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Algorithmic assistance to traders and 
portfolio managers has become 
standard practice. This assistance  
 can be categorized as either 

algorithmic trading—that is, fully automated 
high- or low-frequency trading—or 
algorithmic screening—semi-automated high- 
or low-frequency trading with computer 
programs providing recommendations to 
the human trader. Both algorithmic trading 
and screening are fundamentally based on 
predictions of future developments. Predic-
tions may be made based on, for example, 
financial accountancy, technical chart anal-
ysis, global macroeconomic analysis, news, 
sentiments, and combinations thereof. There 
exists a plethora of literature on financial 
times-series forecasting. For methods based on 
support vector machines, see, for example, 
Tay and Cao (2001), Kim (2003), Van Gestel 
et al. (2001), and Chowdhury et al. (2018). 
In general, inf luential factors on trading deci-
sions are trading frequency, targeted time 
horizons, performance expectations, asset 
choices, foreign exchange rates, transaction 
costs, and risk management, such as invest-
ment diversification. Our study belongs to the 
class of technical chart analysis. The data on 
which the analysis is based are daily adjusted 
closing prices of various currencies and assets. 
Short selling, borrowing of money, and the 
trading of derivatives are not treated, even 
though the presented methodologies can be 
extended to include them.

The motivation and contribution of this 
article is threefold: 1) the development of a 
simple algorithm for a posteriori (historical) 
multivariate, multistage optimal trading 
under transaction costs and a diversif ica-
tion constraint, including the discussion of 
unconstrained trading frequency, a f ixed 
number of total admissible trades, and the 
waiting of a specific time period after every 
executed trade until the next trade; 2) the 
quantif ication of the effects of transaction 
costs on a posteriori optimal trading evalu-
ated on real-world data; and 3) the prepara-
tory labeling of financial time-series data for 
supervised machine learning.

This article is related most closely to 
the work of Boyarshinov and Magdon-
Ismail (2010), who discussed a dynamic 
programming solution to the optimal invest-
ment in either one stock or one bond under 
consideration of unconstrained trading 
frequency and a bound on the admissible 
number of trades. Additionally, a method for 
optimization of Sterling and Sharpe ratios 
is presented. No real-world data analysis is 
conducted, however. Additional differences 
include our discussion of a diversif ication 
constraint, the constraint of introducing 
a waiting period after every executed 
trade until the next trade, and a synchro-
nous trading constraint. Furthermore, we 
introduce a heuristic for each of the con-
strained optimal investment problems (with 
a bound on the admissible number of trades 
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and a waiting period constraint), thereby reducing the 
computational complexity of the methods while not 
compromising optimality. For an overview of measures 
to reduce risk by the introduction of various constraints 
(e.g., on the drawdown probability or short selling), 
see Lobo et al. (2007), who conducted one-step-ahead 
optimization, importantly, based on estimates of one-
step-ahead returns and covariance matrices of a set of 
risky assets. In contrast, this article is concerned about 
multistage optimization and historical optimal trading 
with hindsight. The mathematical approaches therefore 
differ significantly (convex optimization versus graph 
search). Optimal trading based on stochastic models, 
usually stochastic differential equations (SDEs) and the 
consideration of f ixed and/or proportional transac-
tion costs is treated in, for example, Altarovici et al. 
(2015), Lo et al. (2001), Morton and Pliska (1995), 
and Korn (1998). In contrast, this study is data based 
only, without consideration of any mathematical model 
explaining the generation of this data. For a discussion 
about the existence of trends in financial time series, 
see Fliess and Join (2009). For the general discussion 
of transaction cost analysis (TCA), see Gomes and Wael-
broeck (2010) and, further, Kissell (2006, 2008, 2013) 
for discussion of how TCA can be used by portfolio 
managers to improve performance and the development 
of a framework for pre-, intra- and post-trade analysis.

ONE-STAGE MODELING OF TRANSITION 
DYNAMICS

Notation

Let time index t ∈ Z+ be associated with the trading 
period Ts, such that trading instants are described as tTs, 
whereby Ts may typically be, for example, one week, 
one day, or less (for intraday trading). The system state 
zt at time t is defined as an eight-dimensional vector of 
mixed integer and real-valued quantities,

 z i k j m n w d c[ ],t t t t t
c

t t t t
0t=  (1)

where i ( )t N Nc a
I I I∈ = ∪  denotes investment iden-

tif ication numbers partitioned into Nc currencies 
and Na different risky noncurrency assets, such that 

N{0,1, , 1}N cc
I = … −  and N N N{ , , 1}N c c aa

I = … + − . 
For ease of reference, in the following, we lump currencies 

and noncurrency assets in the term asset and only dis-
tinguish when context-necessary. The integer number 
of conducted trades along an investment trajectory shall be 
denoted by kt ∈ Z, whereby an investment trajectory 
is here defined as a sequence of states zt, t = 0, 1, …, Nt, 
where Nt is the time horizon length. Let jt denote the 
investment identification number preceding it at time 
t - 1 (parent node), i.e., jt = it-1. We define m Rt

ct ∈ + as 
the real-valued and positive cash position (liquidity) held 
in the currency identified by Ict Nc

∈ . The number nt ∈ 
Z + indicates the number of noncurrency assets held. 
The current wealth, composed of cash position and 
noncurrency asset, is denoted by wt

0 and shall always be 
in monetary units EUR. Euro is considered as our refer-
ence currency and shall throughout this paper be identi-
fied by it = 0. The integer number of time samples since 
the last trade is defined by dt ∈ Z+. The (unitless) for-
eign exchange (FX) rate xt

c c,1 2 for two currencies Ic N1 c
∈  

and Ic N2 c
∈  is defined as xt

c c,1 2 such that m m xt
c

t
c

t
c c,2 1 1 2= . 

Thus, mt
c1 and mt

c2 have numerical values, however, with 
units identif ied by Ic N1 c

∈  and Ic N2 c
∈ , respectively. 

