
Shortest Path Computations under Trajectory Constraints for Ground
Vehicles within Agricultural Fields

Mogens Graf Plessen and Alberto Bemporad

Abstract— This paper addresses the task of finding the short-
est path to a target point on the boundary of an agricultural
working area given a current position and heading of a ground
vehicle within that area. Constraints such as admittance of
turning on the spot, lane- and corridor-constraining motion as
well as repressed area minimization are taken into account.
We distinguish between orchard- and vineyard-like areas and
agricultural fields growing, in particular, rapeseed and cereals.
For the former application, dynamic programming and label-
correcting algorithms are compared and, based on a coordinate
transformation, a heuristic is motivated therefore. For the latter
agricultural field application, we constrain the shortest path
objective by allowing agricultural machinery to only use already
existing tractor-lane traces and thus introduce a repressed area
minimization constraint. Therefore, a customized and novel
shortest path finding method is derived, before its optimality
is proven. The outcome of this work is equally applicable for
autonomous as well as manually driven agricultural ground
vehicles.

I. INTRODUCTION

The agricultural sector is experiencing an increasing de-
gree of automation in both the operation of agricultural
machinery, e.g., autonomous guidance of tractors [1], [2], the
processing of information [3], and the planning of logistical
in-field and inter-field operations [4], [5], [6]. Within this
context, this paper relates to in-field intelligent transportation
systems and logistical optimization. It is applicable both to
support a human driver by providing navigation guidance,
as well as for the high-level path planning task in a fully
autonomous tractor system.

We distinguish between two general types of plantable
spaces, in the following referred to as orchard-like areas
and agricultural fields. The difference is that for the former,
the crop grows on bushes, vines or trees, whereby for the
latter the crop is harvested on the ground and, specifically,
there also exist headlands equally employed for crop growth.
Examples for the former include orchards and vineyards,
whereas the latter comprises in particular wheat and rapeseed
plantation. For agricultural field operation we further focus
on post-seeding operations such as fertilizing and spraying.
The distinction between orchard-like areas and agricultural
fields has implications for the operation of machinery, in
particular, the importance of minimizing repressed ground
area or unimportance thereof.

Shortest path planning is a well known topic in operations
research. Popular approaches include dynamic programming
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(DP) and label correcting algorithms (LCA) such as Dijk-
stra’s method, and A? as a label correcting variation [7].

For existing literature about in-field shortest path planning
we refer the reader to [6] and [4]. They treat path planning of
service units (SU), e.g., transport wagons, while they are sup-
porting primary units (PU), e.g., harvesters, in the harvesting
process. A two-stage optimization method is employed in
[6]. In contrast, [4] extends this work to inter-field operation
and reduces the optimization to one computational stage. Its
focus is on graph modeling with Euclidean distances used as
arc costs. For graph search, Dijkstra’s method is employed
and it is referred to [8] for its implementation. Conceptually,
within our paper for the navigation in orchard-like areas, the
same graph generation approach is taken as in [4]. However,
we additionally motivate a heuristic based on a coordinate
transformation that decreases the number of LCA-iterations
required to find a solution. Additionally, we give details
about our graph search algorithms customized to the given
problem. The main contribution of this paper is the second
part about shortest path navigation in agricultural fields,
using only existing tractor-lane traces for minimization of
repressed ground area. To the best of the authors’ knowledge,
both the application and solution approach have not been
treated before. A customized shortest path algorithm is
presented and its optimality proven.

This paper is organized as follows. In Section II and III we
discuss the navigation in orchard-like areas and agricultural
fields, respectively. The results of numerical experiments
on real-world field-data are stated in Section IV, before
concluding with Section V.

II. NAVIGATION IN ORCHARD-LIKE AREAS

Shortest path planning is of relevance in the coordination
of SUs and PUs, e.g., in the harvesting process. An alterna-
tive application is the navigation in vineyards and orchards.
Relevance arises because of limited hectare coverage and
the need for timely return to a depot or mobile station for
refilling. For general route planning in orchards, see [9].
For experimental field results of an autonomous multi-tractor
system that performs mowing and spraying operations in a
citrus orchard, see [10]. An autonomous navigation system
using a 2D laser scanner for straight line recognition of tree
rows in an orchard application is presented in [11].

