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The objective of drift counteraction optimal control is to maximize the time that a given system satisfies prescribed

constraints. This paper describes novel open-loop and receding horizon/model predictive control-based approaches

to solve this problem. To illustrate the potential for drift counteraction optimal control applications to spacecraft

operational life extension, two examples of geostationary satellite station keeping near the end of satellite operational

life and spacecraft attitude control considering the effects of reaction wheel failures and reaction wheel speed

saturation are presented. For the satellite station-keeping problem, the objective is to counteract drift imposed by

orbital perturbations and maximize the time before prescribed position constraints are violated, given fuel

limitations. For the attitude control problem, the spacecraft is subject to disturbances from solar radiation pressure;

and tight pointing constraints need to be satisfied for as long as possible using reaction wheels. The cases of

underactuated spacecraft (one or two reaction wheels) and fully actuated spacecraft are treated.

Nomenclature

A = state matrix
a = acceleration, m∕s2
B = control input matrix
B = body-fixed frame
b = vector defining constraints; see Eq. (3)
C = matrix defining constraints; see Eq. (3)
d = disturbance
F = thrust force, N
f = nonlinear function
G = set defining state constraints; see Eq. (3)
~G = tightened state constraints; ~G ⊂ G
�g = reaction wheel spin axis resolved in B frame
H = Hill’s frame
I = Earth-centered inertial frame
J = moment of inertia, kg∕m2

Li = length of cuboid spacecraft; i ∈ fx; y; zg, m
li = distance between center of mass and geometric

center; i ∈ fx; y; zg, m
M = some large number
m = mass, kg
N = time horizon of mathematical program
Nadd = parameter in Algorithms 1 and 2 to update N
Nub = upper bound on N
n0 = geostationary equatorial orbit angular rate, rad∕s
p = number of control inputs
r = position, m
S = skew-symmetric matrix; see Eq. (B1)
U = set defining control constraints
Useq = set of admissible control sequences; see Eq. (2)
u = control input vector
v = velocity, m∕s
W = matrix containing reactionwheel spin axes; seeEq. (B3)

w = weight in modified linear programming objective
function; see Eqs. (27) and (40)

x = state vector
α = angular acceleration, rad∕s2
γ = additional linear programming variable
Δt = sampling time, s
Δvacc = accumulated Δv, m∕s
δ = integer-valued indicator variable for xt ∈= Gt

ε = real-valued indicator variable for xt ∈= Gt

ζ = additional linear programming variable
θ = Euler angle (pitch), rad
μ = gravitational parameter, m3∕s2
ν = reaction wheel spin rate, rad∕s
τ = first exit time; see Eq. (4)
τlb = lower bound on optimal first exit time
τsrp = solar radiation pressure disturbance torque, N∕m
~τ = first exit time with respect to tightened state

constraints
ΦS = solar flux, W∕m2

ϕ = Euler angle (roll), rad
ψ = Euler angle (yaw), rad
ω = angular velocity, rad∕s

Subscripts

c = control
E = Earth
GEO; 0 = geostationary equatorial orbit reference orbit
J2 = J2 perturbation
M = moon
p = orbital perturbations
recover = recovery controller defined by linear programming

[Eq. (18)]
S = sun
SC = spacecraft
s = state
srp = solar radiation pressure
th = thrust

I. Introduction

T HE problem addressed in this paper can be stated as follows:
given a deterministic system and a set of prescribed constraints

on the system’s process and control variables, find a control law that

Received 16 April 2017; revision received 25 March 2018; accepted for
publication 6 May 2018; published online 6 August 2018. Copyright © 2018
by the American Institute of Aeronautics and Astronautics, Inc. All rights
reserved. All requests for copying and permission to reprint should be
submitted to CCC at www.copyright.com; employ the ISSN 0731-5090
(print) or 1533-3884 (online) to initiate your request. See also AIAA Rights
and Permissions www.aiaa.org/randp.

*Ph.D. Candidate, Department of Aerospace Engineering.
†Professor, Department of Aerospace Engineering. Member AIAA.
‡Professor.

Article in Advance / 1

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
V

IR
G

IN
IA

 o
n 

A
ug

us
t 1

4,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

29
78

 

http://dx.doi.org/10.2514/1.G002978
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.G002978&domain=pdf&date_stamp=2018-08-09


maximizes the time before at least one of the constraints is violated.
Such problems are referred to as drift counteraction optimal
control (DCOC) problems because the solution may be viewed as
counteracting drift imposed by disturbances or system dynamics in
order to delay constraint violation. DCOC problems arise in many
engineering systems [in particular, those with large persistent
disturbances (e.g., wind gusts or drag), limited control authority
(e.g., underactuated systems), or finite resources (fuel, energy,
component life, etc.)], causing the process variables of the system
to drift.
In this context, we consider systems represented by nonlinear

discrete-time models of the form

xt�1 � ft�xt; ut� (1)

where xt ∈ Rn and ut ∈ Rp denote the state and control input
vectors, respectively, at a time instant t ∈ Z≥0; and ft is a time-
dependent nonlinear function. To avoid unnecessary technical-
ities, we assume ft is defined over Rn × Rp for all t ∈ Z≥0;
however, this assumption can be relaxed. The control is
constrained as ut ∈ Ut, where Ut � fu ∈ Rp:Cc;tu ≤ bc;tg is a
family of polyhedral sets. A control sequence is denoted by
futg � fu0; u1; : : : g, and

Useq � ffutg: ut ∈ Ut for all t ∈ Z≥0g (2)

is the set of admissible control sequences. Furthermore, suppose
that a family of polyhedral sets

Gt � fx ∈ Rn:Cs;tx ≤ bs;tg (3)

is defined that one wants xt to be inside, e.g., xt ∈ Gt corresponds
to safe and efficient system operation. Then, given an initial
x0 ∈ G0 and the control sequence futg ∈ Useq, the corresponding
first exit time is defined as

τ�x0; futg� � infft ∈ Z≥0: xt ∈= Gtg (4)

where xt is the response of Eq. (1) to the initial condition x0 and
input sequence futg. The DCOC problem is given by

max
futg∈Useq

τ�x0; futg�

subject to xt�1 � ft�xt; ut� (5)

Related problems were studied in continuous time in [1–9].
In contrast to problem (5), however, most of the previous
research considered discounted cost/yield functions instead of
explicitly maximizing the first exit time. Moreover, the continuous-
time formulation requires solving the Hamilton–Jacobi–Bellman
equation, which is a partial differential equation (PDE) for which
explicit solutions can only be obtained in some special cases.
The discrete-time version in Eq. (5), on the other hand, is
computationally more tractable as compared to numerically solving
a PDE.
In [10], problem (5) was solved using dynamic programming

techniques. Due to the curse of dimensionality, this approach is
limited to lower-dimensional problems. To solve higher-dimensional
problems, a new approach using linear programming (LP) was
developed in [11] for DCOC based on linear models of the form
xt�1 � Atxt � Btut � dt. It was shown in [11] that the solution to
the linear DCOC problem reduced to the solution of a mixed-integer
linear program (MILP). Moreover, good-quality suboptimal solutions
can be obtained by solving a similar programwithout integer variables
using standard LP. The LP formulation for the linear DCOC problem
was used to implement a model predictive control (MPC) strategy in
[12] to approximate the solution to a nonlinear spacecraft attitude
DCOC problem.
The main contribution of this paper is a mixed-integer nonlinear

program (MINLP) formulation that solves problem (5) as well as a

similar nonlinear program (NLP) formulation without integer

variables that yields good-quality suboptimal solutions. Moreover,

we improve the LP-based MPC method from previous conference

papers [11,12] to generate effective state feedback solutions for

nonlinear systems and demonstrate the potential for the use of DCOC

for spacecraft operational life extension. Along these lines, we treat

two different DCOC applications to geostationary satellite station

keeping and to spacecraft attitude control. In both problems, we

compare the NLP solution with the LP-based MPC solution

simulated on the nonlinear model.
The station-keeping problem assumes a satellite is in

geostationary equatorial orbit (GEO) subject to several orbital

perturbations. The satellite is equipped with thrusters that consume

a specified amount of fuel. Given an initial amount of fuel, the

objective is to find a thrust strategy for which prescribed constraints

on the satellite position are satisfied for as long as possible (i.e.,

before running out of fuel). Previous station-keeping approaches

addressed this objective by scheduling thrust maneuvers either

periodically to compensate the perturbing forces or whenever the

satellite was about to exit its prescribed position window [13–18].