Noncurrency asset prices are denoted by pt
c a,t , whereby 

ct identifies the price unit and Ia Na
∈  the asset. We treat 

foreign exchange rates and asset prices as time-varying 
parameters obtained from data. In the sequel, various sets 
of admissible system states are defined. For brevity, we 
use a shorthand notation. For example, we define a set 
as Zt = {zt: it = 10}, implying Zt = {zt: it = 10, associated 
with zt according to Equation 1}.

Transaction Costs

We follow the notation of Lobo et al. (2007), 
modeling transaction costs as nonconvex with a 
f ixed charge for any nonzero trade (f ixed transac-
tion costs) and a linear term scaling with the quan-
tity traded (proportional transaction costs). Thus, 
for a foreign exchange at time t - 1, we model 
m m x (1 )t

c
t
c

t
c c c c c c

1 1
,

fx
,

fx
,t t t t t t t t1 1 1 1= − − β− −

− − − −ε , where c c
fx

,t t1−ε  and c c
fx

,t t1β −  
denote the linear term and the f ixed charge, respec-
tively. Similarly, transaction costs for transactions from 
currency to noncurrency assets, between assets of dif-
ferent currencies and the like, can be defined. We can 
further differentiate between linear terms for buying 
and selling. To fully introduce notation for transac-
tion costs ( , 0)i i

buy buy
t tβ ≥ε , we state the transaction from 

a cash position toward an asset investment and vice 
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versa. For a transaction of buying nt-1 of asset it-1 at 
time t - 1, we obtain

m m x

n p

(1 )

(1 ) .

t
c

t
c

t
c c c c

c c
t t

c i i i

1 1
,

fx
,

fx
,

1 1
,

buy buy

t t t t t t

t t t t t t

1 1 1

1

= −

− β − + − β
− −

− −

− − −

−

ε

ε

For a transaction of selling nt-1 of asset it-1 and trans-
forming to currency ct, we obtain

m m n p

x

( (1

) (1 ) .

t
c

t
c

t t
c i i

i
t
c c c c c c

1 1 1
,

sell

sell 1
,

fx
,

fx
,

t t t t t

t t t t t t t

1 1 1 1

1 1 1 1

= + −

− β − − β
− − −

−

− − − −

− − − −

ε

ε

Finally, note that transaction costs may vary 
dependent on the assets involved.

Transition Dynamics

Given our assumption of being able to invest in 
currencies and noncurrency assets, there are six gen-
eral types of transitions dependent on the investment 
at time t - 1. For an introduction to Markov decision 
processes (MDP), see Puterman (2005). We initialize 
z m m[0 0 0 0 0 0]0 0

0
0
0= . Then, the transit ion 

dynamics are

 z

z i i i z i

z i i i z i

z i i z i

z i i i z i

z i i z i

z i i i z i

, if { : , with },

, if { : \{ }, with },

, if { : , with },

, if { : , with },

, if { : , with },

, if { : \{ }, with },

t

t t t t t t N

t t t N t t t N

t t t N t t N

t t t t t t N

t t t N t t N

t t t N t t t N

(1)
1 1 1

(2)
1 1 1

(3)
1 1

(4)
1 1 1

(5)
1 1

(6)
1 1 1

c

c c

a c

a

c a

a a

I

I I

I I

I

I I

I I

=

= ∈

∈ ∈

∈ ∈

= ∈

∈ ∈

∈ ∈


















− − −

− − −

− −

− − −

− −

− − −
  

  

(2)

where z j, 1, , 6t
j( ) ∀ = …  is defined next, and our control 

variable ut-1 is the targeted investment identified by vari-
able it (i.e., ut-1 = it). We have
 

z i k j m w d c

z i k j m m x d i

z i k j m n w d c i

[ 0 ],

[ 1 ( ) 0 ],

[ 1 ( )],

t t t t t
c

t t t

t t t t t
c

t
c

t
c

t t

t t t t t
c

t t t t

(1)
1 1 1 1 1

0
1

(2)
1 1

,0

(3)
1 1

0

t

t t t

t

1




  



=

= + ϕ

= +

− − − − − −

− −

− −

−

with c(it) denoting the currency of asset it and with

d
d d D

m m x

1, if 1,

0 otherwise,

( ) (1 ) ,

t
t t

t
c

t
c

t
c c c c c c

1 1

1 1
,

fx
,

fx
,t t t t t t t t1 1 1 1

=
+ < −






ϕ = − − β

− −

− −
− − − −



ε

and where variable D determines an overf low in dt and 
will become relevant when later discussing the con-
straint of waiting a specific amount of time until the next 
admissible trade. Furthermore, mt

ct
  and ñt are obtained 

from solving

 n n
m x m

p
n

max

:
(1 )

(1 )
, Z ,

m

t t
t
c

t
c c c c c c i

t
c

t
c i i t

0

1 1
,

fx
,

fx
,

buy

1
,

buy

t
ct

t t t t t t t t t

t t t

1 1 1 1

=
− −β −β −

+
∈













≥

− −

−
+

− − − −ε

ε
  

  
(3)

with mt
ct
  denoting the optimizer and ñt the corresponding 

optimal objective function value. Thus, given mt
c

1
t 1
−
− , we 

find the largest possible positive integer number of assets 
we can purchase under the consideration of transaction 
costs. The (small) cash residual is then m 0t

ct
 ≥ . There-

fore, for the portfolio wealth at time t in euros (EUR), 
we obtain w m n p x( )t t

c
t t

c i
t
c0 , ,0t t t t

  = + . Furthermore,

 

[ ],

[ 1 ( ) 0 ],

[ 1 ( )],

(4)
1 1 1 1 1 1

0
1

(5)
1 1

,0

(6)
1 1

0

1






=

= + φ

= +

− − − − − − −

− −

− −

−z i k j m n w d c

z i k j m m x d i

z i k j m n w d c i

t t t t t
c

t t t t

t t t t t
c

t
c

t
c

t t

t t t t t
c

t t t t

t

t t t

t

with

m m n p

x

( ) ( (1 )