In the following, we distinguish between admitting for
the ground vehicle an instantaneous turn on the spot (e.g.,
plant inspection with a small mobile unit) and vice versa the
case of having vehicle motion constrained by small operation
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Fig. 1. Modeling of the transition graph T with N = 16, and illustration
of the heuristic from Section II in a rotated coordinate (xθ, yθ)-frame.

corridors or because of larger towed implements prohibiting
an instantaneous 180◦-turn.

Let
ξi =

[
xi yi

]T
, i = 1, . . . , N

be the position of node i ∈ N = {1, . . . , N} in the Universal
Transverse Mercator (UTM)-coordinate system with xi and
yi representing easting and northing-position, respectively.
The traverse of an orchard or vineyard can be modeled
as a concatenation of transitions between multiple nodes,
see Figure 1. We further define interior lane-segments (e.g.,
13 → 4, 12 → 5, etc.) and perimetric lane-segments (e.g.,
9 → 10, 10 → 11, etc.). Auxiliary nodes (e.g., 15 and 14
in Figure 1) are introduced to ensure unique connections
between any two nodes. A transition graph T can then be
defined as

Tij =

{
dij , if ∃ a direct admissable path i→ j

∞, otherwise,
(1)

where dij denotes the pathlength in meters from node i to
j and i, j ∈ N . Throughout this paper, we label our current
vehicle position (start) and target position (exit) by node
s and e (e.g., nodes 1 and N in Figure 1), respectively.
Ultimately, note that with respect to the definition, interior
lane-segments do not necessarily have to be straights. They
may also be curved and thereby shifted in parallel (freeform).

In case of straight interior lane-segments, let the admiss-
able path-segments and all nodes be described in a new co-
ordinate system defined by

[
xθ,i yθ,i

]T
= R(θ)

[
xi yi

]T
,

with R(θ) being a standard rotation matrix with rotation
angle θ. We select θ such that xθ,m = xθ,n for all m,n ∈ N
representing the end-nodes of all interior lane-segments,

thereby generating a canonical vertical lane grid as further
visualized in Figure 1.

Let us define ∆xθ = |xθ,l−xθ,m|, as the operating width
of the agricultural machine, where nodes l and m represent
end-points of two distinct straight interior lane-segments that
are both connected via a perimetric lane-segment (i.e., Tlm 6=
∞). For freeform interior lane-segments, the operating width
is defined similarly in a curvilinear coordinate system.

For the case of straight interior lane-segments, we abbre-
viate “interior lane end-point” by ilep, and further introduce
variables xmax

θ = maxi∈N xθ,i, xmin
θ = mini∈N xθ,i and

xlast,max
θ = max

i∈N
{xθ,i : xθ,i < max{xθ,s, xθ,e}, xθ,i ilep},

xlast,min
θ = min

i∈N
{xθ,i : xθ,i > min{xθ,s, xθ,e}, xθ,i ilep}.

A. Admittance of Turning on the Spot

For determining the shortest path between node s and e,
we initialize J0(i) = Tie, i ∈ S0 with S0 = {i ∈ N : Tie 6=
∞}, and define our DP-iteration as

Jk(i) = min
j∈Sk−1

{Tij + Jk−1(j)}, i ∈ Sk, (2)

Sk = {i ∈ N : Tij 6=∞, j ∈ Sk−1}, (3)

which is terminated at a particular stage k on satisfaction of
a criterion, that is further discussed at the end of this section.
The shortest path length at DP-iteration stage k from node i
to the exit node e is denoted by Jk(i).

An alternative to DP is LCA [7]. Let dj denote the label
of node j, i.e., the pathlength from starting point s to node j.
The general idea of all LCAs is to progressively find shorter
paths from the start to every other node j and ultimately the
target e. Characteristic is the test

di + Tij ≤ min{dj ,UPPER}, (4)

with UPPER = de. The satisfaction of (4) implies that a
path from node s to j with i immediately before j is shorter
than the current path from s to j and furthermore smaller
than the currently shortest path from s to e. Thus, it is a
candidate for being part of a shortest path from s to e. In
case of satisfaction of (4), node j will be further examined at
one of the following LCA-iterations for being a candidate for
possible inclusion in the shortest path. Besides the sequence
of analysis of candidate nodes (breadth-first and depth-first
search, Dijkstra’s method, etc.), the adaptation of (4) by
usage of heuristics (to constrain nodes added to the candidate
list) is the main driver for reduction in computation times for
the discovery of the shortest path.

In the following we derive a simple heuristic for our
application in case of straight interior lane-segments. It can
be generalized to the case of freeform interior lanes by
transformation to a curvilinear coordinate system.

