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Abstract
Optimizationproblems involvingmixedvariables (i.e., variables of numerical and cate-
gorical nature) can be challenging to solve, especially in the presence ofmixed-variable
constraints. Moreover, when the objective function is the result of a complicated sim-
ulation or experiment, it may be expensive-to-evaluate. This paper proposes a novel
surrogate-based global optimization algorithm to solve linearly constrained mixed-
variable problems up to medium size (around 100 variables after encoding). The
proposed approach is based on constructing a piecewise affine surrogate of the objec-
tive function over feasible samples. We assume the objective function is black-box
and expensive-to-evaluate, while the linear constraints are quantifiable, unrelaxable,
a priori known, and are cheap to evaluate. We introduce two types of exploration
functions to efficiently search the feasible domain via mixed-integer linear program-
ming solvers. We also provide a preference-based version of the algorithm designed
for situations where only pairwise comparisons between samples can be acquired,
while the underlying objective function to minimize remains unquantified. The two
algorithms are evaluated on several unconstrained and constrained mixed-variable
benchmark problems. The results show that, within a small number of required exper-
iments/simulations, the proposed algorithms can often achieve better or comparable
results than other existing methods.
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1 Introduction

A large variety of decision problems in several application domains, such as model
selection in machine learning [37], engineering design [30], and protein design [59],
require identifying a global optimum without an explicit closed-form expression cor-
relating the optimization variables to form the objective function to optimize. Such
a black-box input/output function can be expensive-to-evaluate, as they may repre-
sent the outcomes (i.e., function outputs) of costly experiments or computationally
intensive simulations resulting from a given value of the decision variables (i.e.,
function inputs). Therefore, the number of function evaluations should be reduced as
much as possible. Also, these functions often operate over mixed-variable domains,
meaning the variables can be of different types, such as continuous, integer, or
categorical, adding complexity to the optimization process. Additionally, physical
problems frequently include constraints of a mixed-integer nature (e.g., constraints
formed with logical conditions, which often involve continuous and binary variables).
In some cases, evaluating infeasible instances of the optimization variables may be
impossible—for instance, when the corresponding function evaluation requires run-
ning a simulation or an experiment that can not be conducted or poses safety risks. As
a result, it is preferable to efficiently exploit the known admissible set of the problem
to encourage feasible sampling.

Surrogate-based optimization techniques have been studied extensively to target
black-box optimization problems with expensive-to-evaluate objective functions [3,
29]. For example, BayesianOptimization (BO) [13, 42] has beenwidely used in hyper-
parameter tuning inmachine learning [58] and adaptive experimental design [22]. One
of the authors recently developed a deterministic algorithm, GLIS [8], which has been
applied to controller tuning [18], demonstrating comparable performance to BO but
with lower computational cost. Although most of the literature has focused only on
real-valued optimization variables, a few approaches have been adopted to handle
integer and categorical variables [2]. Here, we distinguish integer variables as those
representing ordinal relationships and categorical variables as those representing non-
ordinal relationships. Integer variables are most commonly considered as continuous
variables during the solution process and rounded to the nearest integer during post-
analysis (e.g., MISO [47], RBFopt [15]). On the other hand, categorical variables are
often one-hot encoded and treated as continuous variables within the range [0, 1]when
constructing the surrogate model during optimization. After the optimization step,
these variables are rounded and decoded back to their original categorical form for
testing (e.g.,One-hotBO [21],MINOAN[30]). See also [21, 24, 40] for algorithms that
have applied similar approaches to handle integer and categorical variables. Ploskas
and Sahinidis [50] comprehensively analyzed and compared different algorithms
and their associated software packages, targeting bound-constrained mixed-integer
derivative-free optimization problems. In their review, the authors observed thatMISO
[47] demonstrates superior performance when dealing with large (51–500 variables)
and binary problems. On the other hand, NOMAD [4, 5] emerged as the top performer
for mixed-integer, discrete (non-binary), small, and medium-sized (up to 50 variables)
problems.
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Most of the surrogate-based methods assume all the inputs as continuous and ordi-
nal [30, 47, 50]. On the other hand, different classes for the categorical variables often
represent different choices rather than ordinal relations. Therefore, if one attempts
to fit the latent function using a unified surrogate, in which categorical variables are
one-hot encoded and treated as continuous vectors with entries in [0, 1], sharp transi-
tions might be observed in the constructed surrogate, leading to poor fitting qualities.
Alternatively, one can fit different surrogate models to each categorical class [20, 48,
54]. For example, EXP3BO [20] constructs a surrogate model with Gaussian Process
(GP) for each chosen class of the categorical variable. However, as the number of
categories and classes within each category increase, the size of the problem quickly
blows up. To alleviate this issue, Ru et al. [51] propose an approach that makes efficient
use of the information in the acquired data by combining the strengths of multi-armed
bandits and BO with GP models. This method, named as CoCaBO, has been shown
to effectively solve bound-constrained problems with multiple categorical variables
and multiple possible choices. Certain algorithms can inherently handle categorical
variables due to the nature of their models. For example, the tree-structured models
used in TPE [11] and the random forests employed in SMAC [27] naturally process
categorical data.

In addition to mixed variables, real-life optimization problems frequently contain
constraints. In this case, if the integer and the one-hot encoded categorical variables
are relaxed as continuous variables while optimizing (i.e., the integrality of the vari-
ables is neglected) the constraints may not be satisfied after post-analysis, especially
when equality constraints are present [30]. In [30], to maintain the integrality of the
variables, the authors use one-hot encoding to convert integer and one-hot encoded
categorical variables to auxiliary variables. However, infeasibility with respect to con-
straints is still allowed during the solution process in [30]. In [49], piecewise-linear
neural networks are employed as surrogate models to address constrained discrete
black-box optimization problems, where mixed-integer linear programming (MILP)
is used to optimize the acquisition function. However, the no-good constraints used
in [49] to tackle discrete-variable-only problems cannot be trivially transferred to the
mixed-variable domain; hence, this approach cannot be directly applied to domains
with mixed variables.

1.1 Contribution

In this work, we aim to solve medium sized mixed-variable nonlinear optimization
problems (up to 100 variables after encoding) subject to mixed-integer linear equality
and/or inequality constraints (up to 100 constraints). Specifically, the optimization
variables can be continuous, integer, and categorical, and the constraints are quantifi-
able unrelaxable a priori known (QUAK) based on the taxonomy in [33]. We propose
an algorithm that uses piecewise affine (PWA) functions as the surrogate models.
PWA functions can effectively handle the discontinuities introduced by sharp transi-
tions amongdifferent classes of categorical variables. Furthermore, they canbe directly
reformulated intoMILPs, allowing us to leverage efficient, off-the-shelf MILP solvers
to optimize the acquisition function. To balance the exploitation and exploration during
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acquisition, we incorporate two types of exploration functions—distance-based and
frequency-based—in the acquisition function. Additionally, we propose incorporating
the exploration function as part of the initial sampling strategy to obtain well-scattered
initial samples, especially when a large number of linear equality and/or inequality
constraints are present. This is crucial because the initial samples play an essential
role in surrogate fitting, particularly when the function-evaluation budget is limited.

We name the proposed algorithm as PWAS, short for Piecewise Affine Surrogate-
based optimization. We show the efficiency and effectiveness of PWAS by comparing
its performance with other existing solvers on a set of benchmark problems. We also
present an extension of PWAS to address problems where function evaluations are
unavailable, such as those involvingmultiple objectiveswith unclear relativeweights to
form a single objective function or cases where only qualitative assessments are avail-
able. This approach assumes that a decision-maker can express preferences between
two candidate solution vectors. Such preference information is used to shape the PWA
surrogate through the proposed algorithm, named PWASp (short for PWAS based
on preferences). Python implementations of PWAS and PWASp are available on the
GitHub repository (https://GitHub.com/mjzhu-p/PWAS).

The rest of the paper is organized as follows. The description of the target problem
is formulated in Sect. 2. The proposed surrogate-based optimization algorithms are
discussed in Sects. 3 and 4. Section5 reports the numerical benchmarks demonstrating
the effectiveness of the proposed method. Lastly, conclusions and directions for future
research are discussed in Sect. 6.

2 Problem Formulation

We consider a decision problem with nc real variables grouped in vector x ∈ R
nc , nint

integer variables grouped in vector y ∈ Z
nint , and nd categorical variables grouped

in list Z = [Z1, . . . , Znd ]. Each categorical variable Zi can take values within its
corresponding ni classes, for i = 1, . . . , nd . Let us assume that each categorical
variable Zi is one-hot binary encoded into the subvector [z1+di−1 . . . zdi ]T ∈ {0, 1}ni
for each i = 1, . . . , nd , where d0 = 0 and di = ∑i

j=1 n j , with z ∈ {0, 1}dnd being
the complete vector of binary variables after the encoding. Here, z ∈ Ωz = {z ∈
{0, 1}dnd : ∑ni

j=1 z j+di−1 = 1, ∀i = 1, . . . , nd}. Let X = [xT yT zT]T denote
the overall optimization vector. We assume that the vectors x and y of interest are
bounded (i.e., �x ≤ x ≤ ux and �y ≤ y ≤ uy) and denote the domain of X by
Ω = [�x , ux ]× ([�y, uy]∩Z)×Ωz . We denote f : Ω �→ R as the objective function
to minimize, assuming it is noiseless and expensive-to-evaluate.

The black-box mixed-variable optimization problemwe want to solve can be stated
as follows, where we aim to

find X∗ ∈ arg min
X∈Ω

f (X) (1a)

s.t. Aeqx + Beqy + Ceqz = beq (1b)

Aineqx + Bineqy + Cineqz ≤ bineq, (1c)
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Fig. 1 General procedures for surrogate-based optimization methods

where Aeq, Beq, Ceq, Aineq, Bineq, and Cineq are matrices of suitable dimensions that,
together with the right-hand-side column vectors beq and bineq, define possible linear
equality and inequality constraints on x , y, and z. For example, if x ∈ R and Z = [Z1]
with Z1 ∈ {red,blue, yellow}, the logical constraint [Z1 = red] → [x ≤ 0] can be
modeled as x ≤ ux (1− z1). For modeling more general types of mixed linear/logical
constraints (possibly involving the addition of auxiliary real and binary variables), the
reader is referred to, e.g., [25, 56, 57]. Note that, different from function f , which
is assumed to be black-box and expensive-to-evaluate, we assume the mixed-integer
linear constraints on X in (1) are QUAK [33] and are cheap to evaluate.