) (1 ) ,

t
c

t
c

t t
c i i

i
t
c c c c c c

1 1 1
,

sell

sell 1
,

fx
,

fx
,

t t t t t

t t t t t t t

1 1 1 1

1 1 1 1

φ = + −

− β − − β
− − −

−

− − − −

− − − −

ε

ε

and where mt
ct and nt are obtained from solving

 n n
m m

p
nmax :

( )

(1 )
, Z ,

m
t t

t
c i

t
c

t
c i i t

0

buy

1
,

buyt
ct

t t t

t t t
=

φ − β −
+

∈










≥
−

+ε
 (4)

with mt
ct denoting the optimizer and nt the corre-

sponding optimal objective function value. Then, 
for the portfolio wealth at time t in EUR, we obtain 
w m n p x( )t t

c
t t

c i
t
c0 , ,0t t t t= + .
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The solution to Equations 3 and 4 can be easily 
computed by setting mt

ct initially zero, then rounding 
the corresponding real-valued nt to the largest smaller 
integer, before then computing the cash residuals, 
respectively. The methodology of preserving a cash 
residual is implemented in order to enforce an integer-
valued number of shares in assets.

Remarks about Optimality and Transition 
Dynamics Modeling

An investment trajectory is defined as a sequence 
of states zt, t = 0, 1, …, Nt. We wish to find an optimal 
(in the sense of wealth-maximizing) investment trajec-
tory. Several remarks about the previously discussed 
problem formulation and transition dynamics modeling 
can be made.

First, suppose all of the initial money m0
0 is fully 

allocated to the optimal investment trajectory, then 
there is no diversif ication present and, defining the 
final return as ( )/0

0
0

0
0= −r w m mN Nt t
, the optimal invest-

ment trajectory never returns less than rNt
0%< . This is 

because one feasible investment trajectory is to remain 
invested in the initial reference currency (EUR) for all 
t = 0, 1, …, Nt. This can be taken into account as a heu-
ristic for transition graph generation.

Second, transition dynamics modeling naturally 
results in cash residuals when investing in noncurrency 
assets. According to our modeling, the cash residuals 
are enforced to be in the currency of the purchased 
asset. This may be suboptimal when the noncurrency 
asset in which we invest is extremely expensive (e.g., 
worth thousands of euros), because the resulting cash 
residuals may then be very large. Then, in general it may 
be worthwhile to invest the cash residual into another 
asset that is more profitable than the “enforced” residual 
currency. Two comments are made. On the one hand, 
assets with such prices are rare in practice. On the other 
hand and, more importantly, in order to admit free 
investing of cash residuals, an extension of the state space 
(beyond eight variables) would be required such that any 
cash residual could be invested in any of the Nc + Na - 1 
assets. Then, Nc + Na - 1 additional branches would need 
to be added to the transition graph, which in the most 
general case would also need further branching at subse-
quent stages. This considerably complicates the tracking 
of states and is therefore not applied in the following.

Third, transition dynamics 2 indicate an all-or-
nothing strategy. At every time t, the investment at 
that time is maintained or, alternatively, reallocated to 
exactly one—the most profitable—currency or asset, 
whereby cash residuals are accounted for as described 
in the previous paragraph.

Fourth, let us brief ly discuss the effect of absence 
of transaction costs on optimal trading frequency. For 
simplicity, let us consider the case of being able to invest 
in an asset of variable value (such as a stock) and holding 
cash in the currency in which the risky asset is traded. 
Relevant discrete-time dynamics can then be written as

 w m n p m m n p, and ,t t t t t t t t1 1= + = −− −  (5)

with mt the cash position, nt the number of shares in the 
risky asset, pt the price of the asset, and wt the wealth at 
time t. At every time t, a decision about a reallocation of 
investments is made. For a final time period t = 0, 1, ..., Nt, 
we wish to maximize 0−w wNt

, which can be expanded as

 .0
1

1∑− = −
=

−w w w wN t
t

N

tt

t

 (6)

To maximize Equation 6, we thus have to maximize 
the increments. Combining it with Equation 5, we write 
wt – wt-1 = nt(pt - pt-1) – nt-1pt-1, which therefore motivates 
the following optimal trading strategy, implemented at 
every t - 1. If pt > pt-1, maximize nt and set nt-1 = 0 (i.e., 
allocate maximal resources toward the asset), and if pt 

≤ pt-1, set nt = 0 and minimize nt-1 (i.e., sell the asset if 
held at t - 1 and allocate maximal resources toward the 
cash position). We profit on a price increase of the asset, 
and maintain our wealth on a price decrease.1 Thus, it 
is optimal to trade upon any change of sign of Dpt = 
pt - pt-1. This is visualized in Exhibit 1 and summarized 
in the following remark.

Remark 1. In absence of transaction costs, trading 
upon any change in sign of Dpt = pt - pt-1 is the optimal 
trading policy.

Remark 1 implies that in the absence of trans-
action costs, high-frequency trading (Aldridge 2013; 
Bowen et al. 2010) is always the optimal trading 
policy. Furthermore, note that Dwt = wt - wt-1 ≥ 0, ∀t = 
1, 2, …, Nt. Thus, in the absence of transaction costs, at 
every time step, there is at least no incremental decrease 

1 We here assume a long-only strategy. By the use of deriva-
tive contracts, we can increase wealth on a price decrease as well.
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in wealth when employing the optimal trading policy. 
Naturally, when including nonzero transaction costs, 
this is in general not the case anymore, and we may 
(at least temporarily) have Dwt < 0. In addition, the 
optimal trading frequency will be nontrivially affected. 
Quantitative examples for optimal trading frequencies 
under transaction costs are given later, in the Numerical 
Examples section.

Fifth, motivated by the previous paragraph and 
under the consideration of transaction costs, a valid ques-
tion to address is when to sell and rebuy a noncurrency 
asset given a long-term trend but temporary dip in price. 
Selling and rebuying may optimize profit. The typical 
minimal decrease in price required for the strategy of 
selling and rebuying being optimal is approximately 
twice the proportional transaction cost level—“twice” 
because of selling and rebuying; “approximately” because 
of cash residuals due to the integer-valued number of 
assets and fixed transaction costs that need to be taken 
into account.