Proposition 1: Let the shortest path between current
node s and target e be denoted by a list C =
[c1, c2, . . . , cl, cl+1, . . . , cl+L−2, cl+L−1] of nodes with c1 =
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Fig. 2. Illustration of characteristic directed transition curves resulting from natural smoothing by an agricultural machine with limited turning radius.

s and cl+L−1 = e. Then, it holds that

if xθ,s ≤ xθ,e :{
fmin ≤ xθ,c ≤ fmax, ∀c ∈ C,
xθ,cl+1

≥ xθ,cl , ∀1 < l < l + L− 2,
(5)

if xθ,s > xθ,e :{
fmin ≤ xθ,c ≤ fmax, ∀c ∈ C,
xθ,cl+1

≤ xθ,cl , ∀1 < l < l + L− 2
(6)

where fmin = max{xlast,min
θ − ∆xθ, x

min
θ } and fmax =

min{xlast,max
θ + ∆xθ, x

max
θ }.

Proof: Let us consider the case xθ,s ≤ xθ,e. The proof
is analogous for xθ,s > xθ,e, and is by contradiction. By
construction of the transition graph, at every node i ∈ N with
{j ∈ N : Tij 6=∞, i ilep}, there exists at least one j such
that xθ,j ≥ xθ,i and another j such that xθ,j ≤ xθ,i. Thus,
a traverse along the nodes connecting interior lane-segments
of the transition graph in one of the two monotonous xθ-
directions is always possible. Assume now the shortest path
is such that at stage l and node cl we move to node cl+1

with xθ,cl+1
< xθ,cl . Then, to reach node xθ,e > xθ,cl+1

,
the shortest path must pass level xθ,cl at a stage l + h >
l + 1 > l with h > 1 because of the connectivity of the
graph. By the fact that all nodes {i ∈ N , i ilep} can be
reached by traversing monotonously, we have a contradiction
with respect to above assumption about the shortest path. The
relation fmin ≤ xθ,c ≤ fmax, ∀c ∈ C is then by construction
a consequence considering additionally the auxiliary nodes.
This concludes the proof.

Note that Proposition 1 does not explicitly address the
transition directions from and to the starting and exit node,
respectively. In general, no a priori rule can be applied since
starting and exit nodes may also lie in between two interior
lane end-points, and, e.g., in indentations, bays or along
highly non-convex perimetric lane-segments.

Proposition 1 further implies that a shortest path from node
s to e does consequently not include any turning on the spot,
except at most one, at the very beginning at node s.

Proposition 1 can be employed as a heuristic for an
efficient implementation of LCA. Thus, any node entering
the candidate list must satisfy not only (4), but additionally
(5) in case of xθ,s ≤ xθ,e and (6) in case of xθ,s > xθ,e.

For DP, iterations (2) and (3) may be terminated once all
nodes with xθ for which fmin ≤ xθ ≤ fmax holds have been
covered. Alternatively, the DP-solutions for traversing from
all nodes, except s, to the target node e can be stored offline
in a look-up table. Then, online the two nodes neighboring
the current position s are determined and the corresponding
shortest paths starting from both of these neighboring nodes
are looked up. The pathlengths from the current position are
added respectively, and the shorter solution of the two is
ultimately selected.

B. Vehicle Motion Constrained by Operation Corridors

Shortest path planning under consideration of the current
heading direction of the ground vehicle, and not permitting
any turning maneuvers on the spot due to tight operation
corridors, can easily be addressed by constraining the node
immediately following after the starting node. Thus, besides
c1 = s and cl+L−1 = e, we additionally fix c2 within the
shortest path as the node towards the vehicle is invariably
heading given the current starting position and orientation.

III. NAVIGATION IN AGRICULTURAL FIELDS

A. Repressed Area Minimization Constraint

For the coverage of agricultural fields growing, e.g., wheat,
rapeseed and similar crops, the transition from an interior
lane-segment (lane) to the perimetric tractor-lane (headland
path) is in practice smoothed by the agricultural machinery,
mostly due to its limited turning radius. For autonomous
tractor guidance, a corresponding trajectory design approach
is presented in [12]. Once a coverage path has been estab-
lished, see Figure 2 for illustration, it is reasonable to always
follow it at every working iteration on that specific field.
The reason is repressed area minimization. Consider Figure
2(b). Suppose instead of driving along the established traces
31→ 12→ 11, the ground vehicles covers 31→ 12→ 13.
Then, at the interior lane-segment 31 → 12 a small new
tractor trace would be created, thereby repressing the crop
at that location. While it may appear negligible at first sight,
it is avoidable and may become very relevant in the sum
for all lanes. This is since Lloss = 2 · lrepr · wt · ggain, where
Lloss [$], lrepr [m], wt [m] and ggain [$/m2] represent total
monetary loss due to area repression by tractor traces, the
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Fig. 3. Illustration of the deadlocking principle resulting from the re-
pressed area minimization constraint.