Other approaches were based on tracking the center of the

prescribed position window using feedback control techniques

[19,20]. In contrast, our approach directly addresses the station-

keeping objective by explicitly maximizing the time until constraint

violation (i.e., until exiting the position window).
For the spacecraft attitude control problem, reaction wheels

(RWs) are used to counteract drift caused by solar radiation

pressure (SRP) disturbance torques [12]. We consider the cases of

an underactuated spacecraft (one or two operable RWs) as well as

of a fully actuated spacecraft (three operable RWs) with one RW

being nearly saturated. In both cases, the control authority is

limited. Thus, depending on the initial condition, prescribed

orientation constraints will eventually be violated, and the control

objective is to delay this event. This case study is motivated by

frequent situations, such as for the Kepler spacecraft [21,22],

in which tight pointing constraints must be satisfied to be

able to image when RWs have failed. Similar to the GEO station-

keeping problem, the advantage of our approach over previous

approaches [23–27] is that it explicitly maximizes the time until

prescribed orientation constraints are violated.
The structure of the paper is as follows. In Sec. II, nonlinear

programs are developed that yield open-loop solutions and

good-quality approximate solutions to problem (5). Section III

presents the MPC scheme for closed-loop control. Numerical

case studies for the GEO station-keeping and spacecraft attitude

DCOC problems are treated in Sec. IV. A conclusion is given

in Sec. V.
Throughout the paper, we assume that the initial state vector

satisfies the constraints, i.e., x0 ∈ G0. Moreover, we make the

following assumption:
Assumption 1: There exists �T > 0 such that τ�x; futg� ≤ �T for all

x ∈ G0 and futg ∈ Useq.
Assumption 1 is reasonable in many applications in which finite

resources, such as fuel, are of concern (e.g., GEO station keeping;

Sec. IV.A) or the control authority of the system is limited (e.g.,

underactuated spacecraft attitude control; Sec. IV.B). A solution to

problem (5), which may not be unique (see, e.g., [11]), exists under

Assumption 1, as stated in the following theorem.
Theorem 1: Suppose Assumption 1 holds. Then, a solution to

problem (5) exists for all x ∈ G0.
Proof:Let x � x0 ∈ G0 be a given initial condition.Moreover, note

that the objective function in Eq. (5) is integer valued and bounded

(by Assumption 1). Because any bounded collection of integers has a

maximum, the solution existence to problem (5) follows. □

II. Open-Loop Solutions

A solution to problem (5) may be obtained by solving the

following MINLP:
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min
futg;fδτlb ; : : : ;δNg

P
N
t�τlb

δt

subject to xt�1 � ft�xt; ut�
δt−1 ≤ δt

δt ∈ f0; 1g ⊂ Z; t ∈ fτlb; : : : ; Ng
Cs;txt ≤ bs;t; t ∈ f1; : : : ; τlb − 1g
Cs;txt ≤ bs;t � 1Mδt; t ∈ fτlb; : : : ; Ng
ut ∈ Ut

(6)

where the binary variables δt indicate when xt ∈= Gt and τlb is a lower
bound on the optimal first exit time, i.e.,

1 ≤ τlb ≤ τ�x0; fu�t g� (7)

where fu�t g is a solution to Eq. (5). Note that τlb can be chosen as the
first exit time of any trajectory generated by an admissible control
law. Moreover, the symbol 1 in Eq. (6) denotes the n-dimensional
vector of ones, M is a constant scalar, and the time horizon of the
MINLP is given by N.
Theorem 2 provides conditions under which the solutions of

problem (5) and MINLP (6) are equivalent. In the following, a state
trajectory [corresponding to a control sequence futg and the
dynamics xt�1 � ft�xt; ut�] is denoted by fxtg, where x0 ∈ G0.
Moreover, we make the following assumption aboutM and the time
horizon N.
Assumption 2: The time horizon ofMINLP (6) is sufficiently large

that N ≥ τ�x0; futg� for all futg ∈ Useq. Moreover, M in Eq. (6) is
sufficiently large that, for any futg ∈ Useq with corresponding fxtg,
Cs;txt ≤ bs;t � 1M for all t ∈ fτlb; : : : ; Ng.
Theorem 2:SupposeAssumptions 1–2 hold. Then, the solutions to

problem (5) and MINLP (6) are equivalent.
Proof: For the first part of the proof, we need to show that a

solution to Eq. (6) is also a solution to Eq. (5). Let x0 ∈ G0 be a given
initial condition.Due toAssumption 1 andEq. (7), there exists at least
one control sequence futg ∈ Useq with corresponding fxtg and a first
exit time of τ�x0; futg� ≥ τlb. Hence, becauseM is sufficiently large
by Assumption 2, δt ≡ 1 is feasible together with futg and fxtg.
Because the number of possible δt sequences is finite and a feasible
solution exists for at least one of them, a solution to Eq. (6) exists.
Now, suppose that �fuNPt g; fδNPt g� is a solution to MINLP (6), i.e.,

XN
t�τlb

δNPt ≤
XN
t�τlb

δ 0
t (8)

for all �fu 0
t g; fδ 0

t g� that satisfy the constraints in Eq. (6).Moreover, for
any fu 0

t g ∈ Useq, let f�δ 0
t g be such that �δ 0

t � 0 if t < τ�x0; fu 0
t g�, which

is always feasible with respect to Eq. (6) due toM being sufficiently
large (Assumption 2). Consequently, because N is sufficiently large
according to Assumption 2,

τ�x0; fu 0
t g� � τlb �

XN
t�τlb

�1 − �δ 0
t � � N � 1 −

XN
t�τlb

�δ 0
t (9)

Hence, by Eqs. (8) and (9),

τ�x0; fuNPt g� � minft: δNPt � 1g

� τlb �
XN
t�τlb

�1 − δNPt �

� N � 1 −
XN
t�τlb

δNPt

≥ N � 1 −
XN
t�τlb

�δ 0
t � τ�x0; fu 0

t g� (10)

for all fu 0
t g ∈ Useq. It follows that fuNPt g is also a solution to

problem (5).
For the second part of the proof, we need to show that a solution to

problem (5), which exists due toAssumption 1 andTheorem1, is also
a solution to MINLP (6). Suppose fu�t g is a solution to Eq. (5). Thus,

τ�x0; fu�t g� ≥ τ�x0; fu 0
t g� (11)

for all fu 0
t g ∈ Useq. Then, Eqs. (3) and (4), the constraints in

Eq. (6), and N ≥ τ�x0; futg� for all futg ∈ Useq (Assumption 2)
imply that δ�t � 1 for t ∈ fτ�x0; fu�t g�; : : : ; Ng and δ 0

t � 1 for
t ∈ fτ�x0; fu 0

t g�; : : : ; Ng, where fδ�t g and fδ 0
t g are the solutions to

MINLP (6) for futg � fu�t g or futg � fu 0
t g, respectively, fixed.

Assuming that the lower bound in Eq. (6) satisfies
τlb ≤ τ�x0; fu 0

t g�, it follows that δ�t � 0 for τlb ≤ t < τ�x0; fu�t g�
and δ 0

t � 0 for τlb ≤ t < τ�x0; fu 0
t g�. This and Eq. (11) imply that

XN
t�τlb

δ�t �
Xτ�x0;fu�t g�−1

t�τlb

δ�t �
XN

t�τ�x0;fu�t g�
δ�t

� N � 1 − τ�x0; fu�t g�

≤ N � 1 − τ�x0; fu 0
t g� �

XN
t�τlb

δ 0
t (12)

for all �fu 0
t g; fδ 0

t g� that satisfy the constraints of MINLP (6). Thus,
�fu�t g; fδ�t g� is a solution to MINLP (6). □

TheMINLP is in the class of NP-complete problems.Moreover, to
the best of our knowledge, there exist no algorithms that can solve
MINLPs with nonconvex constraints [such as xt�1 � ft�xt; ut�].
Therefore, the solution to MINLP (6) is approximated by a similar
NLP without integer variables. The NLP is obtained by replacing the
binary variables δt in MINLP (6) with nonnegative real variables εt,
yielding NLP (13).

min
futg;fετlb ; : : : ;εNg

P
N
t�τlb

εt

subject to xt�1 � ft�xt; ut�
0 ≤ εt−1 ≤ εt

Cs;txt ≤ bs;t; t ∈ f1; : : : ; τlb − 1g
Cs;txt ≤ bs;t � 1εt; t ∈ fτlb; : : : ; Ng
ut ∈ Ut

(13)

Remark 1: In contrast to MINLP (6), in general, the solution to
NLP (13) is suboptimal with respect to problem (5). However, if the
time horizon satisfies N � τ�x; fu�t g� − 1, where τ�x; fu�t g� is the
optimal first exit time for problem (5), the solution to NLP (13) is
optimal with respect to problem (5). Moreover, the solution to NLP
(13) is close to a solution of problem (5) (in terms of first exit time
performance) if N and τlb are close to τ�x; fu�t g�. This is because the
first exit time of τ�x; futg�, corresponding to the NLP solution,
satisfies either

τ�x; futg� ∈ fτlb; : : : ; N; : : : ; τ�x; fu�t g�g if N < τ�x; fu�t g�;
τ�x; futg� � τ�x; fu�t g� if N � τ�x; fu�t g�; or

τ�x; futg� ∈ fτlb; : : : ; τ�x; fu�t g�g if N < τ�x; fu�t g�

More information on this can be found in [28]. Detailed
instructions on how to select N and τlb for NLP (13) will be given
in Sec. IV.