MULTISTAGE OPTIMIZATION WITHOUT 
DIVERSIFICATION CONSTRAINTS

Multistage Optimization

Multistage transition dynamics can be modeled 
in the form of a transition graph. We therefore assign 
a set Zt of admissible states to every time stage t. 
For investment trajectory optimization without a 
diversif ication constraint, we employ one transition 
graph. For investment trajectory optimization with a 
diversification constraint, multiple transition graphs and 

, 0,1, , 1( ) ∀ = … −q Qt
qZ , are defined and discussed in the 

next section. In contrast, for the remainder of this section, 

we dismiss superscript “(q)” and focus on optimization 
without a diversification constraint. We define the initial 
set { : [0 0 0 0 0 0]}0 0 0 0

0
0
0Z = =z z m m . In the fol-

lowing subsections, three constraints are discussed that 
affect transition graph generation.

Case 1: Unconstrained Trading Frequency

Remark 2. Suppose that following a particular 
investment trajectory, at time t an investment state zt is 
reached with a particular it, 

0
τw , and jt = it-1. Suppose fur-

ther that another investment trajectory exists resulting in 
the same asset (i.e.,  =τ τi i ), but in contrast with 0 0

 >τ τw w  
and  ≠τ τj j . Then, the former investment trajectory can 
be dismissed from being a possible candidate segment for 
the optimal investment trajectory. This is because any 
trajectory continuing the latter investment trajectory 
will always outperform a continuation of the former 
investment trajectory for all t > t.

Remark 2 motivates a simple but efficient transition 
graph generation: First, branch from every state zt-1 ∈ 
Zt-1 to all possible states zt at time t according transition 
dynamics 2, whereby we summarize the set of states at 
time t - 1 from which zt can be reached as 1J −t

zt ; second, 
select the optimal transitions and thus determine Zt 
according to

 : max{ }, ,0

1

Z I
J

= ∀ ∈










∈ −

z w it t t t
jt t

zt
 (7)

recalling the definition jt = it-1 and thereby selecting 
the solutions with the highest value 0wt , ∀it ∈ I = 
{0, 1, … Nc + Na-1}. The resulting transition graph holds 
a total of Nz(t) = 1 + (Nc + Na)t states up to time t ≥ 0. For 
a time horizon Nt, the optimal investment strategy, here 
denoted by superscript “*”, can then be reconstructed 
by proceeding backward as

 
: max{ }, ,

: , , 1, , 1.

0

1 1 1

I

{ }

= = ∈







= = ∀ = − …

∗ ∗

−
∗

− −
∗

z z i w i

z z i j t N N

N N N N N

t t t t t t

t t t iNt
t t

 (8)

The resulting investment trajectory is optimal 
because by construction of the transition graph as outlined, 
starting from z0, exactly one wealth maximizing trajec-
tory exists to every investment it = 0, 1, …, Nc + Na - 1 

e x h i b i t  1
The Markov Decision Process when Optimally 
Trading Only Cash and an Asset in the Absence  
of Transaction Costs

Note: The optimal trading strategy is to trade upon any change of Dpt – 
sign, that is, even if this is minimally small (Dpt → 0).
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for every time t = 0, 1, …, Nt. By iterating backward, 
the optimal investment decisions at every time stage 
are determined.

Case 2: Bound on the Admissible  
Number of Trades

We constrain the investment trajectory to include 
at most K ∈ Z+ trades during t = 0, 1, …, Nt, whereby 
we define a trade as any reallocation of an investment 
resulting in a change of the asset identification number it. 
A transition according it = it-1 is consequently no trade. 
The set of admissible states is generated as

 : max{ }, and unique, and .0

1

Z I
J{ }= ∀ < ∀ ∈

∈ −

z w k K it t
j

t t t
t t

zt

  
 

 (9)

Consequently, the resulting transition graph holds 
a total of ( ) 1 ( )min ( , )1= + Σ +=N t N N l Kz t

t
c a  states. The 

reconstruction of optimal investment decisions is similar 
to Equation 8.

Note that the total number of states, Nz(t), quickly 
reaches large numbers. We therefore introduce a heu-
ristic to reduce Nz(t) while not compromising optimality 
of the solution.

Proposition 1. While not compromising the finding of 
an optimal investment trajectory, the set of admissible states Zt 
of Equation 9 can be shrunken to Z t according to the following 
heuristic:

1. Initialize Z Z=t t.
2. For every it ∈ I such that the corresponding zt ∈ Zt 

of Equation 9,
3. Compute ( ) : ( ) max{ }opt 0,opt 0{= =k i k w i wt t t t t t  s.t. 

corresponding zt ∈ Zt of Equation 9}.
4. Shrink \{ : ( )}opt

 Z Z= z k >k it t t t t t .
5. End For

Proof. W.l.o.g., suppose that for a given it = i ∈ 
I, we have determined ( )optk it t . Let the associated state 
vector be denoted by ( )optz it t . Then, we can discard all zt 
with it = i and ( )opt>k k it t t , because ( ) , 00,opt 0≥ ∀τ ≥+τ +τw i wt t t , 
and the admissible set for state ( )optz it t  is thus larger by at 
least the option of one additional trade, in comparison 
with the admissible set corresponding to all zt ∈ Zt of 
Equation 9 with it = i and ( )opt>k k it t t .

Note that the total number of states, Nz(Nt), cannot 
be predicted precisely as before. It is now data dependent 

instead. Quantitative implications are reported later in 
the Numerical Examples section.

Case 3: Waiting Period after Every Trade 
until the Next Trade

We constrain the investment trajectory to waiting 
of at least a specific time period D after every executed 
trade until the next trade. The set of admissible states is 
consequently generated as

: max{ }, and unique,and .0

1

Z I
J{ }= ∀ < ∀ ∈

∈ −

z w d D it t
j

t t t
t t

zt
  

  (10)

The resulting transition graph holds a total of
( ) 1 ( 1)min( , )1= + Σ + −=N t N N l Dz t

t
c a + 1 + m i n ( m a x 

(0, l - D), D - 1) states. The reconstruction of optimal 
investment decisions is similar to Equation 8.