total length of repressing tractor traces, the tire width, and
the normalized gain for a particular crop, respectively.

The finding of shortest paths under the repressed area min-
imization constraint may become necessary for the refilling
of fertilizers and spraying applications at a farm basis or a
mobile depot located outside the agricultural field boundary.
In the following, we present a solution approach.

B. Solution Approach and Algorithm

Let the target node (exit) be located somewhere along
the perimetric lane and the current tractor position anywhere
along the tractor traces. We create a transition graph as in (1).
Additionally, we store all admissable transitions composed
of three nodes in a list U . For example, regarding Figure
2(b), transitions 11 → 12 → 31, 14 → 13 → 12, etc. are
allowed, i.e., [11, 12, 31] ∈ U . In contrast, 13 → 12 → 31
and 31→ 12→ 13 are not. We further define η = [s, c2, e],
where c2 analogously to Section II-B.

For our purpose we employ a modified LCA with breadth-
first search, to which we refer as “LCAmod” in the following.
Suppose we are currently analyzing transition i → j for
being element of the shortest path from s to e. Then, in
the basic LCA implementation test (4) is conducted, and, in
case of satisfaction, node j is added to the candidate list for
further analysis of transitions starting from j. In contrast,
in LCAmod, we add j to the candidate list only if (4) and
[ik−1, i, j] ∈ U both hold, whereby ik−1 denotes the current
parent-node (predecessor node) of i. We employ LCAmod as
outlined in Algorithm 1, where “−” denotes one or multiple
unused return values of a function call.

Feasibility or existence of a path from s to e can always
be guaranteed. This is since there is always the solution
of transitioning from s to the perimetric tractor-lane and
consequently following it until the reaching of e. Noting
further that T is created with nonnegative arc costs (here
pathlengths), it is obvious that there exists a shortest path
from s to e. Nevertheless, the single application of LCAmod
is not guaranteed to find it. To see this, Figure 3 serves as
illustration. The transition from node b to a directly will
always be shorter (straight line) than via node i. Thus,
the transition i → a will be discarded when subsequently
analyzed as a candidate. As a result, a deadlock is reached
at node i and no path is determined with segment i →
a → “to e”, eventhough it obviously exists and may even
be optimal. To resolve these (and similar) deadlocks, we
propose a restart of LCAmod. Suppose the node removed

last from the candidate list is i with parent-node b. Then,
instead of attempting to solve η = [s, c2, e] by one LCAmod-
call, we try solving two LCAmod-calls with η(1) = [s, c2, b]
and η(2) = [b, i, e]. A solution to η(1) is guaranteed to be
found by one LCAmod-call. In contrast, η(2) may result in
another second deadlock (which we resolve by another restart
of LCAmod). Nevertheless, the primary deadlock (transition
i → a) is guaranteed to be overcome. It remains to ensure
that the node removed last from the candidate admits together
with its parent-node a transition along the perimetric path.
(For the illustrating example in Figure 3, node a may also be
the node removed last). To ensure this particular transition,
we therefore employ the heuristic, that, in case of a deadlock,
the node removed last must together with its parent represent
a transition along a perimetric lane-segment. Note that more
than one restart may be required to find a path from s to
e dependent on the complexity of the perimetric contour.
Imagine, for example, the case of highly non-convex field
shapes with multiple larger bays or indentations. Note that,
however, when employing specific heuristic field coverage
patterns repeatedly on regularly shaped fields, upper bounds
on required restarts can be given. Some heuristic field
coverage patterns are much more suitable than others, which
is subject of ongoing work.

As outlined above, LCAmod may not immediately in one
iteration find a solution to our shortest path finding problem.
We therefore abbreviate the input-output relation of one
LCAmod-function call as

(UPPER, C, dẽ, i, ik−1) = f(s, c2, ẽ, T,U),

where i and ik−1 refer to the node removed last from the
candidate list and its parent when UPPER =∞, respectively.
The cost for the shortest path transition from s to ẽ is denoted
by dẽ. Usually we have ẽ = e. However, as described
in Algorithm 1, we may also solve for subproblems with
different temporary target nodes. UPPER always refers to
the cost to the original target node e.

