681 17.3940� , eabsG0.09530;

for (3G0.05, LG�9.3106 4.3013

4.3013 17.9287� , eabsG0.15884;

for (3G0.15, LG�10.2754 4.7303

4.7303 19.0681� , eabsG0.28158;

for (3G0.2, LG�11.0924 5.1412

5.1412 20.2768� , eabsG0.28158.
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Figure 1. MPQP solutions of Example 6.1 for different degrees of approximation when the
critical region containing the origin is maintained exact:

(a) ( iG0, iG1, . . . , 4 (exact solution);
(b) (3G0.03 and (1G(2G(4G0 (Case C);
(c) (3G0.05 and (1G(2G(4G0 (Case C);
(d) (3G0.15 and (1G(2G(4G0 (Case C);
(e) (3G0.20 and (1G(2G(4G0 (Case C);
(f) ( iG10000, iG1, . . . , 4.
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The states where the maximum errors are achieved are marked by asterisks
in Figs. 1(b)–1(e).

By choosing (3 adaptively in accordance with Theorem 4.2, we
obtained:

for ρG0.03, eabsG0.01927, 53 regions ;

for ρG0.05, eabsG0.03211, 47 regions;

for ρG0.1, eabsG0.05794, 43 regions;

for ρG0.15, eabsG0.08690, 39 regions;

for ρG0.25, eabsG0.12639, 37 regions;

for ρG0.5, eabsG0.25278, 25 regions;

for ρG1, eabsG0.28158, 21 regions;

for ρG5, eabsG0.28158, 21 regions.

It is apparent that the a posteriori error bound eabs is always smaller
than the prespecified a priori error bound ρ. This is not surprising, as the
choice for (3 suggested by Theorem 4.2 is based on the conservative over-
estimate (19). Moreover, for x∈CR( , the piecewise affine function
Û(x)AU*(x) does not span the whole ellipsoidal set described by the con-
straint in (23), so that further conservativeness is introduced. The fact that
the intrinsic polyhedral structure of the partition may not allow it to reach
the a priori error bound ρ is further testified by the fact that, as ρ increases,
eabs saturates at 0.28158.

Next, we vary all ( i. To maintain the solution Û(x) exact in the region
where no constraint is active, we do not relax the KKT conditions for such
a region and set

( iG10000, iG1, . . . , 4.

The suboptimal RHC control law was computed in 13.4 s and is depicted
in Figure 1(f); its analytical expression can be found in Ref. 10. The control
law is stabilizing, as

LG�19.5936 5.7937

5.7937 19.6299�
provides a common Lyapunov function for the closed-loop piecewise affine
system. The maximum absolute error is eabsG1.9369, while the maximum
relative error is erelG0.97431, attained at [−0.1351

0.9249]. Note that, by construc-
tion, the control law is exact in the central region. If we relax also the
region corresponding to the unconstrained case, then we obtain different
approximate stabilizing explicit RHC laws, which are reported in Ref. 10.
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Example 6.2. We synthesize the suboptimal RHC law with a priori
stability guarantees for the double integrator 1�s2, according to Theorem
5.2. We sample the dynamics with TsG1 s to obtain the discrete-time state-
space model with state transition matrices

A G�1 0

1 1� , B G�10.5� .

We constrain the inputs and states within the range

−1⁄u(t)⁄2, ��x(t) ��S⁄100,

and choose the MPC parameters

TG6, QGI, RG0.01.

By choosing P as the solution to the resulting Riccati equation, using the
algorithm of Ref. 18 and in accordance with Theorem 5.2, we obtain that

ΩG�x:�
A0.6630 −0.3304

1.3261 0.6609

0.1048 0.2169

−0.2097 −0.4338
�; x⁄�

1

1

1

1
��

is the corresponding maximum output admissible set. The first critical
region generated by the suboptimal multiparametric solver, associated with
the void combination of active constraints, is C R∅GΩ, for which
γ G0.4555 is the maximum positive number such that the ellipsoid

(.{x: x′Qx⁄γ }

is contained in C R∅ . The exact explicit RHC controllers and the subopti-
mal SRHC controllers consist of 53 regions and 39 regions, respectively,
which are depicted in Fig. 2. For SRHC, the relaxation parameter ∈(Nh)
ranges between 0.0304 and 64.9584. The closed-loop trajectories for the
exact and the suboptimal controllers are indistinguishable.

7. Conclusions

In this paper, we addressed the problem of reducing the number of
polyhedral cells associated with explicit solutions to RHC problems. Such
number tends to increase exponentially with the number of constraints
involved in the optimization problem. Our solution consists of finding an
approximate solution to MPQP by relaxing the KKT conditions for opti-
mality, except primal feasibility. Bounds for the errors on the optimal value
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Figure 2. Exact and approximate RHC controllers with stability guarantees for Example 6.2:
(a) exact RHC law; (b) RHC law.

and the optimizer are provided, and constraint fulfillment and closed-loop
stability of the resulting suboptimal RHC law are guaranteed by explicit
formulas. In principle, the degree of approximation is arbitrary and allows
to tradeoff between optimality and a comparatively small number of cells
in the piecewise affine solution. Clearly, the choice of the degree of relax-
ation depends also on stability requirements, although it may be more a
reflection of the particular Lyapunov function chosen to prove the closed-
loop stability properties than fundamental limitations on the proposed pro-
cedure. This is a point which is worthy further study. Future work will be
also devoted to extend the approach of this paper to multiparametric linear
programming (MPLP) and to multiparametric mixed integer linear pro-
gramming (MPMILP).
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