III. MPC Strategy

After discussing open-loop solutions to problem (5) in the previous
section, this section focuses on an MPC implementation. Due to the
availability of efficient and robust solvers for linear programs, the
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MPC scheme is based on a linear model approximation of the

nonlinear system model, in which the linear model may be obtained

by linearizing the nonlinear model in Eq. (5) about a proper reference

trajectory and adding a time-varying disturbance term dt. By

recomputing the solution to the corresponding linear DCOCproblem

over a receding time horizon based on the current state vector,

feedback is provided to compensate for unmodeled effects not

present in the linear model.
However, as outlined in the top of Fig. 1, this linear-based MPC

scheme may violate constraints (xt ∈= Gt) prematurely when applied

to the nonlinear system: in particular, when xt is close to the boundary
of Gt. This is due to potential unmodeled effects not present in the

linearmodel andmay be prevented by sufficiently tightening the state

constraints for control computation, meaning the control input at

each time instant is obtained by solving the linear DCOC problem

with respect to tightened state constraints in order to create a margin

of safety. In analogy to Eqs. (3) and (4), the tightened state constraints

are defined by

~Gt � fx ∈ Rn: ~Cs;tx ≤ ~bs;tg ⊂ Gt (14)

for all t ∈ Z≥0, and the corresponding first exit time is given by

~τ�x0; futg� � infft ∈ Z≥0: xt ∈= ~Gtg (15)

Note that the requiredmargin for ~Gt depends on the accuracy of the

linearmodel approximation (near the boundary ofGt) and needs to be

chosen based on the maximum difference between the linear model

prediction of xt�1 and the actual response of the nonlinear system.

Furthermore, the margin should not be greater than required because

control performance may decrease otherwise due to unnecessary

conservatism. Initial numerical tests may be required to choose a

proper margin (as done for the numerical case studies in Sec. IV).
The linear DCOC problem (with respect to the tightened state

constraints) is as follows:

max
futg∈Useq

~τ�x0; futg�

subject to xt�1 � Atxt � Btut � dt

(16)

where x0 ∈ ~G0, At ∈ Rn×n, Bt ∈ Rn×p, and dt ∈ Rn. As shown in

[11], a mixed-integer linear program provides a solution to the linear

DCOC problem [Eq. (16)] under suitable assumptions. However, the

MILP is in the class of NP-complete problems, and the worst-case

computation time grows exponentially with the number of integer

variables [11,29,30]. Consequently, efficient and robust computation

of a solution to Eq. (16) cannot be guaranteed with the MILP.

Therefore, a solution to the linear DCOC problem [Eq. (16)] is

approximated by solving a standard LPwithout integer variables. The

LP is obtained by replacing the integer variables of the MILP in [11]

with nonnegative real variables εt, which lead to the following LP for
which efficient and robust solvers exist:

min
futg;fετlb ; : : : ;εNg

P
N
t�τlb

εt

subject to xt�1 � Atxt � Btut � dt

0 ≤ εt−1 ≤ εt
~Cs;txt ≤ ~bs;t; t ∈ f1; : : : ; τlb − 1g
~Cs;txt ≤ ~bs;t � 1εt; t ∈ fτlb; : : : ; Ng
ut ∈ Ut

(17)

where x0 ∈ ~G0 and εt ∈ R≥0.
The solution of LP (17) is generally suboptimal with respect to the

linear DCOC problem [Eq. (16)]. On the other hand, our previous

numerical studies [11] showed that the LP solution was close or

identical to theMILP/linear DCOC solution for proper choices of the

time horizonN and upper bound τlb on the optimal first exit time. As

for NLP (13) and problem (5) [see Remark 1], the solution to LP (17)

is close to a solution to the linear DCOC problem [Eq. (16)] ifN and

τlb are close to ~τ�x; fu�t g�, where fu�t g is a solution to the linearDCOC
problem [Eq. (16)].
Because the optimal first exit time ~τ�x; fu�t g� is a priori unknown,

an iterative procedure was developed in [11] that effectively adjusted

N while reducing the number of decision variables εt (by adjusting

τlb) until a proper N was found. A similar procedure is outlined in

Algorithm 1. In step 1 of Algorithm 1, the lower bound τlb is

initialized. The time horizon N is set in step 2 by adding a constant

integerNadd to τlb. Then, LP (17) is solved in step 3. Step 5 determines

if constraint violation occurs (i.e., if there exists εt > 0), which is

equivalent to εN > 0 due to the constraints εt−1 ≤ εt in Eq. (17). If no

Premature constraint violation 

Linear solution (open-loop)

Nonlinear solution with linear-based MPC (closed-loop)

Tightened constraints

Linear solution (open-loop)

Nonlinear solution with linear-based MPC, including recovery controller (closed-loop)

Constraints
x0

x0

Fig. 1 Illustration of effects of constraint tightening and recovery controller when linear-based control is applied to the nonlinear model. Top: state
trajectories without constraint tightening. Bottom: state trajectories with constraint tightening [see (14)] and recovery controller [see LP (18)].

Algorithm 1 Iterative procedure to updateN and τlb

1: τlb← set initial lower bound
2: N←τlb � Nadd, Nadd ∈ Z�
3: futg, fετlb ; : : : ; εNg← solution of LP (17)
4: τ←maxft ≤ N: εt � 0g � 1
5: if εN � 0, then
6: τlb←τ; go to step 2
7: end if
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constraint violation occurs (εt ≡ 0), the lower bound is increased
based on the current solution (steps 4 and 6). Going back to step 2, the
procedure is repeated for an increased N until a constraint violation
eventually occurs as a consequence of Assumption 1.
In addition to solving the linear DCOC problemwith respect to the

tightened state constraints, we augment the MPC strategy by a
controller that tries to recover xt ∈ ~Gt when the tightened state
constraints are violated. This controller, which we refer to as the
recovery controller, is described by the following LP:

min
futg;fεtg

PNrecover

t�1 εt

subject to xt�1 � Atxt � Btut � dt

0 ≤ εt
~Cs;txt ≤ ~bs;t � 1εt

ut ∈ Ut

(18)

which is similar to LP (17). In contrast to LP (17), an initial violation
of the tightened state constraints is assumed (i.e., x0 ∈= ~G0) and the
inequality constraints εt−1 ≤ εt are removed in LP (18). Thus, the
control associated with LP (18) tries to steer the state vector back into
the set ~Gt (i.e., it tries to satisfy ~Cs;txt ≤ ~bs;t) over the time horizon
Nrecover. Hence, the control computation based on ~Gt as well as the
recovery controller may prevent premature violation of the original
constraints (xt ∈= Gt), as illustrated in the bottom of Fig. 1.
The MPC strategy is outlined in Algorithm 2. At each time instant

tsys, the current state vector x�tsys� is acquired and used as the initial x0
for control computation (step 4 of Algorithm 2). The time-dependent
dynamics and constraints for the linear DCOC problem [Eq. (16)] are
obtained in step 3 based on the current time instant tsys of the system
for t ∈ f0; 1; : : : ; Nub � Naddg, where Nub � Nadd is the largest
possible time horizon for LP (17) and Nrecover ≪ Nub is used for
the time horizon of LP (18). The parameter Nub is defined in the
following. If the tightened state constraints are not satisfied by the
current state vector, the recovery controller is employed in step 6 of
Algorithm 2. Otherwise, in combination with a modified version of
Algorithm 1, LP (17) is used for control computation.
In contrast to previously proposed MPC schemes [11,12], the

iterative procedure in Algorithm 1 is modified for the MPC scheme
by including an upper bound Nub on the time horizon N (step 15 of
Algorithm 2). This allows premature termination of the iteration if,
for example, computation time limits need to be satisfied. However,
the optimal first exit time corresponding to the current state vector
may be greater thanNub, whichmay lower the quality of the resulting

solution. In addition toNub, the variable τlb;0 is introduced to initialize
the lower bound τlb for LP (17) in step 8, inwhich τlb;0 is updated over
the receding time horizon in step 18 based on the first exit time of the
previously computed solution. This significantly reduces the number
of decision variables εt of LP (17) and decreases computation times.
However, steps 10–12 need to be added to check if LP (17) is feasible
for the current τlb and N. This is important because, at time instant
tsys � 1, the predicted τlb may be greater than the actual optimal first
exit time for x0 � x�tsys � 1� as a consequence of prediction errors
caused by unmodeled effects not present in the linear model. In
this case, LP (17) becomes infeasible. Feasibility is recovered by
recomputing τlb in step 11 using the zero-control solution ~τ�x0; f0g�,
assuming 0 ∈ Ut (otherwise, any admissible control sequence can
be used).