Similarly to the previous case, the total number of 
states, Nz(t), quickly reaches large numbers. We there-
fore also introduce a heuristic to reduce Nz(t) while not 
compromising optimality of the solution.

Proposition 2. While not compromising the finding 
of an optimal investment trajectory, the set of admissible states 
Zt of (10) can be shrunken to Z t according to the following 
heuristic:

1. Initialize .Z Z=t t

2. For every it ∈ I such that the corresponding zt ∈ Zt 

of Equation 10,
3. Compute ( ) : ( ) : max{ }opt 0,opt 0{= =d i d w i wt t t t t t  s.t. 

corresponding zt ∈ Zt of Equation 10}.
4. Shrink \ : 0 < < ( ) .optZ Z { }= z d d it t t t t t

5. End For

Proof. W.l.o.g., suppose for a given it = i ∈ I, we 
have determined ( )optd it t . Let the associated state vector 
be denoted by ( )optz it t . Then, we can discard all zt with 
it = i and 0 < < ( )optd d it t t , because ( ) ,0,opt 0≥+τ +τw i wt t t  ∀t ≥ 
0, and the admissible set for state ( )optz it t  is larger by 
being closer to a potential next trade by at least one 
trading sampling time, in comparison to the admissible 
set corresponding to all zt ∈ Zt of (10) with it = i and 
0 < < ( )optd d it t t .

Similar to the previous case, the total number of 
states, Nz(Nt), cannot be predicted precisely because it is 
data dependent. Quantitative results are reported in the 
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Numerical Examples section. This heuristic significantly 
reduces computational complexity in practice.

MULTISTAGE TRANSITION  
DYNAMICS OPTIMIZATION WITH  
A DIVERSIFICATION CONSTRAINT

In portfolio optimization, the introduction of 
diversification constraints is regarded as a measure to 
reduce drawdown risk. For our purpose of analysis of his-
torical optimal trading, we first divide the initial wealth 
m0 into Q parts of equal proportion. Then, we impose 
constraints on each of the corresponding Q investment 
trajectories. In the unconstrained case, all Q trajectories 
would coincide. In the constrained case, we distinguish 
between 1) constraints between multiple investment tra-
jectories—diversification at only the initial time, diver-
sification permitted at all times, asynchronous trading 
and synchronous trading—and 2) constraints along any 
specific investment trajectory— unconstrained trading 
frequency, at most K trades along the investment trajec-
tory, and the enforcement of a waiting period after each 
executed trade.

We define a diversification constraint at a specific 
time t such that each of the states of the Q trajectories, 

( )Z∈zt t
q , ∀q = 0, …, Q - 1, must be invested differently. 

Thus, each asset identification number ( )it
q  must be dif-

ferent, ∀t = 0, 1, …, Nt, ∀q = 0, 1, …, Q - 1.
We def ine the sets of admissible states ( )Zt

q , 
∀t = 0, 1, …, Nt, and ∀q = 0, 1, …, Q - 1, sequentially 
and ordered according to optimality. Thus, (1)Zt , 
∀t = 0, 1, …, Nt is constructed accounting only for the 
optimal investment trajectory associated with (0)Zt  (i.e., 
the set (0),Z ∗

t , ∀t = 0, 1, …, Nt), whereas ( )Zt
q  is constructed 

accounting for all of the optimal investment trajectories 
associated with , , ,(0), (1), ( 1),Z Z Z…∗ ∗ − ∗

t t t
q . Here, ( ),Z ∗

t
q , ∀q = 

0, 1, …, Q - 1 denotes the set of states at each time t 
that result from the reconstruction of optimal invest-
ment decisions along the optimal investment trajectory 
according to Equation 8. Thus, our methodology aims at 
being maximally invested in the investment trajectories 
ordered according to optimality.

Q Trajectories, Diversification for a Subset  
of Times and Asynchronous Trading

We define the subset of trading sampling times as 
T  (q) ⊆ {0, 1, …, Nt}, ∀q = 0, 1, …, Q - 1. For enforcement 

of diversification in form of Q trajectories, diversifica-
tion for any subset of trading times and asynchronous 
trading, the sets of admissible states are initialized as

 

{ : [0 0 0 0 0 0]},

0, 1, , 1.

0
( )

0 0 0
0,

0
0,= =

∀ = … −

Z z z m m

q Q

q q q

  
  

(11)

For unconstrained trading frequency along an 
investment trajectory and t > 0, the sets of admissible 
states are thus generated according to

: max{ }, if , or ...

\ : , if ,

( ) 0 ( )

( ), ( ), ( ),

0

1 ( )

1
{

}( ){ }

= ∀ ∈ ∉

∀ ∈ ∪ = ∈ ∈

∈

∗ ∗ ∗
=

−

−

z w i t

i i i i z t

t
q

t
j

t t
q

t t t t
r

t
r

t
r

r

q q

t t
zt

Z I T

I Z T

J

  
  

(12)

with q = 0, 1, …, Q - 1, and where ( ), ( )Z∈∗zt
r

t
r  denotes 

the optimal state at time t associated with investment 
trajectory r.