3 SolutionMethod

We follow the general surrogate-based optimization procedure, schematically
depicted in Fig. 1 (see, e.g., [8]), to solve the optimization problem (1). The approach
consists of an initial (passive) sampling and an active learning stage, in which a sur-
rogate model of the objective function f is repeatedly learned. During the initial
phase, Ninit feasible samples Xk are generated, and the corresponding values f (Xk)

are collected, for k = 1, . . . , Ninit . During active learning, the surrogate model of f
is estimated from a finite number of function evaluations f (Xk), for k = 1, . . . , N ,
where N is increased sequentially between the initial value Ninit and the maximum
budget Nmax of queries available. Each new sample Xk+1 is determined by mini-
mizing an acquisition function, which combines the surrogate with an exploration
function, to reach an exploitation/exploration tradeoff. The exploration function is
constructed based on the existing samples {Xk}, for k = 1, . . . , N , to ensure that
the feasible domain is sufficiently explored. The procedure aims to effectively reduce
the objective function value of the posed problem within a small number of function
evaluations.

In this paper, we propose fitting a piecewise affine (PWA) surrogate of the latent
objective function f . PWA surrogate has two main benefits: (i) allow discontinuities
introduced by sharp transitions induced by taking values in different classes of the
categorical variables. In this case, instead of using one surrogate model for each
categorical class as in [20, 48, 54], it is possible to adaptively update the number
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of partitions allowed in the PWA function by analyzing the clusters of the queried
samples. For example, one can initiate the surrogate fitting procedure by setting a
maximum allowed number of partitions and then discard some partitions if the number
of queried samples within these partitions is smaller than some fixed minimum values
(cf. [9]); (i i) PWA surrogates have a direct mixed-integer linear reformulation and,
therefore, can be minimized by efficient MILP solvers (e.g., Gurobi [23] and GLPK
[38]). Also, we can explicitly reformulate and include linear equality and inequality
constraints involving integer and one-hot encoded categorical variables in the standard
MILP form to maintain their integrality during the solution process, enabling the
possibility to make feasible queries during the acquisition step. Since the acquisition
function includes both the surrogate and the exploration function, we will also define
a suitable PWA exploration function that admits a MILP representation. The resulting
approach, which we call PWAS, is summarized in Algorithm 1, whose steps will be
described in detail in the next sections.

Algorithm 1 PWAS: Global Optimization Using Piecewise Affine Surrogates
Input: Lower and upper bounds �x , ux , �y , uy ; linear constraint matrices Aeq, Beq, Ceq, Aineq, Bineq

and Cineq; linear constraint right-hand-side vectors beq and bineq; number nd of categorical variables and
ni of possible categories, for i = 1, . . . , nd ; initial number K of polyhedral partitions; number Ninit ≥ 2
of initial samples; number Nmax ≥ Ninit of maximum function evaluations; δ1 ≥ 0, δ2 ≥ 0 and δ3 ≥ 0
if solve (13) in one step or δ ≥ 0 if solve (13) in multiple steps; solving strategy for (13): {“one-step” or
“multi-steps”}.

1. Pre-process the optimization variables as described in Section 3.1;
2. N ← 1, N∗

curr ← 1, f ∗
curr ← +∞ ;

3. Generate Ninit random scaled and encoded samples X̄ = {X̄1, . . . , X̄Ninit } using one of the initial
sampling methods reported in Section 3.5 based on the problem setup;

4. While N ≤ Nmax do

(a) Scale back and decode X̄N to XN , i.e., XN = S(X̄N ), and query fN = f (XN );
(b) If fN < f ∗

curr then update N∗
curr ← N , f ∗

curr ← fN ;
(c) If N ≥ Ninit then

i. Update and fit the PWA separation function φ and PWA surrogate function f̂ as described
in Section 3.2;

ii. Define the acquisition function a as in (13);
iii. Solve the global optimization problem (13) and get X̄N+1 either in one-step or multi-steps;

(d) N ← N + 1;

5. End.

Output: Best decision vector X∗ = XN∗
curr

found.

3.1 Change of Variables: Scaling and Encoding

Before attempting solving problem (1), we first rescale every continuous variable xi
into a new variable x̄i ∈ [−1, 1] such that

xi = uix − �ix

2
x̄i + uix + �ix

2
, ∀i = 1, . . . , nc.
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Accordingly, the constraint matrices Aeq and Aineq are rescaled to

Āeq = Aeqdiag

(
ux − �x

2

)

and Āineq = Aineqdiag

(
ux − �x

2

)

,

with the right-hand-side vectors updated as follows:

b̄eq = beq − Aeq

(
ux + �x

2

)

and b̄ineq = bineq − Aineq

(
ux + �x

2

)

.

The intervals [−1, 1] for the continuous variables are possibly further tightened by
taking the updated inequality constraints (1c) (if they exist) into account (cf. [8]), i.e.,
for i = 1, . . . , nc, we set

�̄ix = min
x̄,y,z

eTi [x̄T yT zT]T
s.t. Āineq x̄ + Bineqy + Cineqz ≤ b̄ineq

x̄ ∈ [−1 1]nc , y ∈ [�y, uy] ∩ Z, z ∈ Ωz,

and, similarly,

ūix = max
x̄,y,z

eTi [x̄T yT zT]T
s.t. Āineq x̄ + Bineqy + Cineqz ≤ b̄ineq

x̄ ∈ [−1 1]nc , y ∈ [�y, uy] ∩ Z, z ∈ Ωz .

Here, ei denotes the i th column of the identity matrix of the same dimension as
vector X . We denote the resulting domain of the scaled continuous variables by Ωx =
[�̄1x , ū1x ] × . . . × [�̄ncx , ūncx ].

Let us assume that only a finite number Nmax of queries can be made, which
depends on the nature of function f (i.e., how expensive it is to evaluate) and the
time available to solve the optimization problem. Moreover, we treat integer variables
y differently depending on the relation between Nmax and the number

∏nint
i=1 n

int
i of

possible combinations of integer variables, where ninti = �uiy − ��iy� + 1 is the
cardinality of the set [liy, uiy]∩Z, i.e., the number of integer values that variable yi can
take. To be described in Sects. 3.1.1 and 3.1.2 below,wewill treat the vector y of integer
variables in twodistinctways tomake the exploration of the search space possiblymore
efficient. Specifically, y is treated as categorical when solving (1) in case

∏nint
i=1 n

int
i <

Nmax, i.e.,when itmaybepossible to exhaustively list out all the potential combinations
of the integer variables within Nmax queries if no continuous or categorical variables
are present; vice versa, we will maintain the optimization variables yi integer. We
note that this is a general heuristic we applied, which was empirically observed to
be more efficient when handling integer variables. This heuristic is motivated by the
acquisition strategies, which we will elaborate more in Sect. 3.4.
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3.1.1 Treating Integer Variables as Categorical

Thefirst scenario occurswhen thenumber of possible combinations of integer variables∏nint
i=1 n

int
i < Nmax. In this case,we treat all integer variables yi as categorical (similarly

to vector z) and one-hot encode them into further dnint binary variables ȳ j ∈ {0, 1},
for j = 1, . . . , dnint , where dnint = ∑nint

i=1 n
int
i . We also define Ωy = {ȳ ∈ {0, 1}dnint :

∑ninti
j=1 ȳ j+di−1

y
= 1, ∀i = 1, . . . , nint}, where d0y = 0 and diy = ∑i

j=1 n
int
j for i =

1, . . . , nint, and set ȳ ∈ Ωy . The constraint matrix Beq (Bineq) is modified accordingly

into a new matrix B̄eq (B̄ineq) by replacing each scalar entry Bi j
eq (B

i j
ineq) with the row

vector obtained by multiplying the entry by the vector of integers that variable y j can
take, i.e.,

Bi j
eq ← Bi j

eq

[
�� j

y� . . . �u j
y

]
∈ R

1×nintj , ∀ j = 1, . . . , nint,

Bi j
ineq ← Bi j

ineq

[
�� j

y� . . . �u j
y

]
∈ R

1×nintj , ∀ j = 1, . . . , nint.

The new optimization vector becomes X̄ = [x̄T ȳT zT]T ∈ Ω̄ , where Ω̄ = Ωx ×
Ωy × Ωz , consisting of n = nc + dnint + dnd variables. As evaluating the objective
function in (1) requires the original values in X , we denote by S : Ω̄ �→ Ω the
inverse scaling/encoding mapping of X̄ , i.e., X = S(X̄). According to such a change
of variables, problem (1) is now translated to

find X̄∗ ∈ arg min
X̄∈Ω̄

f (S(X̄))

s.t. Āeq x̄ + B̄eq ȳ + Ceqz = b̄eq

Āineq x̄ + B̄ineq ȳ + Cineqz ≤ b̄ineq.

(2a)

In the sequel, D ⊆ Ω̄ will denote the set of admissible vectors X̄ satisfying the
constraints in (2a).

3.1.2 Scaling Integer Variables

In the second scenario where
∏nint

i=1 n
int
i ≥ Nmax, the integer variables are rescaled and

treated as numeric variables ȳi ∈ [−1, 1], i = 1, . . . , nint. In this case, we also keep
the original nint integer variables yi ∈ Z in the model for the sole purpose of enforcing
integrality constraints, as we link them with ȳi by the scaling factors

yi = uiy − �iy

2
ȳi + uiy + �iy

2
.

Similar to the continuous variables, we can also further shrink the bounds on ȳi by
considering the updated inequality constraints (1c) (if present)
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�̄iy = min
x̄,ȳ,z

eTnc+i [x̄T ȳT zT]T
s.t. Āineq x̄ + Bineqy + Cineqz ≤ b̄ineq

x̄ ∈ Ωx , ȳ ∈ [−1 1]nint , z ∈ Ωz,

ūiy = max
x̄,ȳ,z

eTnc+i [x̄T ȳT zT]T
s.t. Āineq x̄ + Bineqy + Cineqz ≤ b̄ineq

x̄ ∈ Ωx , y ∈ [−1 1]nint , z ∈ Ωz .

We denote the domain of ȳ after tightening as Ωy = [�̄1y, ū1y] × . . . × [�̄ninty , ūninty ].
Accordingly, problem (1) is translated to

find

[
X̄∗
y∗

]

∈ arg min
X̄∈Ω̄,y∈[�y ,uy ]∩Z

f (S(X̄))

s.t. Āeq x̄ + Beqy + Ceqz = b̄eq

Āineq x̄ + Bineqy + Cineqz ≤ b̄ineq,

(2b)

where now X̄ = [x̄T ȳT zT]T ∈ Ω̄ and consists of n = nc + nint + dnd variables, with
Ω̄ = Ωx × Ωy × Ωz . And S : Ω̄ �→ Ω is the new inverse scaling mapping. We will
denote by D ⊆ Ω̄ the set of admissible vectors X̄ such that the constraints in (2b) are
satisfied for some vector y ∈ [�y, uy] ∩ Z.