IV. Numerical Case Studies

The numerical results for two DCOC problems of GEO satellite
station keeping (Sec. IV.A) and spacecraft attitude control (Sec. IV.B)
are presented in this section. Although the proposed DCOC
framework allows the treatment of time-dependent state and control
constraints, time-invariant constraints are assumed in both problems
(Gt ≡G andUt ≡U). Similarly,At ≡ A andBt ≡ B in both problems.
To illustrate the conclusions from the analysis in a setting

consistent with the assumptions in this paper, the open-loop solution
ofNLP (13) is compared to theLP-basedMPCstrategy (Algorithm2)
simulated on the discrete-time nonlinear model, which is on the
model consistent with our design assumptions (i.e., discrete-time
dynamics). To provide more realistic results (all systems evolve in
continuous time in the real world), theMPC strategy is also simulated
on the corresponding continuous-time nonlinear model using a zero-
order hold for the control input.Hence, the following three simulation
scenarios are considered in this section: 1) NLP-Discrete-Time, in
which the open-loop solution of NLP (13) is simulated on the
discrete-time nonlinear model; 2) MPC-Discrete-Time, in which
theMPC strategy (Algorithm 2) is simulated in a closed loopwith the
discrete-time nonlinear model; and 3) MPC-Continuous-Time, in
which the MPC strategy (Algorithm 2) is simulated in a closed loop
with the continuous-time nonlinear model with a zero-order hold
applied to the control input during each sampling period.
All computations in this section are performed inMATLAB 2015a

on a laptopwith an i5-6300 processor and 8GBofRAM, inwhich the
LPs are solved using theHybrid Toolbox [31]. A solution toNLP (13)
is obtained with the MATLAB function fmincon, for which the time
horizonN and the lower bound τlb are chosen based on the open-loop
solution to the linear DCOC problem obtained byAlgorithm 1 (using
a small Nadd of five). If the NLP solution does not violate the
prescribed constraints for this parameter setting, N and τlb are
updated in analogy to Algorithm 1 (using a small Nadd of five); then,
the corresponding NLP is solved, and the procedure is repeated until
constraint violation occurs. Based on Remark 1, this ensures that the
first exit time of theNLP solution is close to the optimal first exit time
of problem (5).

A. GEO Satellite Station Keeping

1. Nonlinear Model

Let frameI be theEarth-centered inertial (ECI) frame and frameH
be Hill’s frame. The 1-axis of Hill’s frame is pointing radially from
the center of the Earth to the current position on the reference orbit
(i.e., along rGEO∕E), and the 2-axis points in the orbital track direction
of the GEO reference orbit. The 3-axis completes the right-hand rule,
pointing out of the equatorial plane in the GEO case. We denote the
spacecraft position vector relative to the GEO reference orbit, resolved

inHill’s frame, by rSC∕GEOjH � �rSC∕GEO � �r1; r2; r3�T. Similarly, the

spacecraft velocity relative to the reference orbit with respect to Hill’s

frame, resolved in Hill’s frame, is �vSC∕GEO∕H � �v1; v2; v3�T . The
discrete-time nonlinear model that we consider to describe the
spacecraft motion relative to the GEO reference orbit is obtained from
the continuous-time nonlinear model, derived in Appendix A, using
Euler’s forward method and yielding

Algorithm 2 LP-based MPC implementation

1: tsys←0
2: τlb;0← set initial lower bound
3: At; Bt; dt; ~Gt;Ut← obtain dynamics and constraints for all

t ∈ f0; 1; : : : ; Nub � Naddg
4: x0← current state x�tsys�
5: if x0 ∈= ~G0, then
6: futg← solution of LP (18)
7: else
8: τlb←τlb;0
9: N←τlb � Nadd

10: if LP (17) is infeasible, then
11: τlb←minf~τ�x0; f0g�; Nubg; go to step 9
12: end if

13: futg, fετlb ; : : : ; εNg← solution of LP (17)
14: τ←maxft ≤ N: εt � 0g � 1
15: if εN � 0 and N < Nub, then
16: τlb←τ; go to step 9
17: end if
18: τlb;0←minfτ − 1; Nubg
19: end if
20: Apply u0 as control input u�tsys� to the system
21: tsys←tsys � 1; go to step 3
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"
�rSC∕GEO;t�1

�vSC∕GEO∕H;t�1

#
�

"
�rSC∕GEO;t

�vSC∕GEO∕H;t

#
� Δt

"
�vSC∕GEO∕H;t

�aSC∕GEO∕H;t

#
(19)

where �aSC∕GEO∕H;t � �a1;t; a2;t; a3;t�T and, using rt ��������������������������������������������������
�r1;t � r0�2 � r22;t � r23;t

q
,

a1;t � −
μE�r1;t � r0�

r3t
� 2n0v2;t � n20r1;t �

μE
r20

� F1;t

mSC

� dp;1;t;

a2;t � −
μEr2;t
r3t

− 2n0v1;t � n20r2;t �
F2;t

mSC

� dp;2;t;

a3;t � −
μEr3;t
r3t

� F3;t

mSC

� dp;3;t (20)

Remark 2: In this paper, Euler’s forward method is used for

discretization, which is sufficient for the purposes of this paper, i.e.,

comparing the MPC solution to the NLP solution (MPC-Discrete-

Time versus NLP-Discrete-Time). The accuracy of the discretized

model can be improved by using higher-order discretization schemes

such as 4th order Runge–Kutta (RK4). At the same time, the use of

Euler discretization yields simpler discrete-time models for MPC

development, whereas the use of MPC with the solution being

recomputed provides a form of feedback that compensates for

discretization errors.
The control variablesF1,F2, andF3 are the thrust forces along the

unit (i.e., projected on the axes) of Hill’s frame:

u � �F � �F1; F2; F3�T (21)

Likewise, dp;1, dp;2, and dp;3 are perturbations projected on the

axes of Hill’s frame according to Eqs. (A7–A11) in which, in this

paper, we take into account perturbations due to lunisolar gravity, SRP,

and J2. Note that additional perturbations can readily be included,

which is not done here because the results are compared to [19], in

which a satellite model with the aforementioned perturbations was

considered. The trajectories of Earth, moon, and sun are obtained from

the Jet Propulsion Laboratory’s HORIZONS Web interface [32] in

which, in all simulations, the initial positions were as of 3 September

2015 at 1200 hrs Central Time (CT).
The other parameters in Eq. (19) are the spacecraft mass mSC,

Earth’s gravitational parameter μE, the GEO radius of

r0 � 42;160 km, and the GEO angular rate n0; see Eq. (A4).

Because the fuel mass is assumed to be much smaller thanmSC,mSC

is considered constant.
In addition to the six states in Eq. (19), another state is introduced

that takes account of the available fuel. To normalize fuel

consumption, we use the accumulatedΔv (total change in spacecraft
velocity) due to accelerations generated by the thrust forces. Thus,

Δvacc;t�1 � Δvacc;t � Δvt � Δvacc;t � Δt
kutk1
mSC

(22)

where k ⋅ k1 denotes the 1-norm.
In summary, the discrete-time nonlinear spacecraft model for

problem (5) is given by Eqs. (19) and (22), where the control input

and state vector, respectively, are given by Eq. (21) and x �
�r1; r2; r3; v1; v2; v3;Δvacc�T .