For the case of at most K admissible trades along 
any investment trajectory and t > 0, the sets of admissible 
states are generated according to

 

: max{ }, and unique, and

if , or ...
and unique, and

\ : , if ,

( ) 0

( )

( ), ( ), ( ),

0

1 ( )

1
{

}( ){ }

= ∀ <

∀ ∈ ∉
∀ <
∀ ∈ ∪ = ∈ ∈

∈

∗ ∗ ∗
=

−

−

Z z w k K

i t
k K

i i i i z t

t
q

t
j

t t

t
q

t

t t t t
r

t
r

t
r

r

q q

t t
zt

I T

I Z T

J

  
  

(13)

with q = 0, 1, …, Q - 1.
For the case of enforcing a waiting period after 

each executed trade along any investment trajectory 
and t > 0, the sets of admissible states are generated 
according to

 

: max{ }, and unique, and

if , or ...
and unique, and

\ : , if ,

( ) 0

( )

( ), ( ), ( ),

0

1 ( )

1
{

}( ){ }

= ∀ <

∀ ∈ ∉
∀ <

∀ ∈ ∪ = ∈ ∈

∈

∗ ∗ ∗
=

−

−

z w d D

i t
d D

i i i i z t

t
q

t
j

t t

t
q

t

t t t t
r

t
r

t
r

r

q q

t t
zt

Z

I T

I Z T

J

  
 

 
(14)

with q = 0, 1, …, Q - 1.
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Q Trajectories, Diversification for All Times 
and Synchronous Trading

Let us define a subset of trading sampling times as 
T ⊆ {0, 1, …, Nt}. This subset may, for example, indicate 
the sampling times at which trades were executed along 
the optimal investment trajectory associated with (0),Z ∗

t :

{ : , , 1, , }.(0), (0), (0), (0),T Z= ≠ ∈ ∀ = …∗ ∗ ∗ ∗t i j z t Nt t t t t

The set of a admissible states is initialized as in 
Equation 11. Then, for an unconstrained trading fre-
quency along an investment trajectory and t > 0, the sets 
of admissible states are generated according to

 

: if , or

s.t. max{ },

\ : , if ,

( )
1

0

( ), ( ), ( ),

0

1

1

}( ){ }

{= = ∉ …

∀ ∈ ∪ = ∈ ∈

−

∈

∗ ∗ ∗
=

−

−

z z z t

z w

i i i i z t

t
q

t t t

t
j

t

t t t t
r

t
r

t
r

r

q

t t
zt

Z T

I Z T

J

  
  

(15)

with q = 0, 1, …, Q - 1.
The case of at most K admissible trades along any 

investment trajectory as well as the case of enforcing 
a waiting period after each executed trade along any 
investment trajectory can then be defined analogously.

Remarks and Relevant Quantities  
for Interpretation

Note that the presented framework can also be 
extended to analyze alternative optimization criteria, 
such as determining a worst-case investment trajectory 
(pessimization) or the tracking of a target return reference 
trajectory (index tracking).

In order to interpret quantitative results in the fol-
lowing section, we define the total return (measured in 

percent) as 100 ,tot,( )
0

0
0

0
0 Q=
−

∀ ∈r
w w

w
qN

q N

t

t . Similarly, we 

define the return at time t as ,tot,( ) Q∀ ∈r qt
q . We further 

report the total number of conducted trades as totKNt
. 

The minimal time span between any two trades within 
time frame t ∈ Nt = {0, 1, …, Nt} shall be denoted by 

minDNt
. In addition, the average, minimal, and maximal 

percentage gain per conducted noncurrency asset trade is 
of interest. Stating the quantities with respect to our ref-
erence currency (EUR), we therefore first define the set

100 :with s.t. 1, , , ,

with s.t. , , , ,

and , , ,
,

( )
0 0

0 1

1

( ),

∆ =
−

τ τ = − ∈ ≠ =






η η = ∈ = ≠

τ > η ∈ ∀ ∈ ∀ ∈







τ η

η
−

+

∗

w w

w
t i i i i i

t i i i i i

z t q

q
N t t

N t t

t t
q

t

a

a

G I

I

Z N Q

whereby i  identifies an asset of interest. The average, 
minimum, and maximum shall then be denoted by 
avg(DG (q)), min(DG (q)) and max(DG (q)), respectively. The 
associated trading times are summarized in

: with s.t. 1, , , ,

with s.t. , , , ,

and , , ,
,

( )
1

1

( ),

t i i i i i

t i i i i i

z t q

q
N t t

N t t

t t
q

t

a

a

{∆ = τ − η τ τ = − ∈ ≠ =

η η = ∈ = ≠

τ > η ∈ ∀ ∈ ∀ ∈







−

+

∗

T I

I

Z N Q

with corresponding avg(DT (q)), min(DT (q)), and max(DT (q)) 
defined accordingly.

Then, we can partition quantities of interest into 
two groups: 1) overall performance measures and 2) 
quantities associated with noncurrency asset holdings 
along an investment-optimal q trajectory. We thus 
compactly summarize results in evaluation vectors and 
matrices:

 , ,( ) tot,( ) tot,( ) min,( ) Q=   ∀ ∈e r K D qq
N

q
N

q
N

q

t t t
 (16)

avg( ) min( )

avg( ) min( )

max( )

max( )
, .( )

( ) ( )

( ) ( )

( )

( )

G G

T T

G

T
Q=

∆ ∆

∆ ∆






∆

∆




 ∀ ∈E qq

q q

q q

q

q

 
  (17)

NUMERICAL EXAMPLES

To quantitatively evaluate results, three numer-
ical examples are reported. For all examples, a time 
horizon of one year is chosen. The sampling time is 
selected as one day. Adjusted closing prices of both for-
eign exchange rates and stock indexes are retrieved from 
Yahoo! Finance (finance.yahoo.com). As a preprocessing 
step, all noncurrency assets are normalized to value 100 
in their corresponding currency at time t = 0.

The first example treats optimal trading of euros, 
U.S. dollars, and the Nasdaq-100 Index (see Exhibit 2). 
This scenario is selected mainly to analyze currency 
effects. No diversification constraint is enforced, such 
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that we have Q = 1. The second example treats optimal 
trading of 16 different currencies and 15 different non-
currency assets. A diversification constraint is employed 
with Q = 3. The third example compares the results for 
an exemplary downtrending and an uptrending stock.

This section illustrates the effects of 1) different 
transaction cost levels and 2) various constraints on a 
posteriori optimal trading performance.