3.2 Piecewise Affine Surrogate Function

When fitting a surrogate of the objective function, we treat the modified vector X̄ as a
vector inRn .Wedescribe next how to construct a PWAsurrogate function f̂ : Rn �→ R

such that f̂ (X̄) approximates f (S(X̄)).
Consider N samples X̄1, . . ., X̄ N ∈ R

n and their corresponding function evaluations
f (S(X̄1)), . . ., f (S(X̄ N )) ∈ R. We want to define the PWA surrogate function f̂ over
a polyhedral partition of Ω̄ into K regions. To this end, we consider the following
convex PWA separation function φ : Rn �→ R

φ(X̄) = ωT
j(X̄)

X̄ + γ j(X̄), (3a)

where ω j ∈ R
n and γ j ∈ R, for j = 1, . . . , K are the parameters that need to be

determined, with

j(X̄) = arg max
j=1,...,K

{ωT
j X̄ + γ j }. (3b)

We define the PWA surrogate function f̂ as

f̂ (X̄) = aT
j(X̄)

X̄ + b j(X̄), (3c)
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where a j ∈ R
n and b j ∈ R, for j = 1, . . . , K , are the surrogate parameters that need

to be determined. Note that f̂ is possibly non-convex and discontinuous.
We use the PARC algorithm recently proposed in [9] by one of the authors to

fit the PWA separation and surrogate functions to obtain the required coefficients
ω j , γ j , a j , and b j , for j = 1, . . . , K . We stress that while the closed-form expression
of f ◦ S as a function of X̄ is generally unavailable and very expensive-to-evaluate
for each given X̄ , evaluating its surrogate f̂ is very cheap and, as we will show in
Sect. 3.2.1, admits a simple mixed-integer linear encoding with K binary variables.

The number of partitions, K , is a hyper-parameter of the proposed global optimiza-
tion algorithm that must be selected by trading off between having a more flexible
surrogate function (large K ) and reducing computational demands (small K ). The
PARC algorithm includes an adaptive mechanism to update K during surrogate fit-
ting, specifically, if a partition contains fewer samples than a predefined minimum, it
is discarded. The samples from these discarded partitions are then either reassigned
to a neighboring partition or treated as outliers and excluded from surrogate fitting,
depending on their function evaluations [9]. This adaptability makes the PARC algo-
rithmmore robust and flexible, allowing it to reduce computational complexitywithout
significantly affecting prediction accuracy. For a detailed analysis of the PARC algo-
rithm,we refer readers to [9]. For illustration purposes,we present two surrogate-fitting
examples: one in a continuous domain and another in a mixed continuous and categor-
ical domain. While these demonstrations use 2D problems for simplicity and better
visualization, the PARC algorithm is capable of handling high-dimensional problems.

For the continuous function, we consider the Branin function [17]:

f (x1, x2) = a(x2 − bx21 + cx1 − r)2 + s(1 − t) cos(x1) + s

a = 1, b = 5.1

4π2 , c = 5

π
, r = 6, s = 10, t = 1

8π
−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

(4)

A PWA surrogate of f in (4) is fitted by the PARC algorithm utilizing 800 randomly
generated training samples (x1k, x2k). The initial partition K was set to 10. Figure2
show the final polyhedral partition induced by (3a). And Fig. 3 depicts the Branin
function as represented both analytically and through the PWA surrogate fitted by
PARC. We observe that the surrogate fitted by PARC captures the general shape of
the nonlinear Branin function.

For the mixed continuous and categorical domain, we consider the following syn-
thetic function:

f (x1, x2) =

⎧
⎪⎨

⎪⎩

x21 + 2x1 + 1 x2 = 0

x1 + 100 x2 = 1

(1 − x1)3 x2 = 2

−5 ≤ x1 ≤ 5, x2 ∈ {0, 1, 2},

(5)

where with different categorical values of x2, function evaluations ( f (x1, x2)) can
vary significantly. We use 960 randomly generated training samples with 10 initial
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Fig. 2 The polyhedral partition
induced by (3a) with K = 10
initial partitions. Note that the
final partition is also 10 (no
partition is discarded). The dots
in the figure are the training data
for the PARC algorithm.
Different colors indicate
samples at different partitions.
Brownish dots next to the
partition numbers are the
centroid of the training data
within each partition

(a) (b)

Fig. 3 a Branin function-analytical, and b Branin function fitted by PARC with K = 10. The dots in the
figure are the test data (200 samples) for the PARC algorithm. Different colors in b indicate samples at
different partitions

partitions (K ) to fit the PWA surrogates. Figure4 shows the final polyhedral partition
induced by (3a). In this case, we observe that 2 initial partitions were discarded during
surrogate fitting, resulting in 8 remaining partitions. In Fig. 5, we show the Function (5)
fitted analytically, and fitted by PARC with K = 8 partitions, where we observe that
PARC can make good predictions at different values of the categorical variable (x2),
despite their distinct characteristics.

We also remark that the goal of the current study is to obtain a highly accurate
approximation of the objective function around the global optimal solution and not
necessarily over the entire domain of X̄ , which usually requires much fewer samples.
It is because, as the algorithm adaptively queries points to test from the domain, the
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Fig. 4 The polyhedral partition
induced by (3a) with K = 10
initial partitions. Note that the
final partition is 8 (2 partitions
are discarded). The dots in the
figure are the training data for
the PARC algorithm. Different
colors indicate samples at
different partitions. Brownish
dots next to the partition
numbers are the centroid of the
training data within each
partition

Fig. 5 a Function (5) evaluated analytically, and b Function (5) evaluated by the surrogates fitted by PARC
with K = 8 final partitions

partitions associated with higher function evaluations (less relevant for optimization)
will be sampled less frequently, and accurate prediction models for these partitions
are not necessary. On the other hand, the regions with promising test points will be
more frequently visited, resulting in better (more accurate) PWA surrogates within
these partitions. An illustrative example is shown in Appendix A to demonstrate this
remark.

3.2.1 Mixed-Integer Linear Encoding of the Surrogate

After learning the coefficients of φ and f̂ by applying the PARC algorithm, in order
to optimize over the surrogate function to acquire a new sample X̄ N+1 by MILP, as
we will describe in Sect. 3.4, we introduce K binary variables ζ j ∈ {0, 1} and K real
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variables v j ∈ R, for j = 1, . . . , K . Here, ζ j = 1 if and only if X̄ N+1 belongs to
the j th polyhedral region of the partition induced by φ. The PWA separation function
φ can be modeled by the following mixed-integer inequalities via the big-M method
[9]:

ωT
j X̄ N+1 + γ j ≥ ωT

h X̄N+1 + γh − Mφ(1 − ζ j ), ∀h = 1, . . . , K , h �= j

K∑

j=1

ζ j = 1,
(6)

where Mφ is a large-enough constant, i.e., satisfies the inequality

Mφ ≥ max
j,h=1,...,K , X̄∈D

(ωh − ω j )
T X̄ + γh − γ j .

The PWA surrogate function f̂ can be modeled by setting

f̂ (X̄) =
K∑

j=1

ζ j (a
T
j X̄ N+1 + b j ) =

K∑

j=1

v j ,

subject to
v j ≤ aTj X̄ N+1 + b j − M−

s j (1 − ζ j )

v j ≥ aTj X̄ N+1 + b j − M+
s j (1 − ζ j )

v j ≥ M−
s jζ j

v j ≤ M+
s jζ j ,

(7)

where M+
s j , M

−
s j are large-enough constants satisfying the inequalities

M+
s j ≥ max

X̄∈D
aTj X̄ + b j , M−

s j ≤ min
X̄∈D

aTj X̄ + b j ,

for j = 1, . . . , K .

3.3 Exploration Function

Solely minimizing the surrogate function f̂ may easily miss the global optimum. In
order to properly explore the admissible setDweneed to introduce an exploration func-
tion E : Ω̄ �→ R. Due to the different numerical properties of continuous, integer, and
categorical variables, we consider different exploration strategies for each of them that
admit aMILP representation. Specifically,we use a distance-based explorationmethod
for continuous and integer variables if the latter are not one-hot encoded (as described
in Sect. 3.1.2) and a frequency-based exploration method for one-hot encoded categor-
ical and integer variables (in the alternative scenario described in Sect. 3.1.1). In the
following, we discuss the distance-based and frequency-based methods in a general
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manner, and we will dive into specifics of the exploration functions for our problem
of interest when we discuss the acquisition function in Sect. 3.4.

3.3.1 Distance-Based Exploration: “Max-box” Method

We want to define a function Ect : Rnct �→ R mapping a generic numeric vector
x̄ ∈ R

nct into a nonnegative value Ect (x̄) with the following features: (i) is zero
at given samples x̄1, . . . , x̄N ; (i i) grows away from them; and (i i i) admits a PWA rep-
resentation. To this end, we consider the boxes Bi (βct ) = {x̄ : ‖x̄ − x̄i‖∞ ≤ βct } and
set Ect (x̄) = min{βct ≥ 0 : x̄ ∈ Bi (βct ) for some i = 1, . . . , N }. Then, maximizing
Ect (x̄) is equivalent to finding the largest value βct and a vector x̄∗ outside the interior
of all boxes Bi (βct ), a problem that can be solved by the following MILP

x̄∗ ∈ arg max
x̄,βct ,δ+,δ− βct

s.t x̄ l − x̄ li ≥ βct − ME (1 − δ+
il ), ∀l = 1, . . . , nct , ∀i = 1, . . . , N

−x̄ l + x̄ li ≥ βct − ME (1 − δ−
il ), ∀l = 1, . . . , nct , ∀i = 1, . . . , N

δ+
il ≤ 1 − δ−

il , ∀l = 1, . . . , nct , ∀i = 1, . . . , N
nct∑

l=1

δ+
il + δ−

il ≥ 1, ∀i = 1, . . . , N

βct ≥ 0, x̄ ∈ D,

(8)

where l denotes the lth component of vector x̄ , δ−
il , δ

+
il ∈ {0, 1} are auxiliary optimiza-

tion variables introduced to model the violation of at least one of the linear inequalities
that define the box Bi (βct ), andME is a large-enough constant satisfying the following
inequality

ME ≥ 2

(

max
l=1,...,nct

ūlx − min
l=1,...,nct

�̄lx

)

,

where ūlx and �̄lx are the upper and lower bounds, respectively, of the lth component
of vector x̄ .

Figure 6 shows an example, where we apply the max-box exploration method to
x̄ ∈ R

2 and D = [−3, 9]×[−2, 8].We startwith three existing samples x̄1, x̄2, and x̄3.
After 20 samples, we get the samples reported in the figure, which shows that, indeed,
the max-box exploration method effectively explores the feasible region D.

3.3.2 Frequency-Based Exploration: “Hamming Distance” Method

Unlike the case of continuous variables treated in the previous section, to account for
the frequency of occurrence of a particular combination of binary variables we use the
Hamming distance, defined as follows: given two binary vectors z = [z1, . . . , zd ]T ∈
{0, 1}d and zi = [z1i . . . zdi ]T ∈ {0, 1}d , the Hamming distance between z and zi is
defined by the number of different components between them
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Fig. 6 Illustrative example of the max-box exploration function in 2D. The black dots denote the initial
samples. The red squares denote the samples generated using themax-box explorationmethod. The subscript
number indicates the order of the point generated

dH (z, zi ) =
d∑

m=1

|zm − zmi |, (9)

which can be encoded as the following linear expression

dH (z, zi ) =
∑

m:zmi =0

zm +
∑

m:zmi =1

(1 − zm). (10)

We consider the exploration function Edt : {0, 1}d �→ R such that Edt (z) quantifies
the average number of different binary components between z and the given N vectors
z1, . . ., zN

Edt (z) = 1

dN

N∑

i=1

dH (z, zi ).