2. DCOC Problem

Consider a station-keeping window of 	0.01° in longitude and

latitude, which is an order of magnitude smaller as compared to

traditional station-keeping approaches [14,16,17]. Note that future

missionsmay require such smallwindowsdue to thegrowing number of

GEO satellites. The chosen constraints on longitude and latitude

approximately translate into position constraints of	7.4 km for r1, r2,
and r3. Hence, the set defining the state constraints for problem (5) is

given by

G� fx∈R7:Δvacc ∈ �0;Δvacc;max�; ri ∈ �−7.4;7.4� km; i∈ f1;2;3gg
(23)

whereΔvacc;max is a prescribedmaximumvalue for the accumulatedΔv,
which is equivalent to the amount of fuel that is initially available. The
control objective is to maximize the time that the state vector remains
insideG. The tightenedconstraints ~Gt ≡ ~G for theMPC implementation
[see Fig. 1 and Eq. (14)] are obtained by reducing the position window
by 0.1%, yielding

~G � fx ∈ R7:Δvacc ∈ �0;Δvacc;max�; ri ∈ �−7.3926; 7.3926� km;

i ∈ f1; 2; 3gg (24)

The satellite is equipped with six thrusters, for which each thruster
can generate a maximum thrust force of Fth � 0.1 N, which is similar
to the ion thruster discussed in [33]. Each thruster is assumed to point in
one of the directions of Hill’s frame (positive and negative directions).
Assuming continuous-thrust values, the control constraints are given by

U � f�F1; F2; F3�T :Fi ∈ �−Fth; Fth�; i ∈ f1; 2; 3gg
A spacecraft mass of mSC � 4000 kg is assumed, and the

parameters for the SRP disturbance model in Eq. (A10) are
Csrp � 9.1 × 10−6 N∕m2, crefl � 0.6, and SSC � 200 m2.

3. Linear Model

The linear discrete-time model for the MPC implementation is
obtained by linearizing the continuous-time nonlinear model in
Eq. (A6) about the GEO reference orbit, yielding the Clohessy–
Wiltshire (CW) equations [34], and by employing Euler’s forward
method to transform the continuous-time model into discrete time.
Furthermore, the nonlinear evolution of the accumulated Δv in
Eq. (22) is approximated by introducing the auxiliary variables
ζ � �ζ1; ζ2; ζ3�T and augmenting the linear discrete-time dynamics in
Eq. (16) as follows:

xt�1 � Axt � B

�
ut

ζt

�
� dt (25)

where matrices A and B are given in the following. Moreover, the
constraints

−ζt ≤ ut ≤ ζt; t ∈ f0; : : : ; N − 1g (26)

are added to LPs (17) and (18), and theweighted sum of ζt is added to
the respective objective function in order to approximate the
nonlinear dynamics ofΔvacc. In this regard, the objective functions of
LPs (17) and (18), respectively, are modified to

XN
t�τlb

εt � w
XN−1

t�0

1Tζt (27a)

XNrecover

t�1

εt � w
XNrecover−1

t�0

1Tζt (27b)

wherew > 0 is a weight that is set tow � 0.005. The matrices of the
linear discrete-time model in Eq. (25) are as follows:

A �

2
66666666666664

1 0 0 Δt 0 0 0

0 1 0 0 Δt 0 0

0 0 1 0 0 Δt 0

3n20Δt 0 0 1 2n0Δt 0 0

0 0 0 −2n0Δt 1 0 0

0 0 −n20Δt 0 0 1 0

0 0 0 0 0 0 1

3
77777777777775

(28)
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B �

2
6666666666666664

03×6

Δt
mSC

0 0 0 0 0

0
Δt
mSC

0 0 0 0

0 0
Δt
mSC

0 0 0

0 0 0
Δt
mSC

Δt
mSC

Δt
mSC

3
7777777777777775

(29)

where n0 is defined in Eq. (A4), andΔt � 500 s is the sampling time
for the discrete-time transformation.
Following [19,35], the time-varying disturbance term dt of the

linear model given by Eq. (25) is computed in advance for the known
GEO reference orbit by using Eqs. (A7–A11) with rM∕GEO, rS∕GEO,
and rGEO∕E replacing rM∕SC, rS∕SC, and rSC∕E, respectively, where,
instead of the spacecraft position (SC), the known position of the
GEO reference orbit is used. Thus, the disturbing accelerations for the
GEO reference orbit are obtained at each time instant and dt follows
from multiplying these accelerations by the sampling time Δt
(Euler’s forward method). Hence, dt � �01×3;Δt �dTp;t; 0�T , with �dp;t
denoting the instantaneous disturbance vector for the GEO reference
orbit, resolved in Hill’s frame, according to Eq. (A7).

4. Results

The following initial condition is considered:

x0 � �0; 0;−5 km; 0;−0.4 m∕s; 0; 0�T (30)

and the maximum value for the accumulatedΔv in Eq. (23) is chosen
as 1 m∕s. The sampling time is set to Δt � 500 s (for both the NLP
andMPC approaches). Note that the initial condition in Eq. (30) and
Δvacc;max � 1 m∕s are chosen to ensure a sufficiently small time
horizon for this problem to address computational feasibility in
solving the NLP with fmincon in MATLAB. However, the chosen
values also reflect a realistic objective to maximize the GEO satellite
operational life near the end of its mission. The numerical treatment
of larger time horizons is left for future work.
Regarding the MPC approach, the upper bound Nub on the time

horizonN of LP (17) in Algorithm 2 is set to 600 to ensure reasonable
computation times in MATLAB because an initial numerical study
over 1000 randomly generated x0 ∈ G showed average and worst-
case computation times for solving LP (17) of 4.3 and 18.5 s,
respectively, when N � 600 and τlb � 1. The other parameters are
set to Nadd � 30, Nrecover � 5, and τlb;0 � 300 as an initial guess in
step 2 of Algorithm 2.
The results of the NLP-Discrete-Time and MPC-Discrete-Time

simulations are plotted inFig. 2, inwhich the dashed lines indicate the
state and control constraints. Figure 2 also shows the results of the
MPC-Continuous-Time simulation (the continuous-time nonlinear
model is derived in Appendix A). A constraint violation occurs as a
consequence of reaching the prescribed fuel limit or, equivalently, the
limit on Δvacc. The trajectories for NLP-Discrete-Time and MPC-
Discrete-Time simulations in Fig. 2 are similar, and the constraint
violation occurs after 415 time steps (2.4 days) for both approaches.
This shows that the LP-based MPC scheme can be effective in the
context of DCOC of a nonlinear system. Applying the MPC
strategy to the continuous-time nonlinear model results in control
trajectories similar to the MPC-Discrete-Time solution. However,
the continuous-time dynamics extend the constraint violation to
2.92 days, which is about 22% greater than observed in simulations
on the discrete-time model, which may be due to the Euler forward
discretization scheme (see Remark 2) and the relatively large
sampling time of Δt � 500 s of the discrete-time dynamics.
The computation times are as follows. About 53 min are required

to solve NLP (13) with the MATLAB function fmincon. In both
MPC-Discrete-Time and MPC-Continuous-Time simulations, the
MPC strategy requires, on average, 1.4 s to compute the control input

at each time instant with a worst-case computation time of 16 s

(which is smaller than Δt � 500 s).