Example 1: EUR, USD, and Nasdaq-100

The results for numerical Example 1 are summa-
rized in Exhibit 3. Different levels of transaction costs 
with variable proportional cost but constant fixed cost 
are considered. Exhibit 3 reports the evaluation quanti-
ties e (0) and E (0) for the different trading strategies. For 
the buy-and-hold strategy, only e (0) is reported. We 
assume proportional costs (in percentages) to be the same 
for buying and selling for both foreign exchange and 
asset trading (i.e., ε = εbuy = ε sell). For ε = 0, we also set 
β = 0. For all other cases, we set β = 50. Total returns 
( )tot,( )rN

q

t
 are shown in bold font for emphasis. The time 

span of interest is August 5, 2015, to August 3, 2016, 
and comprises 251 potential trading days.

Several observations can be made with respect to the 
results of Exhibit 3. First, even though only two curren-
cies, EUR and USD (i.e., {0,1}I∈ =i Nc

), and one non-
currency asset (i.e., {2}I∈ =i Na

), are traded long only, 
remarkable profits can be earned when optimally trading 
a posteriori. Even in case of (high) transaction costs with a 
proportional rate of 2%, the profits significantly outper-
form a one-year buy-and-hold strategy. Second, the inf lu-
ence of different levels of transaction costs is impressive. 
This holds specifically for unconstrained trading with 
respect to returns, optimal trading frequency, and per-
centage gains (average, minimum, and maximum) upon 

which the noncurrency asset is traded. Third, while the 
total return drops with increasing transaction cost levels, 
the remaining evaluation quantities remain approximately 
constant for the K trades strategy (here K = 12, i.e., 12 
trades per year or one per month). Fourth, the results 
associated with the percentage gains upon which the non-
currency asset is traded were unexpected. Intuitively, they 
were thought to be higher. The same holds for optimal 
time periods between any two trades. Results from 
Example 1 encourage frequent trading. For example, for 
the case with a waiting constraint, trading is encouraged 
upon percentage gains of on average slightly less than 10% 
for all four levels of transaction costs.

Exhibit 4 further visualizes results. In order to 
compactly display multiple foreign exchange rates, we 
normalize w.r.t. the initial value at t = 0; see the sub-
plot with label norm∆xt . For reference currency EUR, we 
set 0norm∆ =xt , ∀t = 0, 1, …, Nt. Analogously, we nor-
malize noncurrency prices and additionally take cur-
rency effects into account by first converting prices to 
currency EUR; see the subplot with label ,EUR

norm∆pt . For a 
specific optimal investment trajectory, at every time t, 
an investment in exactly one currency or noncurrency 
asset is taken. Being invested in a noncurrency asset is 
indicated by the dark circles in Exhibit 4. Because non-
currency assets are associated with a specific currency, 
we also label them accordingly with dark circles. In con-
trast, an explicit investment in a currency is emphasized 
by white circles.

It is striking that despite an absence of clear trends 
in both the EUR/USD foreign exchange rate and the 
Nasdaq-100 stock index, significant profits can be made 
when optimally trading—even when employing a long-
only strategy. The largest increases in return rates in 
currency EUR are achieved when the asset is increasing 
in value while the foreign exchange rate with reference 
euro is decreasing. Investments in USD are optimal when 
the EUR/USD foreign exchange rate is trending down 
and the Nasdaq-100 is decreasing likewise. Investments 
in EUR are in general optimal when the EUR/USD 
foreign exchange rate is trending up and the Nasdaq-100 
is trending down.

Example 2: Global Investing and Including  
a Diversification Constraint

We consider 16 currencies and 15 noncurrency 
assets. Real-world data are obtained according to 

e x h i b i t  2
Example 1—Currencies and Assets under 
Consideration

Note: The currency in which asset i is traded is denoted by c(i);  
the reference currency of the Nasdaq-100 is U.S. dollars.
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e x h i b i t  3
Summary of Quantitative Results of Example 1

e x h i b i t  4
Example 1—the Unconstrained Trading Case in the Absence of Any Transaction Costs

Note: Total returns ( )tot,( )rN
q

t
 are shown in bold font for emphasis.
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Exhibit 5. We consider the time horizon August 5, 
2015, to August 3, 2016. Because of different trading 
holidays in the different countries, a total of 199 trading 
days could be determined common to all assets. We 
diversify in three assets at every trading time t; that is, 
we set Q = 3.

We distinguish between two cases: asynchronous 
and synchronous trading. Exhibits 6 and 7 summarize the 
quantitative results for asynchronous and synchronous 
trading, respectively. The results for all Q trajectories are 
shown, and the Summary rows report the sum of returns 
of all Q trajectories. Results are further visualized in 
Exhibit 8. The black-dashed horizontal line in the cor-
responding top subplots denotes Nc = 16 to distinguish 
currency and noncurrency asset investments.

For performance comparison, we consider a buy-
and-hold strategy, whereby an asset is bought initially 
and then held. The most performant noncurrency assets 
from Exhibit 5 for the time frame of interest were, in 
order, the IBOVESPA (BRA), the Dow Jones Russia 
GDR (RUS) and the S&P 500 (USA). Associated 
returns are reported in Exhibits 6 and 7, where we attri-
bute the IBOVESPA to q = 0 and the other two assets 
to q = 1 and q = 2.

Interpretation of results is in line with earlier 
discussion. In particular, the inf luence of transaction 
costs and the encouragement of frequent trading upon 
relatively small percentage gains are recurrent.

A remark about computational complexity needs 
to be made. The total number of states, Nz(Nt), without 
consideration of any heuristics is 6139, 71611, and 59905 
for the three cases (respectively, unconstrained, con-
straint of at most K = 12 trades, and constraint of waiting 
at least D = 10 days between any two trades). These 
numbers can be computed according to the formulas 
stated earlier. Then, applying the previously discussed 
heuristics to the given Yahoo! Finance data trajectories, 
we measured (to give one example) Nz(Nt) = 65,238 
and Nz(Nt) = 33,161 for the latter two cases, q = 0 and 
ε  = 0. Similar results are obtained for the other transac-
tion cost levels and the other Q trajectories, resulting 
in overall computation times (for all q = 0, 1, 2) in the 
tens of minutes. In contrast, for the unconstrained case, 
overall computation times for the generation of all Q = 3 
transition graphs were, on average, only slightly more 
than 10 seconds, thereby making the unconstrained 
case much more suitable for fast analysis of sets of 
multiple assets and foreign exchange rate trajectories. 