Hence, a binary vector z∗ with maximum average Hamming distance Edt (z∗) from
the current samples z1, . . . , zN can be determined by solving the following MILP

z∗ ∈ argmax
z∈D Edt (z). (11)

123



   26 Page 16 of 39 Journal of Optimization Theory and Applications           (2025) 204:26 

Table 1 Illustrative example of
the Hamming distance
exploration function

Sample 1 2 3 4 5 6 7 8 9 10

Z1 B A B A B A B A B A

Z2 A C D A E B C D A E

Z3 A B A C A B C A B C

Sample 11 12 13 14 15 16 17 18 19 20

Z1 B A B A B A B A B A

Z2 B C D A E B C D A E

Z3 A B C A B C A B C A

Table 1 shows an example in which we have three categorical variables Z =
[Z1, Z2, Z3], where Z1 ∈ {A, B}, Z2 ∈ {A, B,C, D, E}, and Z3 ∈ {A, B,C}. We
start with three initial samples Z1 = [A, E,C], Z2 = [B, B, B], and Z3 = [A, D,C].
First, we binary encode the categorical variables, getting the corresponding vectors
z1, z2, z3 ∈ {0, 1}10. Then, we solve the optimization problem (11) to identify
z4 = z∗ and its corresponding decoded form Z4. The table shows the categorical
values Z4, . . . , Z23 generated in 20 subsequent sampling steps, which shows that a
diverse set of categorical variables are obtained when applying the Hamming distance
exploration method.

We remark that both exploration functions (distance-based and frequency-based)
are independent from the surrogate and does not require explicit uncertainty mea-
surements, making it flexible to be integrated with different types of surrogates (e.g.,
polynomials).

3.4 Acquisition Function

The surrogate and exploration functions defined in Sects. 3.2 and 3.3 can be combined
into the following acquisition problem

find X̄∗ ∈ arg min
X̄∈D

f̂ (X̄) − δ(Ect (x̄) + Edt ([ȳT zT]T)), (12a)

when integer variables are treated as categorical as described in Sect. 3.1.1, or into

find

[
X̄∗
y∗

]

∈ arg min
X̄∈D,y∈[�y ,uy ]∩Z

f̂ (X̄) − δ(Ect ([x̄T ȳT]T) + Edt (z)), (12b)

when the integer vector y is scaled as described in Sect. 3.1.2. In (12), the nonnegative
scalar δ is called the exploration parameter and decides the tradeoff between exploiting
the surrogate f̂ (X̄) and promoting the exploration of the feasible domain D. In the
sequel, wewill refer to the cost function a : Ω̄ �→ R in (12a) or (12b) as the acquisition
function. By construction, Problem (12) can be solved byMILP. An optimal vector X̄∗
of its solution, once scaled and decoded back, defines the next sample XN+1 to query
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for the corresponding function value fN+1 = f (XN+1). Note that XN+1 satisfies all
the constraints in (1) since X̄∗ ∈ D.

The direct formulation (12) can be further improved to ease the selection of δ

and make the exploration more homogenous with respect to all types of variables
(continuous, integer, or categorical). In fact, the formulation in (12) has the following
possible drawbacks:

(i) The relativemagnitude between f̂ (X̄) and E(X̄) is hard or impossible to estimate
a priori, making the value for the exploration parameter δ hard to select.

(ii) By using the same exploration parameter δ for the exploration function of each
type of variable, we implicitly assumed that the relativemagnitude of each explo-
ration function is comparable, which may not be the case.

(iii) When the integer variables y are not one-hot encoded as described in Sect. 3.1.2,
the max-box exploration function is applied to the combined vector [x̄T ȳT]T
(see (12b)) and two problems can occur. Firstly, as shown in (2), even though ȳi
is a continuous variable, because of the presence of the corresponding auxiliary
integer variable yi , it can only be changed in discrete steps, unlike the remaining
variables x̄ j . As a result, when finding the max box, one unit change in an integer
variable can be reflected as a more significant change of its corresponding scaled
variable ȳ, therefore promoting the exploration of directionswithmore variations
in the integer variables ȳi than in the continuous variables x̄ j . Secondly, due
to possibly different lower and upper bounds and therefore scaling factors of
integer variables, unit changes of them may cause different changes in size of
their corresponding scaled variables.

To address the aforementioned issues, given N samples (X̄i , f (S(X̄i )), for i = 1, . . .,
N , we reformulate the acquisition problems (12), respectively, as follows:

find X̄ N+1 ∈ arg min
X̄∈D

f̂ (X̄)

ΔF
− δ1Ect (x̄) − δ2Ect (ȳ) − δ3Edt (z),

(13a)

find

[
X̄ N+1
yN+1

]

∈ arg min
X̄∈D,y∈[�y ,uy ]∩Z

f̂ (X̄)

ΔF
− δ1Ect (x̄) − δ2Edt (ȳ) − δ3Edt (z),

(13b)

where

ΔF = max

{

max
i=1,...,N

f (Xi ) − min
i=1,...,N

f (Xi ), εΔF

}

,

and εΔF > 0 is a threshold to prevent division by zero. The scaling factor ΔF eases
the selection of the exploration parameters δ1, δ2, and δ3 by making the surrogate term
comparable to the exploration terms (cf. [8]).

An alternative to solve the optimization problem (13) in one step is to consider only
one exploration term at a time, therefore solving the problem in three consecutive steps
(that will be referred to as the “multi-step” approach), where, at each step, the problem
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is only solved with respect to one variable type. The remaining variables are treated
as constants at either the value associated with the current best vector XN∗

curr
or at

the new value optimized during the multi-step operation. The advantage of serializing
the optimization is that the relative value of δ1, δ2, and δ3 is no longer relevant, and
therefore we set δ1 = δ2 = δ3 = δ, where δ is the only tradeoff hyperparameter
to choose. Empirical findings indicate that a multi-step optimization approach for the
acquisition function often yields superior results compared to a one-step approach. The
one-step approach poses challenges in effectively tuning the exploration parameters δ1,
δ2, and δ3, which can hinder performance. Additionally, these findings also motivate
our heuristic for different treatments of integer variables as discussed in Sect. 3.1.
When optimize the acquisition function in multiple steps, if the number of possible
integer combinations is relatively small compared to the maximum allowed number of
black-box function evaluations, the integer variable combinationsmay be exhaustively
enumerable within the allowed evaluations. Treating them categorically helps prevent
premature convergence and ensures amore thorough exploration of the solution space.

A further heuristic is applied to restrict the number of binary variables used to
encode the max-box exploration function (8) and therefore limit them as the number
N of samples increases. Specifically, given an upper bound NEmax defined by the user
depending on the computational power available, we only consider the most recent NS

samples in the exploration function (we will use NS = 20 in our experiments) when
Nnc ≥ NEmax or Nnint ≥ NEmax (when integer variables are not one-hot encoded).
We note that the surrogate function is approximated using all the existing samples. The
rationale behind the heuristic is that, as the number N of queried samples grows, the
surrogate itself should already discourage the exploration around the older samples
not included in the exploration term, where the surrogate function, most likely, takes
large values.

3.5 Initial Sampling Strategies

The values of the initial samples X1, . . . , XNinit can significantly impact the final
solution X∗ obtained after Nmax steps. Moreover, one of the main motivations of the
proposed method is its ability to handle mixed-integer constraints on the optimization
variables. We propose different initial sampling strategies to efficiently acquire Ninit
scattered feasible samples depending on the constraints and types of optimization
variables present in the problem:

(i) When only box constraints are present, we use the Latin Hypercube Sampling
(LHS) [39] method as in [8].

(ii) When both box constraints and linear equality and/or inequality constraints are
present, we consider the following alternatives:

– If only continuous variables are present, we use the Double Description
Method [46] to generate the nV vertices of the convex polytope given by
the linear and box constraints. If nV < Ninit and only inequality constraints
are involved in (1), additional feasible samples can be generated via linear
combinations of the vertices; if nV < Ninit and equality constraints are
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also present, the generated nV vertices can be used to define initial boxes
and additional scattered feasible samples are generated by solving MILPs
sequentially with the max-box exploration function discussed in Sect. 3.3.1
as the objective function. In this way, the constraints in (1) can be enforced
in the formulation.

– If integer and/or categorical variables are also present, the algorithm first
attempts to generate samples using LHS and filters out the infeasible ones. If
the number of generated feasible samples is insufficient, which may happen
when the constraints are hard to fulfill by random sampling, we generate
scattered samples by solvingMILPs sequentially using the exploration func-
tions discussed in Sect. 3.3 as the objective functions and incorporating the
given constraints to ensure sample feasibility.

4 Preference-Based Learning

Wewant to extend the global optimization method introduced in the previous sections
to handle cases in which quantifying an objective function f (X) as in (1) can be
hard, if not impossible. For example, if multiple objectives are involved, defining
their relative weights a priori to form a single objective function can be difficult. In
such cases, expressing a preference between the outcomes of two decision vectors
X1 and X2 can be much simpler for a decision maker than quantifying the outcomes.
Accordingly, we define the following preference function π : Ω × Ω → {−1, 0, 1}
(cf. [10])

π(X1, X2) =
⎧
⎨

⎩

−1 if X1 “better” than X2
0 if X1 “as good as” X2
1 if X2 “better” than X1.

(14)

In this case, we are interested in finding a feasible optimization vector X∗ that wins or
ties the pairwise comparisons with any other feasible X according to the preference
function π , i.e., the optimization problem (1) is replaced by

find X∗ such that π(X∗, X) ≤ 0, ∀X ∈ D. (15)

We describe next a variant of Algorithm 1, that we call as PWASp, for solving the
preference-based optimization problem (15).

Let the optimization vector X be first pre-processed to X̄ (e.g., scaling and/or
encoding) as described in Sect. 3.1. Given N samples X̄1, . . . , X̄ N andMc preferences
π(S(X̄1,k), S(X̄2,k)) ∈ {−1, 0, 1}, for k = 1, . . . , Mc, where Mc = N − 1, we aim to
fit a PWA surrogate model reflecting the preference relations among different samples.
Since function evaluations are not available, here, the preferencesπ(S(X̄1,k), S(X̄2,k))
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are used to shape the surrogate function f̂ (X̄) by imposing the following constraints:

f̂ (X̄1,k) ≤ f̂ (X̄2,k) − σ ∀k : π(S(X̄1,k), S(X̄2,k)) = −1

f̂ (X̄2,k) ≤ f̂ (X̄1,k) − σ ∀k : π(S(X̄1,k), S(X̄2,k)) = 1

| f̂ (X̄1,k) − f̂ (X̄2,k)| ≤ σ ∀k : π(S(X̄1,k), S(X̄2,k)) = 0,

(16)

where (S(X̄1,k), S(X̄2,k)) = (X1,k, X2,k) are pairs of compared samples, with X1,k ,
X2,k ∈ {X1, . . . , XN }, for k = 1, . . . , Mc. Here, σ > 0 is a given constant, used to
avoid the trivial solution f̂ (X̄) ≡ 0.