B. Spacecraft Attitude Control

1. Nonlinear Model

The continuous-time nonlinear model for spacecraft attitude

dynamics is summarized in Appendix B. Euler’s forward method is

used to obtain the discrete-time model from the continuous-time

model for a chosen sampling time of Δt � 2 s. The state vector at a
time instant t ∈ Z≥0 is given by

xt � �ϕt; θt;ψ t;ω1;t;ω2;t;ω3;t; ν1;t; : : : ; νp;t�T

where ϕt, θt, and ψ t are the 3-2-1 Euler angles; �ωB∕I ;t �
�ω1;t;ω2;t;ω3;t�T is the spacecraft angular velocity vector (angular

velocity of the spacecraft body-fixed frame B relative to an inertial

reference frame I ) expressed in the body-fixed frame; and �νt �
�ν1;t; : : : ; νp;t�T contains the spin rates of the p RWs. The RW

accelerations serve as control variables, and the control input vector

for the discrete-time model is given by the instantaneous RW

accelerations, i.e., ut � �_ν1;t; : : : ; _νp;t�T . Thus, the discrete-time

nonlinear model is as follows:

2
666666664

ϕt�1

θt�1

ψ t�1

�ωB∕I ;t�1

�νt�1

3
777777775

�

2
666666664

ϕt

θt

ψ t

�ωB∕I ;t

�νt

3
777777775

� Δt

2
666666664

2
664
1 s�ϕt�t�θt� c�ϕt�t�θt�
0 c�ϕt� −s�ϕt�
0 s�ϕt�∕c�θt� c�ϕt�∕c�θt�

3
775 �ωB∕I ;t

�αB∕I ;t

ut

3
777777775

(31)

where c�⋅� � cos�⋅�, s�⋅� � sin�⋅�, t�⋅� � tan�⋅�, and �αB∕I ;t �
_�ωB∕I ;t according to Eq. (B5); i.e.,

�αB∕I ;t � �J−1��τsrp;t − S� �ωB∕I ;t�� �J �ωB∕I ;t � JwW �νt� − JwWut� (32)

The SRP disturbance torque �τsrp in Eq. (32) is a nonlinear function
of the spacecraft orientation; see Eqs. (B6–B7). The other parameters

of themodel are themoment of the inertiamatrix of the spacecraft bus

J, the moment of inertia of each RW (assuming identical RWs) about

its spin axis Jw, and the locked inertia �J [see Eq. (B4)], as well as the
orientations of the RW spin axes given by W [see Eq. (B3)]. We

consider a spacecraft with the parameters listed in Table 1. Note that

the vector representing the direction of the sun is resolved in the

inertial frame I in Table 1 and needs to be transformed into the

spacecraft body-fixed frame B continuously using the current

orientation of the spacecraft.

2. DCOC Problem

The objective is to satisfy the prescribed constraints on spacecraft

orientation and the RW spin rates for as long as possible. The

constraints define the set

G �fx ∈ R6�p:ϕ ∈ �ϕmin;ϕmax�; θ ∈ �θmin; θmax�;ψ ∈ �ψmin;ψmax�;
νi ∈ �νi;min; νi;max�; i ∈ f1; 2; : : : ; pgg (33)

where ϕmin < 0, θmin < 0, ψmin < 0, ϕmax > 0, θmax > 0, ψmax > 0,
and νi;min < νi;max ∈ R, i ∈ f1; 2; : : : ; pg. Similar to the GEO

station-keeping problem in Sec. IV.A, as illustrated in Fig. 1, we

tighten the state constraints for the LP-based MPC implementation
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by reducing the orientation constraints by 0.4%, which yields the

reduced set

~G�fx∈R6�p:1.004ϕ∈ �ϕmin;ϕmax�;1.004θ∈ �θmin;θmax�;
1.004ψ ∈ �ψmin;ψmax�;νi ∈ �νi;min;νi;max�; i∈ f1;2; : : : ;pgg (34)

In the following case studies (Secs. IV.B.4–IV.B.6), the attitude

and RW spin rate constraints in Eqs. (33) and (34), respectively,

are given by

ϕmin � θmin � −0.00175 rad; ψmin � −0.0175 rad (35a)

ϕmax � θmax � 0.00175 rad; ψmax � 0.0175 rad (35b)

νi;min � 10 rad∕s; νi;max � 250 rad∕s; i ∈ f1; 2; : : : ; pg
(35c)

Note that the lower bound on the RW spin rates is chosen to avoid

zero speed crossings and increase in RW wear and power

consumption at low speeds. The initial states of the spacecraft are

assumed to be

�ϕ0; θ0;ψ0� � �−0.001; 0.00035;−0.0105� rad (36a)

�ω1;0;ω2;0;ω3;0� � �3.5; 3.5; 35� × 10−5 rad∕s (36b)

The maximum angular acceleration of each RW is 4 rad∕s2.
Hence,

Table 1 Model parameters for spacecraft attitude
control problem [26]

Parameter Units Value

J kg∕m2 diag�430; 1210; 1300�
Jw kg∕m2 0.043
Lx, Ly, Lz m 2, 2.5, 5
lx, ly, lz m 0, 0.5, 0
q̂SjI —— �0; 1∕ ���

2
p

; 1∕
���
2

p �T
ΦS W∕m2 1367
c m∕s 299, 792, 458
Cdiff —— 0.2

NLP-Discrete-Time
MPC-Continuous-Time

MPC-Discrete-Time

Fig. 2 GEO satellite station-keeping problem with Δvacc;max � 1 m∕s and x0 in Eq. (30): spacecraft position relative to GEO reference orbit,
rSC∕GEOjH � �r1;r2;r3�T, and thrust forces FjH � �F1;F2;F3�T resolved in Hill’s frame, as well as accumulated Δv vs time.
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U � fu ∈ Rp: ui ∈ �−4; 4� rad∕s2; i ∈ f1; 2; : : : ; pgg (37)

3. Linear Model

In analogy to the previous case study (Sec. IV.A), the linear

discrete-time model for the LP-based MPC implementation
(Algorithm 2) is obtained by linearizing the continuous-time

nonlinear model (Appendix B) and employing Euler’s forward

method using a sampling time of Δt � 2 s. We choose ϕ � θ �
ψ � 0 and the initial RW spin rates �ν0 as the reference for the linear
model. The matrices and the disturbance term of the linear discrete-

time model are therefore given by

A �

2
66664

I3×3 ΔtI3×3 03×p

Δt �J−1T I3×3 � Δt �J−1JwS�W �ν0� 03×p

0p×3 0p×3 Ip×p

3
77775 (38)

B �

2
664

03×p

−Δt �J−1JwW

ΔtIp×p

3
775; d �

2
664

03×1

Δt �J−1�τsrpjϕ�θ�ψ�0

0p×1

3
775 (39)

where S�⋅� is the skew-symmetric matrix defined in Eq. (B1), and

�τsrpjϕ�θ�ψ�0
is the SRP torque when ϕ � θ � ψ � 0. Furthermore,

T in Eq. (38) results from numerically linearizing the SRP torque in
Eq. (B7) about ϕ � θ � ψ � 0, i.e.,

�τsrp ≈ �τsrpjϕ�θ�ψ�0
� T�ϕ; θ;ψ �T

Note that the disturbance term in Eq. (39) is time invariant in this
example due to the assumption of constant SRP.

Initial numerical results showed that, compared to the open-loop
solutions, the LP-based MPC strategy (in MPC-Discrete-Time and
MPC-Continuous-Time simulations) yields similar first exit times
while, however, using substantially more control effort. This may be
undesirable when considering onboard energy consumption/limited

energy and RW component life. Hence, in order to avoid excessive
control inputs, control inputs are penalized by considering the
weighted sum of kutk1 values as an additional objective to be
minimized. As, for example, in [36], this is achieved by introducing
the variables γt ∈ Rp for t ∈ f0; 1; : : : ; N − 1g and adding the
weighted sum of γt values to the objective functions of LPs (17) and
(18), yielding, respectively,

XN
t�τlb

εt � w
XN−1

t�0

1Tγt and
XNrecover

t�1

εt � w
XNrecover−1

t�0

1Tγt (40)

where the weight is set tow � 0.005 here. Moreover, the constraints
−γt ≤ ut ≤ γt, t ∈ f0; 1; : : : ; N − 1g, are added to LPs (17) and (18).
This approach is similar to the linear approximation of the nonlinear
dynamics ofΔvacc in the GEO satellite station-keeping problem; see
Eqs. (22), (26), and (27).
In the following, we use Nub � 200, Nadd � 25, Nrecover � 5,

and τlb;0 � 100 (initial guess) for the MPC implementation in
Algorithm 2.

4. Results for One RW

First, the case of one operable RW (p � 1) with a spin axis of
�g1 � �1∕ ���

3
p

; 1∕
���
3

p
; 1∕

���
3

p �T (resolved in the spacecraft body-fixed
frame) is considered. The set of state constraints and the initial
condition of the spacecraft for this case study are given by Eqs. (35)
and (36), respectively; and the initial RW speed is assumed to be
�ν0 � 100 rad∕s. Figure 3 shows the trajectories of theEuler angles, the
RWspeed, and the control input for theNLP-Discrete-Time andMPC-
Discrete-Time simulations, as well as for the MPC-Continuous-Time
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Fig. 3 Spacecraft attitude control problem, with one RW (p � 1): Euler angles, RW speed, and control input vs time.
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simulation (where a zero-order hold is applied to the control during
each 2 s sampling interval). The constraints are indicated by gray
dashed lines in Fig. 3. Both the NLP-Discrete-Time and MPC-
Discrete-Time solutions violate the constraints after 45 time steps,
which are equivalent to 90 s (1.5 min). The respective trajectories are
similar but different, which indicates that the optimal solution to
problem (5) may not be unique in this case.
In the MPC-Continuous-Time simulation, the constraint violation

occurs after 87.4 s (1.46 min). The NLP solution is obtained in 49.9 s
with MATLAB’s fmincon function, which is considerably faster as
compared to the GEO station-keeping problem (Sec. IV.A) because
of smaller first exit times (and thus smaller time horizons). On
average, the LP-basedMPC implementation (in bothMPC-Discrete-
Time and MPC-Continuous-Time simulations) requires about 0.01 s
to compute the control input at each time instant, and the worst-case
computation time is 0.08 s.