Additionally, the trajectories for q = 0 are identical for 
both time-asynchronous and time-synchronous trading. 
However, for the remaining investment trajectories with 
q > 0, the number of states is much lower for time-
synchronous trading in comparison to the asynchro-
nous case. For time-synchronous trading, Q = 3 and 
a bound on the total admissible number of trades, the 
total number of states is 63,803 for q = 0, but 39,713 and 
23,549 for q = 1 and q = 2, respectively. All numerical 
experiments throughout this article were conducted on 

e x h i b i t  5
Example 2—Identification of 16 Currencies  
and 15 Assets

Notes: Each currency is associated with a foreign exchange rate with respect 
to EUR. The currency in which an asset i is traded is denoted by c(i).
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e x h i b i t  6
Summary of Quantitative Results of Example 2 for the First Case: Time-Asynchronous Trading  
with Diversification for All Times

Note: Total returns ( )tot,( )rN
q

t
 are shown in bold font for emphasis.
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e x h i b i t  7
Summary of Quantitative Results of Example 2 for the Second Case: Time-Synchronized Trading with 
Diversification for All Times

Note: Total returns ( )tot,( )rN
q

t
 are shown in bold font for emphasis.
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e x h i b i t  8
Example 2—Results for q = 0, at Most K = 12 Admissible Trades, and Transaction Cost Level ε  = 1

Note: For q = 0, the results for asynchronous and synchronous trading are identical. Furthermore, similarly to Exhibit 4, the normalized evolutions of 16 
foreign exchange rates and 15 noncurrency asset prices are displayed in the two middle subplots, respectively. At every time t, an investment in exactly one 
currency or noncurrency asset is taken. Being invested in a noncurrency asset is indicated by dark circles. Because noncurrency assets are associated with a 
specific currency, we also label them accordingly with dark circles. In contrast, an explicit investment in a currency is emphasized by white circles.
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a laptop running Ubuntu 14.04 equipped with an Intel 
Core i7 CPU @ 2.80GHz × 8, 15.6 GB of memory, and 
using Python 2.7.

Example 3: A Downtrending  
and an Uptrending Stock

The ultimate example compares achievable per-
formances for an exemplary downtrending and an 
uptrending stock. The exemplary downtrending stock 
is of Deutsche Bank AG (Yahoo! Finance Symbol: DKB.
DE). The exemplary uptrending stock is of Adidas AG 
(Yahoo! Finance Symbol: ADS.DE). Both stocks are 
listed in the German stock index (DAX). The time 
frame considered is August 10, 2015, to August 8, 2016. 
There are 260 potential trading days. Both stocks are 
traded in currency EUR. We thus find optimal invest-
ment trajectories when 1) trading DKB.DE and EUR, 
and 2) trading ADS.DE and EUR. We assume propor-
tional costs of 1% identical for buying and selling (i.e., 
ε  = ε buy = ε sell). We set β = 50. Results are summarized 
in Exhibits 9 and 10.

Unexpectedly and remarkably, the yearly return 
associated with the optimal investment trajectory of 
the downtrending stock is higher than its uptrending 
counterpart: 382.8% versus 249.2%. Importantly, note 
that the corresponding buy-and-hold returns are –61.4% 
and 95.6%, respectively. While overall downtrending, 
the price of DKB.DE indicates temporary steep price 
increases. Furthermore, these occur mostly toward the 
second half of the time period of interest and thus imply 
stronger return growth due to the already compounded 
portfolio wealth that is available for investing at that time 
(instead of the initial m0). Naturally, without a poste-
riori knowledge of price evolutions, an uptrending stock 

such as ADS.DE offers the advantage that missing the 
right selling dates is less important. Interestingly, both 
downtrending and uptrending are traded optimally upon 
similar short-term average price increases: 7.5% and 7%. 
Similarly, the optimal holding periods of the stocks are 
short with on average 4.2 and 7.8 days, respectively.

CONCLUSION

We developed a simple graph-based method for 
a posteriori (historical) multivariate, multistage optimal 
trading under transaction costs and a diversif ication 
constraint. Three variants were discussed, including 
unconstrained trading frequency, a f ixed number 
of total admissible trades, and the waiting of a spe-
cific time period after every executed trade until the 
next trade. Findings were evaluated quantitatively on 
real-world data.

The results illustrated that transaction cost levels 
are decisive for achievable performance and signif i-
cantly inf luence optimal trading frequency. Quantitative 
results further indicated optimal trading upon occasion 
rather than on fixed trading intervals and, dependent on 
transaction cost levels, upon single- to low double-digit 
percentage gains with respect to the reference currency 
and exploiting short-term trends. Achievable returns for 
optimized trading are incomparably outperforming buy-
and-hold strategies. Naturally, these returns are very 
difficult to achieve in practice without knowledge of 
future price and foreign exchange rate evolutions.

The fundamental motivation and possibly best 
application of this work is to use it for 1) the preparatory 
and automated labeling of financial time-series data, which 
is almost unlimitedly available, and where transaction 
cost level ε  can then be regarded as a hyper-parameter 

e x h i b i t  9
Summary of Quantitative Results of Example 3

Note: This exhibit shows a comparison of a downtrending (DBK.DE) and an uptrending stock (ADS.DE) for the time period between August 10, 2015, 
and August 8, 2016.

 by guest on July 31, 2018http://jot.iijournals.com/Downloaded from 

http://jot.iijournals.com/


16   A Posteriori MulTisTage opTiMal Trading under TransacTion cosTs and a diversificaTion consTrainT suMMer 2018

for the desired tuning of labeled data, before 2) devel-
oping supervised machine learning applications for algo-
rithmic trading and screening systems. This is the subject 
of ongoing work.
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