To identify the PWA separation function φ(X̄), we first use K-means [36] to cluster
the samples, and then use softmax regression [16, 55] to fit the coefficients. The
assignment j(X̄) of each sample X̄ to each region of the partition is then determined.
Following that, different from the PARC algorithm, we determine the coefficients a j ,

b j defining the PWA surrogate function f̂ (X̄) by minimizing the sum
∑Mc

k=1 εk of
the violations of the preference constraints (16) under an additional �∞-regularization
term. Specifically, the coefficients a j , b j are obtained by solving the following linear
programming (LP) problem:

min
εk ,ξ,a,b

Mc∑

k=1

εk + αξ

s.t. f̂ (X̄1,k) + σ ≤ f̂ (X̄2,k) + εk ∀k : π(X1,k, X2,k) = −1

f̂ (X̄2,k) + σ ≤ f̂ (X̄1,k) + εk ∀k : π(X1,k, X2,k) = 1

| f̂ (X̄1,k) − f̂ (X̄2,k)| ≤ σ + εk ∀k : π(X1,k, X2,k) = 0

ξ ≥ ±alj , l = 1, . . . , n

ξ ≥ ±b j ,

(17)

where α > 0 is the regularization parameter; ξ ∈ R is a new optimization variable
introduced to linearly encode the �∞-regularization of the coefficients; and l denotes
the lth component of the vector.

Once the surrogate model is obtained, the same procedure as in PWAS can be fol-
lowed to construct the acquisition function. This acquisition function is then optimized
to identify the next sample, XN+1 = S(X̄ N+1). The new sample is subsequently com-
pared with the current best vector, XN∗

curr
, to obtain the new preference assessment.

The various steps involved in PWASp are summarized in Algorithm 2.

5 Optimization Benchmarks

To illustrate the effectiveness of PWAS and PWASp in solving the target prob-
lems (1) and (15), we have considered different mixed-variable global optimization
benchmarks, including three unconstrained synthetic benchmarks as well as two
unconstrained real-world benchmarks (taken from [51]) and two constrained mixed-
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variable synthetic problems. Computations are performed on an Intel i7-8550U
1.8-GHz CPU laptop with 24GB of RAM. The MILP problem in the acquisition
step is formulated with the PuLP library [41] and solved by Gurobi’s MILP solver
[23].

For each benchmark, the function evaluations are fed into PWAS to fit the surrogate,
while the explicit function expressions remain unknown to PWAS. As in [51] the
benchmark problems are solved via maximization, we use the values − f (X) when
running PWAS. As for PWASp, the objective function serves as a synthetic decision-
maker whose evaluations are only used to express the preference between two decision
vectors, namely π(X1, X2) = −1 if f (X1) > f (X2), π(X1, X2) = 1 if f (X1) <

f (X2), or zero otherwise. In other words, PWASp only has access to the queried
preferences (14) and not the explicit function expressions nor their evaluations f (XN ).
Specifically, Nmax − 1 pairwise comparisons are obtained for each benchmark when
solved by PWASp.

The performance of PWAS and PWASp on the unconstrained benchmarks are com-
paredwith the following solvers: CoCABO-auto [51], CoCABO-0.5 [51], One-hot BO
[21], SMAC [27], TPE [11], and EXP3BO [20] as noted in [51] as well as MISO [47]
and NOMAD [4, 5]. A brief summary of each algorithm is provide in Appendix C.
CoCABO-auto and CoCABO-0.5 are selected because the authors noted that they
consistently show competitive performance [51]. MISO and NOMAD are selected
since they are noted as the best performers among all the algorithms tested in [50].
The settings of the first six algorithms compared are available in [51]. As for MISO

Algorithm 2 PWASp: Preference-based Optimization Using Piecewise Affine Surro-
gates
Input: Lower and upper bounds �x , ux , �y , uy ; linear constraint matrices Aeq, Beq, Ceq, Aineq, Bineq,

and Cineq; linear constraint right-hand-side vectors beq and bineq; number nd of categorical variables and
ni of possible categories, for i = 1, . . . , nd ; initial number K of polyhedral partitions; number Ninit ≥ 2
of initial samples to compare; maximum number Nmax − 1 of comparisons, Nmax ≥ Ninit ; δ1 ≥ 0, δ2 ≥ 0
and δ3 ≥ 0 if solve (13) in one step or δ ≥ 0 if solve (13) in multiple steps; solving strategy for (13):
{“one-step” or “multi-steps”}.

1. Pre-process the optimization variables as described in Section 3.1;
2. N ← 1, i∗ ← 1;
3. Generate Ninit random and encoded samples X̄ = {X̄1, . . . , X̄Ninit } using one of the initial sampling

methods described in Section 3.5 based on the problem setup;
4. While N < Nmax do

(a) If N ≥ Ninit then
i. Update and fit the PWA separation function φ and PWA surrogate function f̂ as described

in Section 4;
ii. Define the acquisition function a as in (13);
iii. Solve the MILP problem (13) and get X̄N+1, either in one step or multiple steps;

(b) i(N ) ← i∗, j(N ) ← N + 1
(c) Query preference π(Xi(N ), X j(N ));
(d) If π(Xi(N ), X j(N )) = 1 then set i∗ ← j(N )

(e) N ← N + 1;

5. End.

Output: Best vector X∗ = Xi∗ encountered.
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Table 2 Benchmark problem specifications

Benchmark nc nint nd ni

Func-2C 2 0 2 {3, 3}

Func-3C 2 0 3 {3, 3, 3}

Ackley-5C 1 0 5 {17, 17, 17, 17, 17}

XG-MNIST 4 1 3 {2, 2, 2}

NAS-CIFAR10 21 1 5 {3, 3, 3}

Horst6-hs044-modified 3 4 2 {3, 2}

ros-cam-modified 2 1 2 {2, 2}

and NOMAD, we kept their default algorithm settings, with integer and categorical
variables declared as referenced by the corresponding algorithms [4, 5, 47]. To have
fair comparisons, we performed the same initial and maximum number of black-box
function evaluations (Ninit = 20 and Nmax = 100) as indicated in [51] on the syn-
thetic and real-world benchmarks for all the tested algorithms except for NOMAD.
NOMAD starts the optimization process with an initial guess [5]. When solving the
problems using PWAS or PWASp, the multi-step solution strategy is applied in the
acquisition step with δ1 = δ2 = δ3 = 0.05 or δ1 = δ2 = δ3 = 1, respectively for
PWAS and PWASp. The initial number K of polyhedral partitions is set to 20 for both
PWAS and PWASp in all the benchmarks. We stress that here the function evaluations
for PWASp are solely reported for performance comparisons and are not attainable
to PWASp during optimization. Table 2 summarizes the tested benchmark problems,
while a detailed description of the benchmarks is reported in Appendix B.

The optimization results obtained by CoCaBO-auto, CoCaBO-0.5, One-hot BO,
SMAC and TPE for unconstrained benchmark were read from Figure 4 in [51] using
GetDataGraphDigitizer [19]. RegardingMISOandNOMAD(version 4),we retrieved
their packages from theGitHub repository.Weperformed 20 random repetitions for the
unconstrained synthetic problems (Func-2C, Func-3C, and Ackley-5C) and 10 random
repetitions for the unconstrained real-world problems (XG-MNIST and NAS-CIFAR10)
as reported in [51].

Regarding problemswith constraints, we consider the twomixed-variable synthetic
problems reported in Appendix B.3, whose specifications are also reported in Table 2.
We do not consider other solvers than PWAS and PWASp as they either do not support
constraint handling with mixed variables or allow infeasible samples during the opti-
mization process. Thus, a systematic comparison is not performed for the constrained
problems. Instead, the results are compared against the analytic global optimum. Here,
we set Nmax = 100 and Ninit = �Nmax/4� = 25, K = 20 initial clusters, and the
exploration parameters δ1 = δ2 = δ3 = 0.05 when using PWAS or δ1 = δ2 = δ3 = 1
with PWASp. We run PWAS and PWASp 20 times from different random seeds on
these two problems.
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Table 3 Best value found on benchmark Func-2C [51] after 100 and 200 black-box function evaluations
(maximum = 0.2063). Statistics are obtained over 20 runs

Algorithm After 100 evaluations After 200 evaluations
Mean Std Mean Std

PWAS 0.2049 0.0022 0.2061 0.0002321

PWASp 0.1813 0.0443 0.1889 0.0449

CoCaBO-auto 0.1219 0.0172 0.2041 0.0057

CoCaBO-0.5 0.1352 0.01620 0.2041 0.0057

One-hot BO 0.009524 0.02158 0.01524 0.02064

SMAC 0.06381 0.01746 0.07714 0.01556

TPE 0.1273 0.0184 0.1743 0.01650

EXP3BO 0.05524 0.01429 0.1105 0.01650

MISO 0.2063 0.0000 0.2063 0.0000

NOMAD 0.1700 0.0736 0.1754 0.07557

Table 4 Best value found on benchmark Func-3C [51] after 100 and 200 black-box function evaluations
(maximum = 0.7221). Statistics are obtained over 20 runs

Algorithm After 100 evaluations After 200 evaluations
Mean Std Mean Std

PWAS 0.5282 0.2117 0.6450 0.0972

PWASp 0.4542 0.2078 0.5106 0.1665

CoCaBO-auto 0.4993 0.0299 0.6912 0.0169

CoCaBO-0.5 0.5371 0.0503 0.6991 0.0205

One-hot BO 0.007670 0.04956 0.1076 0.0606

SMAC 0.1084 0.04016 0.1965 0.0339

TPE 0.2672 0.0472 0.4914 0.5308

EXP3BO 0.1784 0.0393 0.2515 0.0330

MISO 0.7221 0.0000 0.7221 0.0000

NOMAD 0.6618 0.1610 0.6860 0.1615

5.1 Results and Discussions

The optimization results for unconstrained benchmarks are reported in Tables 3, 4,
5, 6 and 7, and illustrated in Figs. 7, 8 and 9. The convergence plots (Fig. 7) show
how different algorithms perform across various benchmarks in terms of increasing
(reducing) the objective function value over time for maximization (minimization)
problems. To avoid clutter, only mean values are plotted in Fig. 7 with the standard
deviations at evaluations 100 and 200 reported in Tablea 3, 4, 5, 6 and 7. The per-
formance and data profiles (Figs. 8, 9) are generated based on the guidelines noted in
[45] with convergence tolerance τ set to 0.5 and 0.1. Performance profiles compare
the efficiency of algorithms by looking at the performance ratio (relative performance)
across a set of problems, while data profiles illustrate the percentage of problems that
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Table 5 Best value found on benchmark Ackley-5C [51] after 100 and 200 black-box function evaluations
(maximum = 0). Statistics are obtained over 20 runs