5. Results for Two RWs

Now, two operable RWs are assumed (p � 2), which increases the
spacecraft’s control authority as compared top � 1. In addition to the

RW with a spin axis of �g1 � �1∕ ���
3

p
; 1∕

���
3

p
; 1∕

���
3

p �T , the spacecraft
has a second RW with a spin axis of �g2 � �0; 1; 0�T . The initial RW
spin rates are given by �ν0 � �100; 230�T rad∕s.
The responses based on the LP-based MPC strategy (in MPC-

Discrete-Time and MPC-Continuous-Time simulations) as well as

the NLP solution (in the NLP-Discrete-Time simulation) for the state
constraints and initial condition in Eqs. (35) and (36), respectively,
are plotted in Fig. 4. The gray dashed lines in Fig. 4 indicate the
prescribed constraints. As for the case of p � 1, the MPC solutions
are close to the open-loop NLP solution. There are differences,
however, because the MPC strategy exploits a linear model and
control adjustments are required when the predicted trajectory differs
from the actual trajectory due to unmodeled effects. The NLP
solution violates constraints after 122 time steps or 244 s (4.1 min).
Similarly, the MPC-Discrete-Time simulation shows a constraint
violation after 117 time steps or 234 s (3.9 min). A constraint
violation occurs after 240 s (4 min) in the MPC-Continuous-Time
simulation. In theworst-case, theMPC implementation (in bothMPC-
Discrete-Time and MPC-Continuous-Time simulations) requires
0.22 s to compute the control ut at a time instant t ∈ Z≥0 and 0.05 s on
average. The open-loop NLP solution, on the other hand, is computed
in 136 s.

6. Results for Three RWs

In the case of three operable RWs (p � 3), the spacecraft is fully

actuated. For this case study, a third RW with a spin axis of �g3 �
�0; 0; 1�T is added to the two RWs with spin axes of �g1 �
�1∕ ���

3
p

; 1∕
���
3

p
; 1∕

���
3

p �T and �g2 � �0; 1; 0�T . As before, the state
constraints and initial condition are as inEqs. (35) and (36), respectively;

and the initial RW speeds of �ν0 � �100; 230; 249.7�T rad∕s are
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Fig. 4 Spacecraft attitude control problem, with two RWs (p � 2): Euler angles, RW speeds, and control inputs vs time.
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assumed.Note that the thirdRWis initiallynear its saturation limit.Thus,

the control authority is limited and, despite being fully actuated, the

constraint violation occurs in finite time for any admissible control law.

The NLP solution violates constraints after 216 time steps or 432 s

(7.2min). For theMPC implementation, a constraint violation occurs

after 209 time steps or 418 s (6.97min) in theMPCdiscrete-time case

and after 419.6 s (6.99 min) in the MPC-Continuous-Time case.

These relatively large differences versus the NLP solution can be

attributed to the weight w that emphasizes minimum control effort

in LPs (17) and (18); see Eq. (40). The respective first exit times

are improved by reducingw from 0.005 to 0.001. This change results

in a constraint violation after 213 time steps or 424 s (7.07 min)

in the MPC discrete-time simulation, which is within 1.5% of the

NLP solution. Furthermore, with the modified weight, a constraint

violation occurs after 426.9 s (7.12 min) in the MPC-Continuous-

Time simulation. Further reducing w does not significantly improve

the first exit times. Figure 5 shows the trajectories of theNLP solution

as well as of the MPC solutions (in MPC-Discrete-Time and MPC-

Continuous-Time simulations) for w � 0.001.
A computation time of 461 s is required to obtain theNLP solution.

For the LP-based MPC implementation, the worst-case time to

compute the control is 1.12 s, and 0.14 s are required on average.

Thus, for the cases considered (Secs. IV.B.4–IV.B.6), the worst-case

computation times are below the sampling time of Δt � 2 s.
Computation times can be further reduced by increasing Δt and/or
reducing the upper bound Nub on the time horizon of LP (17) in

Algorithm 2, which may, however, reduce the control performance

(i.e., lead to earlier constraint violation).
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Article in Advance / ZIDEK, KOLMANOVSKY, AND BEMPORAD 11

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
V

IR
G

IN
IA

 o
n 

A
ug

us
t 1

4,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

29
78

 



V. Conclusions

This paper treated an optimal control problem of maximizing the
time before a system violates constraints. A mixed-integer nonlinear
programwas derived that led to an open-loop solution of the problem.
A similar nonlinear program without integer variables was presented
that provided good-quality suboptimal solutions. In addition, a

model predictive control (MPC)–based closed-loop strategy was
developed, based on a linear model approximation of the system and
the application of standard linear programming. The resulting
algorithmic procedures were applied to two challenging spacecraft
control problems. In the first problem of GEO satellite station
keeping, the objective was to satisfy prescribed orbital position
constraints for as long as possible, given fuel limitations and orbital
perturbations. In the second problem, a spacecraft with reaction
wheels was considered and tight pointing constraints had to be
satisfied for as long as possible, given solar radiation pressure
disturbance torques and underactuation caused by RW failures or
RWs close to saturation limits. In both cases, the developed MPC

strategy successfully delayed the constraint violation and the MPC
solutionswere shown to provide similar performance to the nonlinear
programming solutions. Future research will focus on efficiently
handling problems with longer time horizons in a numerical setting:
in particular, using theMPCapproach. Additionally, there is room for
future research on stochastic or robust versions of DCOC: for
example, to address uncertainty in the prediction model.

Appendix A: Nonlinear Model for GEO Satellite
Station-Keeping Problem

The derivation of the nonlinear spacecraft model for the GEO
station-keeping problem (Sec. IV.A) is described here. With frame I
as the ECI frame and frameH as Hill’s frame, a vector r (resolved in
frame I ) is transformed into frame H according to rjH � OH∕IrjI ,
whereOH∕I is the respective orientationmatrix. In theGEOcase, and
assuming that the initial true anomaly of the reference orbit is zero,
OH∕I is as follows:

OH∕I �

2
664

cos�n0t� sin�n0t� 0

− sin�n0t� cos�n0t� 0

0 0 1

3
775 (A1)

where n0 is defined in Eq. (A4). Likewise,

rjI � OT
H∕IrjH � OI∕HrjH. In the following, we use �r � rjH to

denote a vector resolved in Hill’s frame. Furthermore, the time

derivative of a vector rwith respect to frame F is denoted by r
F ⋅
. The

spacecraft position vector relative to Earth’s center is denoted by
rSC∕E, and the velocity and acceleration vectors with respect to frame

I are vSC∕E∕I � r
I ⋅
SC∕E and aSC∕E∕I � r

I ⋅⋅
SC∕E, respectively. Thus,

employing the two-body problem in continuous time [34], we get

aSC∕E∕I � −
μE

krSC∕Ek32
rSC∕E � F

mSC

� dp (A2)

where μE is Earth’s gravitational parameter, F denotes the thrust
vector, mSC is the spacecraft mass, and dp is a vector containing

perturbing accelerations. Instead of Eq. (A2), we describe the
spacecraft motion relative to a GEO reference orbit, i.e., rSC∕GEO.
Hence, an expression for the relative acceleration vector with
respect to Hill’s frame aSC∕GEO∕H needs to be derived. It is

aSC∕GEO∕H � aSC∕E∕H − aGEO∕E∕H, where

�aGEO∕E∕H � −
μE
r30

�r0; 0; 0�T (A3)

with r0 as the constant distance between the GEO reference orbit
and Earth’s center. On the other hand,

aSC∕E∕H � aSC∕E∕I � 2ωI∕H × vSC∕E∕I � ωI∕H × �ωI∕H × rSC∕E�

whereωI∕H denotes the angular velocity vector of frame I relative

to frameH. Given the constant angular rate of the GEO reference
orbit,

n0 �
�������������
μE∕r30

q
(A4)