Algorithm After 100 evaluations After 200 evaluations
Mean Std Mean Std

PWAS −1.1148 0.4077 −0.7108 0.3320

PWASp −1.8857 0.5795 −1.6462 0.5422

CoCaBO-auto −2.5120 0.602 −1.9244 0.5512

CoCaBO-0.5 −2.8415 0.0488 −2.0073 0.0488

One-hot BO −3.076 0.0483 −2.5341 0.3024

SMAC −3.0073 0.2488 −1.710 0.2393

TPE −3.4659 0.2000 −2.7976 0.2487

MISO −1.6389 0.1388 −1.5582 0.06218

NOMAD −2.0175 0.2015 −1.5467 0.01437

Table 6 Best value found on benchmark XG-MNIST [51] after 100 and 200 black-box function evaluations.
Statistics are obtained over 10 runs

Algorithm After 100 evaluations After 200 evaluations
Mean Std Mean Std

PWAS 0.9585 0.0030 0.9609 0.0029

PWASp 0.9576 0.0036 0.9615 0.0028

CoCaBO-auto 0.9639 0.0004 0.9653 0.0004

CoCaBO-0.5 0.9731 0.0008 0.9741 0.0008

One-hot BO 0.9541 0.0019 0.9556 0.0015

SMAC 0.9651 0.0012 0.9681 0.0012

TPE 0.9656 0.0007 0.9679 0.0007

EXP3BO 0.9691 0.0005 0.9706 0.0005

MISO 0.9574 0.0071 0.9594 0.0078

NOMAD 0.9528 0.0138 0.9564 0.0146

can be solved as a function of the equivalent number of simplex gradients (function
evaluations) [45]. These profiles are particularly useful for comparing and analyzing
the short-term behavior of algorithms, especially when computational resources are
limited.

In general, PWAS and PWASp can effectively increase (decrease for minimization
problems) the objective function values within a small number of function evaluations
or comparisons. In fact, as shown in Tables 3, 4, 5, 6 and 7, the best values achieved
by PWAS and PWASp after 100 evaluations are often already better or comparable
to the results obtained by some other algorithms after 200 evaluations. These obser-
vations are also reflected in Figs. 7, 8 and 9, where we observe that PWAS, PWASp,
and MISO consistently demonstrate superior early-stage performance. For τ = 0.5,
they can solve all the benchmark problems with fewer than 10 equivalent simplex
gradients. This suggests that these three algorithms are well-suited for applications
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Table 7 Best value found on benchmark NAS-CIFAR10 [51] after 100 and 200 black-box function evalua-
tions. Statistics are obtained over 10 runs

Algorithm After 100 evaluations After 200 evaluations
Mean Std Mean Std

PWAS 0.9440 0.0024 0.9462 0.0016

PWASp 0.9409 0.0052 0.9454 0.0019

CoCaBO-auto 0.9446 0.0017 0.9454 0.0017

CoCaBO-0.5 0.9458 0.0014 0.9468 0.0004

One-hot BO 0.9438 0.0006 0.9451 0.0006

SMAC 0.9422 0.0004 0.9436 0.0004

TPE 0.9427 0.0006 0.9443 0.0007

MISO 0.9442 0.0020 0.9447 0.0035

NOMAD 0.9385 0.0231 0.9391 0.0341

Fig. 7 Convergence graph of tested algorithms on the unconstrained benchmarks. The mean values are
plotted, which are averaged over 20 runs for Func-2C, Func-3C, and Ackley-5C, and over 10 runs for
XG-MNIST and NAS-CIFAR10
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Fig. 8 Performance profiles of tested algorithms across varying performance ratios (α) with convergence
tolerance τ equals to 0.5 and 0.1. Performance ratio (x-axis) is in logarithmic scale with base 2

Fig. 9 Data profiles of tested algorithms as a function of the number of equivalent simplex gradients

where rapid, early-stage reduction in function value is critical. However, for τ = 0.1,
the performance of PWASp quickly drops. It is also observed that PWAS performs
consistently better than PWASp. It is because that PWAS has access to function evalu-
ations, while PWASp only receives pairwise comparisons, making it struggle to obtain
highly accurate results. Nonetheless, in spite of the more limited information it gets,
PWASp outperforms several other solvers (One-hot BO, SMAC, TPE, and EXP3BO)
inmost of the tested benchmarks.We also stress that PWASp is advantageous when the
objective function is not easily quantifiable, but pairwise comparisons can be made.
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Table 8 Performance of PWAS/PWASp on constrained mixed-variable synthetic problems

Algorithm Horst6-hs044-modified ros-cam-modified
Mean Std Mean Std

PWAS −62.579 3.5275e−08 −1.1151 0.3167

PWASp −56.5539 8.3454 0.90540 1.7200

Global optimum −62.579 −1.81

For both PWAS and PWASp, the optimum is obtained after 100 black-box function evaluations
Statistics are obtained with 20 random repetitions

Fig. 10 Convergence graphs for the constrained benchmark problems. Error bars indicate standard devia-
tions, which are obtained with 20 random repetitions

On the other hand, When τ decreases, the performances of PWAS and MISO remain
in the top three, with the performance ofMISO drops slightly. CoCaBO-0.5 also holds
a competitive position but is not as dominant as PWAS in early performance ratio (up
to 2). However, as the performance ratio increases, the performance of CoCaBO-0.5
remains steady. Additionally, CoCaBO-0.5 showed superior performance in both real-
world problems (XG-MNIST and NAS-CIFAR10). Although, it is worth noting that the
performance differences are rather small in scale.

The optimization results for the constrained benchmarks are shown in Table 8 with
the convergence graphs shown in Fig. 10.We observe that both PWAS and PWASp can
quickly reduce the objective function values after a small number of black-box func-
tion evaluations, demonstrating their ability to handle mixed-variable linear QUAK
constraints Also, PWAS achieves better results than PWASp regarding the best values
obtained after the maximum allowed black-box function evaluations and consistency
over multiple repetitions.

To show the efficiency of PWAS and PWASp, the average CPU time spent by
PWAS and PWASp to fit the surrogate and solve the acquisition problem to suggest
the next sample to query is reported in Table 9 for each tested benchmark problem.
Considering that often evaluating the black-box function f or comparing samples
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Table 9 CPU time (s) for surrogate fitting and acquisition optimization, averaged over Nmax − Ninit active
sampling steps

Func-2C Func-3C Ackley-5C XG-MNIST NAS-CIFAR10 Horst6-
hs044-
modified

ros-
cam-
modified

Surrogate fitting

PWAS 0.565 0.556 0.889 0.327 0.329 0.211 0.198

PWASp 0.221 0.289 0.544 0.312 0.422 0.177 0.162

Acquisition optimization

PWAS 0.231 0.196 1.250 0.505 1.871 0.327 0.311

PWASp 0.270 0.420 1.352 0.589 1.700 0.387 0.364

involves expensive-to-evaluate simulations or experiments, such a CPU time can be
considered negligible in real-life applications.

6 Conclusion

The algorithms PWAS and PWASp introduced in this paper can handle global and
preference-based optimization problems involving mixed variables subject to linear
preference-based optimization problems involving mixed variables subject to lin-
ear quantifiable unrelaxable a priori known (QUAK) constraints. Tests on different
synthetic and real-world benchmark problems show that PWAS and PWASp can
obtain better or comparable performance than other existing methods. In addition,
the proposed acquisition strategies in PWAS and PWASp does not require uncer-
tainty measurements, which can be extended to other simpler surrogate models such
as polynomials. Although convergence to global optimizers cannot be guaranteed,
we observed that PWAS and PWASp could quickly reduce (increase for maximiza-
tion problems) the objective function values within a limited number of black-box
function evaluations, despite the presence of integer and categorical variables and
mixed-integer linear constraints. Therefore, both PWAS and PWASp can be consid-
ered as good heuristic algorithms formixed-variable black-box optimization problems.

Future research will be devoted to extend this approach to handle mixed-variable
problems under mixed-variable nonlinear constraints. Several approaches can be used,
such as replacing them by piecewise affine approximations. Additionally, it can be
interesting to integrate the proposed exploration function with other surrogate models
(e.g., tree-based BO and polynominals).

Appendix A: Illustrative Example - Surrogate Fitting

To illustrate the remark noted at the end of Sect. 3.2, we optimize the following PWA
function from [9],

f (x) = max

{[ 0.8031
0.0219−0.3227

]′ [ x1
x2
1

]
,
[ 0.2458−0.5823

−0.1997

]′ [ x1
x2
1

]
,
[ 0.0942−0.5617

−0.1622

]′ [ x1
x2
1

]
,
[ 0.9462−0.7299

−0.7141

]′ [ x1
x2
1

]
,
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Fig. 11 Contour plots of Function (18), with the ground truth (top-left) and approximations generated by
PWA surrogates with different numbers of samples (Nmax). The approximations are based on 50, 100, and
200 samples. Red cross: optimum; blue dot: best sample obtained within Nmax function evaluations

[ −0.4799
0.1084−0.1210

]′ [ x1
x2
1

]
,
[ 0.5770

0.1574−0.1788

]′ [ x1
x2
1

]}

. (18)

We employ PWAS with varying maximum numbers of function evaluations Nmax,
using the samples collected during optimization to fit (18). As shown in Fig. 11, after
50 function evaluations, the surrogate effectively identifies the optimal region (dark
purple region in Fig. 11), and after 200 evaluations, it closely approximates the optimal
region. Furthermore, Fig. 12 demonstrates that as Nmax increases from 50 to 200, the
surrogate’s predictions align more closely with the true values across the test dataset.
With a smaller Nmax, predictions are most accurate near the optimum; as Nmax grows,
the surrogate’s accuracy improves also in regions further from the optimum. This
indicates that PARC can be effectively used for our purpose as noted in the remark.
Note: default solver settings of PWAS are used when collecting fitting samples for the
illustrative example.