Note thatωI∕H is resolved in Hill’s frame as �ωI∕H � �0; 0;−n0�T ,
where the constant angular rate of the GEO reference orbit is

n0 �
�������������
μE∕r30

q
. Furthermore, �rSC∕GEO � �r1; r2; r3�T , �vSC∕GEO∕H �

�v1; v2; v3�T , and �vGEO∕E∕I � �0; v0; 0�T , where v0 �
�������������
μE∕r0

p
. Using

Eq. (A2), aSC∕E∕H is resolved in Hill’s frame as follows:

�aSC∕E∕H � −
μE�������������������������������������������

�r1 � r0�2 � r22 � r23
p

3

2
664
r1 � r0

r2

r3

3
775�

2
664

0

0

−2n0

3
775

×

2
664

v1 − n0r2

v2 � v0 � n0r1

v3

3
775�

2
664

0

0

−n0

3
775 ×

2
664

n0r2

−n0�r1 � r0�
0

3
775

� 1

mSC

2
664
F1

F2

F3

3
775�

2
664
dp;1

dp;2

dp;3

3
775 (A5)

where �F�FjH � �F1;F2;F3�T and �dp � dpjH � �dp;1;dp;2;dp;3�T .
Combining Eqs. (A3–A5) yields

�aSC∕GEO∕H � −
μE�������������������������������������������

�r1 � r0�2 � r22 � r23
p

3

2
64
r1 � r0

r2

r3

3
75

�

2
664
2n0v2 � n20r1 � μE

r2
0

−2n0v1 � n20r2

0

3
775� 1

mSC

2
664
F1

F2

F3

3
775�

2
664
dp;1

dp;2

dp;3

3
775 (A6)

For the disturbance term dp, we take into account perturbing
accelerations due to the gravity of the moon and sun, the SRP, and J2
in this paper. Thus,

dp � dp;M � dp;S � dp;srp � dp;J2 (A7)

The perturbations due to the gravity of the moon and sun may be
obtained according to the three-body problem (spacecraft, Earth, and
moon or spacecraft, Earth, and sun, respectively), yielding

dp;M � μM

�
rM∕SC

krM∕SCk32
−

rM∕E

krM∕Ek32

�
(A8)

dp;S � μS

�
rS∕SC

krS∕SCk32
−

rS∕E
krS∕Ek32

�
(A9)

where rM∕SC and rS∕SC are the position vectors of the moon and sun
relative to the spacecraft, respectively; and the position vectors of the
moon and sun relative to Earth are rM∕E and rS∕E, respectively. The
gravitational parameters of the moon and sun are denoted by μM and
μS, respectively. The SRP and J2 perturbations are given by [19,37]

dp;srp � −Csrp

SSC�1� crefl�
2mSC

rS∕SC
krS∕SCk2

(A10)
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dp;J2 �
3μEJ2r

2
E

2krSC∕Ek52

��
5
rSC∕E ⋅ k̂I
krSC∕Ek22

− 1

�
rSC∕E − 2�rSC∕E ⋅ k̂I �k̂I

�
(A11)

whereCsrp and crefl are constants, SSC is the spacecraft’s solar-facing
area, rE is Earth’s equatorial radius, k̂I is the three-axis unit vector of
frame I , and J2 � 1.08264 × 10−3. Now, the discrete-time model is
obtained from the continuous-time model given by Eqs. (A6–A11)
using Euler’s forward method, yielding Eqs. (19) and (20).

Appendix B: Nonlinear Model for Spacecraft Attitude
Control Problem

The nonlinear spacecraft model for the attitude control problem in
Sec. IV.B is adopted from [26]. As in Appendix A, for the derivation
of the model, a physical vector is denoted by r and a physical unit
vector is denoted by r̂. The mathematical vector rjF is obtained by
resolving r in a given frameF . Two frames are considered: an inertial
reference frame denoted by I ; and the spacecraft body-fixed frameB,
which is assumed to be a principal frame. In this section, we use
�r � rjB to denote r resolved in frame B. Moreover, the skew-
symmetric matrix associated with �r � �r1; r2; r3�T is defined as

S��r� �

2
664

0 −r3 r2

r3 0 −r1
−r2 r1 0

3
775 (B1)

The orientation of frame B relative to frame I is described by the
3-2-1 Euler angles ψ (yaw), θ (pitch), and ϕ (roll). The continuous-
time kinematic equations are given by [38]2
664

_ϕ

_θ

_ψ

3
775 � 1

cos�θ�

2
664
cos�θ� sin�ϕ� sin�θ� cos�ϕ� sin�θ�

0 cos�ϕ� cos�θ� − sin�ϕ� cos�θ�
0 sin�ϕ� cos�ϕ�

3
775 �ωB∕I

(B2)

where ωB∕I is the angular velocity of frame B relative to I ,
and �ωB∕I � �ω1;ω2;ω3�T .
The spacecraft is equipped with p RWs, where �gi denotes the unit

vector of the ith RWspin axis resolved in theB frame. The spin rate of
the ith RW is νi, and �ν � �ν1; ν2; : : : ; νp�T . Moreover, let

W � � �g1; �g2; : : : ; �gp� (B3)

We assume that all RWs are identical and thin (moments of inertia
about axes transversal to the spin axis are approximately zero). The
moment of inertia about the RW spin axis is denoted by Jw, and the
moment of the inertia matrix of the spacecraft bus resolved in the B
frame is given by J � diag�J1; J2; J3�. The locked inertia is
defined as

�J � J � JwWWT (B4)

The continuous-time rotational dynamics of the spacecraft
described in the B frame are given by [26]

�J _�ωB∕I � S� �ωB∕I �� �J �ωB∕I � JwW �ν� � JwW _�ν � �τsrp (B5)

where _�ωB∕I � �ω
B⋅
B∕I and _�ν � �ν

B⋅
are the time derivatives with respect

to frame B (and resolved in frame B) of the spacecraft and the RW

angular velocity vectors, respectively. Note that �ω
B⋅
B∕I � �ω

I ⋅
B∕I and

�ν
B⋅
≈ �ν

I ⋅
because the RWs are assumed to rotate orders of magnitude

faster than the spacecraft bus, i.e., k�νk1 ≫ k �ωB∕Ik1.

The symbol �τsrp in Eq. (B5) denotes an external torque due to SRP,
which is modeled based on the assumption of a cuboid spacecraft
with six flat panels. With Cdiff as the diffusion coefficient, which is
assumed to be the same for all panels, β � �4∕9�Cdiff and κ �
ΦS�rSC∕S∕rE∕S�−2∕c [39],where c is the speed of light,ΦS is the solar
flux acting on the spacecraft, rE∕S � 1AU is the nominal distance
between the Earth and the sun, and rSC∕S is the distance between the
spacecraft and the sun, assuming rSC∕S � 0.99 AU in this example.
Under the assumption that the SRP acts identically across all points
on the jth panel, the SRP acting on panel j may be expressed as
follows [26,39]:

Pj � −κ�q̂j ⋅ q̂S��q̂j � βq̂S� (B6)

where q̂j is the normal to the surface of the jth panel (pointing
outward from the spacecraft), and q̂S points from the spacecraft
toward the sun. It follows that the SRP torque due to the jth panel

resolved in frame B is given by �τsrp;j � S��rj∕O − �rC∕O�Aj
�Pj, where

�rC∕O � �lx; ly; lz�T denotes the position vector of the spacecraft’s

center of massC relative to the geometric centerO of the cuboid. The
position vector of the geometric center of the jth panel relative toO is
given by �rj∕O, where j ∈ fx�; x−; y�; y−; z�; z−g. Thus, we have
�rx�∕O � − �rx−∕O � �Lx∕2; 0; 0�T , �ry�∕O � −�ry−∕O � �0; Ly∕2; 0�T ,
and �rz�∕O � − �rz−∕O � �0; 0; Lz∕2�T , where the surface areas of the
panels are given by Ax� � Ax− � LyLz, Ay� � Ay− � LxLz, and

Az� � Az− � LxLy. The total SRP torque is the sum of all panel

contributions:

�τsrp �
X6
j�1

�τsrp;jIj (B7)

where Ij � 1 if q̂j ⋅ q̂S > 0, i.e., the jth panel is facing the sun, and

Ij � 0 otherwise.

The nonlinear discrete-time model in Eq. (31) is obtained from the
continuous-timemodel given by Eqs. (B2–B7) using Euler’s forward
method.
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