Appendix B: Benchmark

Note: the unconstrainedmixed-variable synthetic and real-world problems are adopted
from [51] for our comparisons. Note that the objective function is maximized in [51],
so we consider the minimization of − f (X) in PWAS and PWASp.
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Fig. 12 Comparisons between the true function values of (18) and the predicted function values using the
PWA surrogates for both training (with different values of Nmax) and testing samples (with 10,000 samples).
Blue dots: training samples collected during optimization; green dots: testing samples; red dashed lines:
ideal case where true values equal to the predicted values

B.1 UnconstrainedMixed-variable Synthetic Benchmarks

Func-2C [7, 17, 43, 44, 51, 53]: nc = 2, nint = 0, and nd = 2 with ni = 3 for
each categorical variable (denoted as ndi , for i = 1, 2). Each categorical variable is in
{0, 1, 2}. The bounds are �x = [−1.0 − 1.0]T, ux = [1.0 1.0]T. The global maximum
f (X) = 0.20632 is attained at X = [0.0898−0.712611]T and [−0.08980.712611]T .

f (X) =

⎧
⎪⎨

⎪⎩

f1 + fros(x) nd2 = 0

f1 + fcam(x) nd2 = 1

f1 + fbea(x) nd2 = 2,
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where f1(x, y) =

⎧
⎪⎨

⎪⎩

fros(x) nd1 = 0

fcam(x) nd1 = 1

fbea(x) nd1 = 2

fros(x) = −(100(x2 − x21 )
2 + (x1 − 1)2)/300

fcam(x) = −(a1 + a2 + a3)/10

a1 = (4 − 2.1x21 + x41
3

)x21

a2 = x1x2

a3 = (−4 + 4x22 )x
2
2

fbea(x) = −((1.5 − x1 + x1x2)
2 + (2.25 − x1 + x1x

2
2 )

2

+ (2.625 − x1 + x1x
3
2)

2)/50 (19)

Func-3C [7, 17, 43, 44, 51, 53]: nc = 2, nint = 0, and nd = 3 with ni = 3 for
each categorical variable (denoted as ndi , for i = 1, 2, 3). Each categorical variable
is in {0, 1, 2}. The bounds are �x = [−1.0 − 1.0]T, ux = [1.0 1.0]T. The global
maximum f (X) = 0.72214 is attained at X = [0.0898 − 0.7126 1 1 0]T and
[−0.0898 0.7126 1 1 0]T.

f (X) =

⎧
⎪⎨

⎪⎩

f2 + 5 fcam(x) nd3 = 0

f2 + 2 fros(x) nd3 = 1

f2 + nd2 fbea(x) nd3 = 2,

where f2(x, y) =

⎧
⎪⎨

⎪⎩

f1 + fros(x) nd21 = 0

f1 + fcam(x) nd2 = 1

f1 + fbea(x) nd2 = 2

f1(x, y) =

⎧
⎪⎨

⎪⎩

fros(x) nd1 = 0

fcam(x) nd1 = 1

fbea(x) nd1 = 2

fros(x), fcam(x), and fbea(x) are defined in (19)

(20)

Ackley-5C [1, 51, 53]: nc = 1, nint = 0, and nd = 5 with ni = 17 for each category
(denoted as ndi , for i = 1, . . . , 5). Each categorical variableis in {0, 1, . . . , 16}. The
bounds are �x = −1.0, ux = 1.0. The global maximum f (X) = 0 is attained at
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X = [0 8 8 8 8 8]T.

f (X) = a exp

(

−b
( s1
n

) 1
2
)

+ exp
( s2
n

)
− a − exp(1),

where a = 20, b = 0.2, c = 2π

s1 = x2 +
5∑

i=1

z2i (ndi )

s2 = cos(cx) +
5∑

i=1

cos(czi (ndi ))

zi (ndi ) = −1 + 0.125ndi

(21)

B.2 UnconstrainedMixed-variable Real-world Benchmarks

XG-MNIST [14, 35, 51]: nc = 4, nint = 1, and nd = 3 with ni = 2, for i =
1, 2, 3. Each categorical variable (ndi ) can be either 0 or 1. The bounds are �x =
[10−6, 10−6 0.001 10−6]T, ux = [1 10 1 5]T; �y = 1, uy = 10.
Notes on the optimization variables:
The 0.7/0.3 stratified train/test split ratio is applied as noted in [51]. The xgboost
package is used [14] on MNIST classification [35]. The optimization variables in
this problem are the parameters of the xgboost algorithm. Specifically, the con-
tinuous variables x1, x2, x3, and x4 refer to the following parameters in xgboost,
respectively: ‘learning_rate’, ‘min_split_loss’, ‘subsample’, and
‘reg_lambda’. The integer variable y stands for the ‘max_depth’. As for the
categorical variables, nd1 indicates the booster type in xgboost, where nd1 = {0, 1}
corresponding to {‘gbtree’, ‘dart’}. nd2 represents the ‘grow_policy’,
where nd2 = {0, 1} corresponding to {‘depthwise’, ‘lossguide’}. nd3 refers
to the ‘objective’, where nd3 = {0, 1} corresponding to {‘multi:softmax’,
‘multi:softprob’}.
Notes on the objective function:
The classification accuracy on test data is used as the objective function.
NAS-CIFAR10 [31, 51, 60]: nc = 21, nint = 1, and nd = 5 with ni = 3 for each
category (denoted as ndi for i = 1, . . . , 5). Each categorical variable is in {0, 1, 2}.
The bounds are �ix = 0, uix = 1, ∀i = 1, . . . , nc; �y = 0, uy = 9.
Notes on the optimization problem:
The public dataset NAS-Bench-101 [59] is used. This dataset maps convolutional
neural network (CNN) architectures to their trained and evaluated performance on
CIFAR-10 classification. As a result, we can quickly look up the validation accuracy
of the proposed CNN architecture by PWAS/PWASp. The same encoding method for
the CNN architecture topology as noted in [51, 59] is used.
Notes on the optimization variables:
The CNN architecture search space is described by a directed acyclic graph (DAG)
which has 7 nodes with the first and the last nodes being the input and output nodes.
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The continuous variables represent the probability values for the 21 possible edges
in the DAG. The integer variable y is the number of edges present in the DAG. The
categorical variables are the operations for the 5 intermediate nodes in the DAG,
for which ndi = {0, 1, 2} corresponding to {‘3x3 conv’, ‘1x1 conv’, ‘3x3
max-pool’}.Within the 21 possible edges, only y edges with the highest probability
are activated. The DAG that leads to invalid CNN architecture topology specifications
will result in zero validation accuracy.
Notes on the objective function:
The validation accuracy of the defined CNN architecture topology on CIFAR-10 clas-
sification is used as the objective function.

B.3 ConstrainedMixed-variable Synthetic Problems

Horst6-hs044-modified [26, 34]: nc = 3, nint = 4, and nd = 2 with n1 = 3 and n2 =
2 (the first (nd1) and the second (nd2) categorical variable are in {0, 1, 2} and {0, 1},
respectively. �x = [0 0 0]T, ux = [6 6 3]T; �y = [0 0 0 0]T, uy = [3 10 3 10]T. The
global minimum f (X) = −62.579 is attained at X = [5.21066 5.0279 0 0 3 0 4 2 1]T.

f (X) =
{

| f1| nd2 = 0

f1 nd2 = 1

s.t Aineqx + Bineqy ≤ bineq,

where f1(x, y) =

⎧
⎪⎨

⎪⎩

fHorst6(x) + fhs044(y) nd1 = 0

0.5 fHorst6(x) + fhs044(y) nd1 = 1

fHorst6(x) + 2 fhs044(y) nd1 = 2

fHorst6(x) = xT Qx + px

Q =
⎡

⎣
0.992934 −0.640117 0.337286

−0.640117 −0.814622 0.960807
0.337286 0.960807 0.500874

⎤

⎦

p = [−0.992372 −0.046466 0.891766
]

fhs044(y) = x0 − x1 − x2 − x0x2 + x0x3 + x1x2 − x1x3

Aineq =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.488509 0.063565 0.945686
−0.578592 −0.324014 −0.501754
−0.719203 0.099562 0.445225
−0.346896 0.637939 −0.257623
−0.202821 0.647361 0.920135
−0.983091 −0.886420 −0.802444
−0.305441 −0.180123 −0.515399

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Bineq =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 0 0
4 1 0 0
3 4 0 0
0 0 2 1
0 0 1 2
0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

bineq = [2.86506, −1.49161, 0.51959, 1.58409, 2.19804, −1.30185,

− 0.73829, 8, 12, 12, 8, 8, 5]T (22)

ros-cam-modified [8, 28]: nc = 2, nint = 1, and nd = 2 with ni = 2 for each
categorical variable (denoted as ndi , for i = 1, 2). Each categorical variable is in
{0, 1}. �x = [−2.0 − 2.0]T, ux = [2.0 2.0]T; �y = 1, uy = 10. The global minimum
f (X) = −1.81 is attained at X = [0.0781 0.6562 5 1 1]T.

f (X) =
{
f1 + fros(x, y) nd2 = 0

f1 + fcam(x, y) nd2 = 1

s.t Aineqx ≤ bineq,

where1(x, y) =
{
fros(x, y) nd1 = 0

fcam(x, y) nd1 = 1

fros(x, y) = 100(x2 − x21 )
2 + (x1 − 1)2 + (y − 3)2

fcam(x, y) = a1 + a2 + a3 + (y − 5)2

a1 = (4 − 2.1x21 + x41
3

)x21
a2 = x1x2
a3 = (−4 + 4x22 )x

2
2

Aineq =

⎡

⎢
⎢
⎢
⎢
⎣

1.6295 1
0.5 3.875

−4.3023 −4
−2 1
0.5 −1

⎤

⎥
⎥
⎥
⎥
⎦

bineq = [3.0786, 3.324, −1.4909, 0.5, 0.5]T (23)

Appendix C: Algorithms

C.1 CoCaBO

Continuous and Categorical Bayesian Optimization (CoCaBO) [51] is an algorithm
proposed to optimize box-constrained expensive black-box problems with both con-
tinuous and categorical variables, specifically for problems with multiple categorical
variables with multiple possible values. CoCaBO model the input space with a Gaus-
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sian Process kernel, which is designed to allow information sharing across different
categorical variables to enhance data efficiency.

C.2 EXP3BO

EXP3BO [20] is an algorithm proposed to optimize box-constrained, expensive black-
box problems, which is modified from BO via the EXP3 algorithm [6, 52]. It can deal
with mixed categorical and continuous input spaces by utilizing multi-armed bandits.
Specifically, EXP3BO constructs a Gaussian Process surrogate specific to each chosen
category, making it unsuitable for handling problemswithmultiple categorical classes.

C.3 One-hot BO

One-hot BO [21] handles the input space with continuous and categorical variables
by one-hot encoding the categorical variables and treating these encoded variables
as continuous. Then, the standard BO procedure is used to solve the optimization
problem on the transformed input space.

C.4 TPE

Tree-structured Parzen Estimator (TPE) [11] is a black-box optimization algorithm
based on tree-structured Parzen density estimators. TPE uses nonparametric Parzen
kernel density estimators tomodel the distribution of good and bad configurationsw.r.t.
a reference value. Due to the nature of kernel density estimators, TPE also supports
continuous and categorical spaces.

C.5 MISO

Mixed-Integer Surrogate Optimization (MISO) [47] is an algorithm that targets expen-
sive black-box functions with mixed-integer variables. It constructs a surrogate model
using the radial basis function to approximate the unknown function. MISO follows
a general procedure of surrogate-based optimization methods. Additionally, MISO
combines different sampling strategies (e.g., coordinate perturbation, random sam-
pling, expected improvement, target value, and surface minimum) and local search to
obtain high-accuracy solutions.

C.6 NOMAD

NOMAD [4, 5] is a C++ implementation of theMeshAdaptive Direct search (MADS).
It is designed to solve difficult black-box optimization problems. In particular, it can
handle nonsmooth, nonlinearly constrained, single or bi-objetive, and mixed variable
optimization problems. It handles the categorical variable using the extended poll,
which is defined as following [32]:
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The extended poll first calls the user-provided procedure defining the neigh-
borhood of categorical variables. The procedure returns a list of points that are
neighbors of the current best point (incumbent) such that categorical variables
are changed and the other variables may or may not be changed. These points
are called the extended poll points and their dimension may be different than the
current best point, for example when a categorical variable indicates the number
of continuous variables.

C.7 SMAC

Sequential Model-based Algorithm Configuration (SMAC) [27] is a surrogate-based
black-box optimization method originally proposed to tackle algorithm configuration
problems with continuous and categorical variables. Its model is based on random
forests [12], so it can handle categorical variables explicitly. SMAC uses empirical
mean and variance within a tree ensemble to identify uncertain search space regions
and optimizes the acquisition function by combing local and random search.

Funding The authors declare that no funds, grants, or other support were received during the preparation
of this manuscript.

Data Availibility Statement The PWAS package and the tested benchmarks are available on the GitHub
repository (https://GitHub.com/mjzhu-p/PWAS). The MNIST dataset analysed for benchmark XG-MNIST
in this study is publicly available and retrieved via sklearn.datasets.load_digits. The NASBench dataset
analysed for benchmark NAS-CIFAR10 is publicly available from the repository hosted on GitHub (https://
GitHub.com/google-research/nasbench) under Apache License 2.0 and can be downloaded via https://
storage.googleapis.com/nasbench/nasbench_only108.tfrecord. The MISO package is publicly available
from the repository hosted on GitHub (https://github.com/Julie2901/miso). The NOMAD4 package is pub-
licly available from the repository hosted on GitHub (https://github.com/bbopt/nomad) under LGPL-3.0
license.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose

References

1. Ackley, D.H.: The Model, pp. 29–70. Springer US (1987). https://doi.org/10.1007/978-1-4613-1997-
9_2

2. Audet, C., Hallé-Hannan, E., LeDigabel, S.: A generalmathematical framework for constrainedmixed-
variable blackbox optimization problems with meta and categorical variables. Oper. Res. Forum 4(12)
(2023). https://doi.org/10.1007/s43069-022-00180-6

3. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series in Operations
Research andFinancialEngineering. Springer International Publishing (2017). https://doi.org/10.1007/
978-3-319-68913-5

4. Audet, C., LeDigabel, S., RochonMontplaisir, V., Tribes, C.: TheNOMADproject. Software available
at https://www.gerad.ca/nomad

5. Audet, C., Le Digabel, S., Rochon Montplaisir, V., Tribes, C.: Algorithm 1027: NOMAD version 4:
nonlinear optimization with the MADS algorithm. ACM Trans. Math. Software 48(3), 35:1–35:22
(2022). https://doi.org/10.1145/3544489

123

https://GitHub.com/mjzhu-p/PWAS
https://GitHub.com/google-research/nasbench
https://GitHub.com/google-research/nasbench
https://storage.googleapis.com/nasbench/nasbench_only108.tfrecord
https://storage.googleapis.com/nasbench/nasbench_only108.tfrecord
https://github.com/Julie2901/miso
https://github.com/bbopt/nomad
https://doi.org/10.1007/978-1-4613-1997-9_2
https://doi.org/10.1007/978-1-4613-1997-9_2
https://doi.org/10.1007/s43069-022-00180-6
https://doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1007/978-3-319-68913-5
https://www.gerad.ca/nomad
https://doi.org/10.1145/3544489


Journal of Optimization Theory and Applications           (2025) 204:26 Page 37 of 39    26 

6. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem.
SIAM J. Comput. 32(1), 48–77 (2002). https://doi.org/10.1137/S0097539701398375

7. Beale, E.M.L.: On an iterative method for finding a local minimum of a function of more than one
variable. Tech. Rep. 25, Statistical Techniques Research Group, Section of Mathematical Statistics,
Department of Mathematics, Princeton University (1958)

8. Bemporad, A.: Global optimization via inverse distance weighting and radial basis functions. Comput.
Optim. Appl. 77, 571–595 (2020). https://doi.org/10.1007/s10589-020-00215-w

9. Bemporad, A.: A piecewise linear regression and classification algorithm with application to learning
andmodel predictive control of hybrid systems. IEEETrans.Autom.Control. 68(6), 3194–3209 (2022).
https://doi.org/10.1109/tac.2022.3183036

10. Bemporad, A., Piga, D.: Global optimization based on active preference learning with radial basis
functions. Mach. Learn. 110, 417–448 (2021). https://doi.org/10.1007/s10994-020-05935-y

11. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In:
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K.Weinberger (eds.) Advances in Neural Information
Processing Systems, vol. 24. Curran Associates, Inc. (2011)

12. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:
1010933404324

13. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on bayesian optimization of expensive cost func-
tions, with application to active user modeling and hierarchical reinforcement learning. arXiv (2010).
arXiv:1012.2599

14. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016).
https://doi.org/10.1145/2939672.2939785

15. Costa, A., Nannicini, G.: RBFopt: an open-source library for black-box optimization with costly
function evaluations. Math. Program. Comput. 10, 597–629 (2018). https://doi.org/10.1007/s12532-
018-0144-7

16. Cox, D.R.: Some procedures connccted with the logistic qualitative response curve. In: David, F.N.
(ed.) Research Papers in Statistics: Essays in Honour of J. Neyman’s 70th Birthday. Wiley (1966)

17. Dixon, L.C.W., Szegö, G.P.: The global optimization problem: an introduction. In: Dixon, L.C.W.,
Szegö, G.P. (eds.) Towards Global Optimiation 2, pp. 1–15. North-Holland, Amsterdam, Netherlands
(1978)

18. Forgione, M., Piga, D., Bemporad, A.: Efficient calibration of embedded mpc. IFAC-PapersOnLine
53(2), 5189–5194 (2020). https://doi.org/10.1016/j.ifacol.2020.12.1188

19. Getdata Graph Digitizer: Getdata graph digitizer: Version 2.26 (2013). http://getdata-graph-digitizer.
com/

20. Gopakumar, S., Gupta, S., Rana, S., Nguyen, V., Venkatesh, S.: Algorithmic assurance: An active
approach to algorithmic testing using bayesian optimisation. In: S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, R. Garnett (eds.) Advances in Neural Information Processing Systems,
vol. 31. Curran Associates, Inc. (2018)

21. GPyOpt: Gpyopt: a bayesian optimization framework in python. http://github.com/SheffieldML/
GPyOpt (2016)

22. Greenhill, S., Rana, S., Gupta, S., Vellanki, P., Venkatesh, S.: Bayesian optimization for adaptive
experimental design: a review. IEEEAccess8, 13937–13948 (2020). https://doi.org/10.1109/ACCESS.
2020.2966228

23. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://www.gurobi.com
24. Holmström, K.: An adaptive radial basis algorithm (ARBF) for expensive black-box global optimiza-

tion. J. Global Optim. 41, 447–464 (2008). https://doi.org/10.1007/s10898-007-9256-8
25. Hooker, J., Osorio, M.: Mixed logical-linear programming. Discrete Appl. Math. 96–97, 395–442

(1999). https://doi.org/10.1016/S0166-218X(99)00100-6
26. Horst, R., Pardalos, P.M., Van Thoai, N.: Introduction to Global Optimization. Springer Series in

Nonconvex Optimization and Its Applications, vol. 3. Springer (2000)
27. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm

configuration. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, pp. 507–523. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

28. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimisation problems.
Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013). https://doi.org/10.1504/IJMMNO.2013.
055204

123

https://doi.org/10.1137/S0097539701398375
https://doi.org/10.1007/s10589-020-00215-w
https://doi.org/10.1109/tac.2022.3183036
https://doi.org/10.1007/s10994-020-05935-y
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://arxiv.org/abs/1012.2599
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1016/j.ifacol.2020.12.1188
http://getdata-graph-digitizer.com/
http://getdata-graph-digitizer.com/
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
https://doi.org/10.1109/ACCESS.2020.2966228
https://doi.org/10.1109/ACCESS.2020.2966228
https://www.gurobi.com
https://doi.org/10.1007/s10898-007-9256-8
https://doi.org/10.1016/S0166-218X(99)00100-6
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1504/IJMMNO.2013.055204
https://doi.org/10.1504/IJMMNO.2013.055204


   26 Page 38 of 39 Journal of Optimization Theory and Applications           (2025) 204:26 

29. Jones, D.R., Schonlau,M.,Welch,W.J.: Efficient global optimization of expensive black-box functions.
J. Global Optim. 13(4), 455 (1998). https://doi.org/10.1023/A:1008306431147

30. Kim, S.H., Boukouvala, F.: Surrogate-based optimization for mixed-integer nonlinear problems. Com-
put. Aided Chem. Eng. 140, 106,847 (2020). https://doi.org/10.1016/j.compchemeng.2020.106847

31. Klein, A., Hutter, F.: Tabular benchmarks for joint architecture and hyperparameter optimization. arXiv
(2019). arXiv:1905.04970

32. LeDigabel, S., Tribes, C.,Montplaisir, V.R., Audet, C.: Nomad user guide version 3.9.1 (2019). https://
www.gerad.ca/software/nomad/Downloads/user_guide.pdf

33. Le Digabel, S., Wild, S.M.: A taxonomy of constraints in black-box simulation-based optimization.
Optim. Eng. 25(2), 1125–1143 (2024). https://doi.org/10.1007/s11081-023-09839-3

34. Le Thi, H.A., Vaz, A.I.F., Vicente, L.: Optimizing radial basis functions by DC programming and its
use in direct search for global derivative-free optimization. Trans. Oper. Res. 20, 190–214 (2012).
https://doi.org/10.1007/s11750-011-0193-9

35. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/
exdb/mnist

36. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inform. Theory 28(2), 129–137 (1982).
https://doi.org/10.1109/tit.1982.1056489

37. Luo,G.:A reviewof automatic selectionmethods formachine learning algorithms and hyper-parameter
values. Netw.Model. Anal. Health Inform.Bioinform. 5, 1–16 (2016). https://doi.org/10.1007/s13721-
016-0125-6

38. Makhorin, A.: GNU linear programming kit. referencemanual. version 5.0 (2020). https://www.chiark.
greenend.org.uk/doc/glpk-doc/glpk.pdf

39. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of
input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979).
https://doi.org/10.1080/00401706.2000.10485979

40. Mistry, M., Letsios, D., Krennrich, G., Lee, R.M., Misener, R.: Mixed-integer convex nonlinear opti-
mization with gradient-boosted trees embedded. INFORMS J. Comput. 33(3), 1103–1119 (2021).
https://doi.org/10.1287/ijoc.2020.0993

41. Mitchell, S., OSullivan,M., Dunning, I.: PuLP: a linear programming toolkit for python (2011). https://
optimization-online.org/wp-content/uploads/2011/09/3178.pdf
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