Proposition 2: The finding of a shortest path within an
agricultural field under the repressed area minimization con-
straint can be solved optimally by applying Algorithm 1.

Proof: For our application the heading direction is
important. We can distinguish between two cases. If a transi-
tion is from an interior lane-segment (interior-to-perimetric)
then there always exists exactly one option to traverse to
the perimetric lane. In contrast if a transition is from the
perimetric lane (perimetric-to-interior), there are either one
or two options dependent on the immediately ahead available
lane-to-interior tractor trace transition: we can always follow
the perimetric lane, and potentially may turn towards an
interior lane-segment.

Any interior lane-segment connects two parts along the
perimetric lane. Because of the breadth-first search for
the removal of nodes from the LCAmod-candidate list for
further analysis, both of these parts along the perimetric
lane will be analyzed alternately after the first available
interior-to-perimetric transition. Following above reasoning,
this first interior-to-perimetric traversal initiates further a
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unique transition direction, clockwise (CW) or counter-
clockwise (CCW), at two points, referred to as ξ1 and ξ2,
along the perimetric lane. We introduce the binary variable
γ(ξ) ∈ {0, 1} to indicate the transition direction as CW
and CCW, respectively, initiated at ξ. Thus, because of
the aforementioned perimetric-to-interior property, it is now
possible to always follow the perimetric lane starting from
both ξ1 and ξ2. We can now further distinguish between two
scenarios: it may occur γ(ξ1) == γ(ξ2) or γ(ξ1) 6= γ(ξ2). In
the former case, then it is easy to see that the target node is
guaranteed to be reached without having to restart LCAmod.
However, no remark about potential optimality can yet be
made. In the latter case, a deadlock may result, but does not
necessarily have to. In case of a deadlock, it can be resolved
by restarting LCAmod as discussed above. By Bellman’s
principle of optimality the shortest path between two general
locations A and C can in general not be described by the
concatenation of, first, the shortest path from A to another
location B, and, then, the shortest path from B to C.
However, it is the case if a transition from A to C is not
possible without visiting B. Thus, w.r.t. Algorithm 1, the
transition via the deadlock node, achieved by restarting, must
be the only possibility to find a path connecting s and e
given Tc. This is the case since any other possible transition
would have been detected applying the breadth-first search
in combination with the perimetric-to-interior transitions.

It remains to be shown that only the iteration over various
Tc, with different unique transitions to destination e, yields
the shortest path from s to e. Suppose we use T directly.

Algorithm 1
1: Input: transition graph T , node numbers s, c2 and e, and

all lane-segment coordinates.
2: For every node n of Nn nodes adjacent to e:
3: Create a copy Tc of T , cut all connections to e except

n→ e and conduct all following operations on Tc.
4: Initialize UPPER=∞, d(n)e = 0, C(n) = empty list.

Set s̃ = s and c̃2 = c2.
5: While UPPER==∞:
6: (UPPER, C(n)

e(0)
, d

(n)

e(0)
, i, ik−1) = f(s̃, c̃2, e, Tc,U).

7: If UPPER ==∞:
8: (−, Ce(1) , de(1) ,−,−) = f(s̃, c̃2, ik−1, Tc,U).
9: (UPPER, Ce(2) , de(2) ,−) = f(ik−1, i, e, Tc,U).

10: If UPPER ==∞:
11: Concatenate Ce(1) to C(n).
12: Compute d

(n)
e = d

(n)
e + de(1) .

13: Set s̃ = ik−1 and c̃2 = i.
14: Else
15: Concatenate Ce(1) and Ce(2) to C(n).
16: Compute d

(n)
e = d

(n)
e + de(1) + de(2) .

17: End If
18: Else % shortest path found in one iteration.
19: Set C(n) = C(n)

e(0)
and d

(n)
e = d

(n)

e(0)
.

20: End If
21: End While
22: End For
23: Among the Nn solutions, select the one with shortest total

pathlength de from s to e, and return the corresponding
shortest path-coordinates suitable for navigation-aid or a
fully autonomous tractor system application.

Then, a path from s to e may be found. In such a case, all
nodes that resulted in a deadlock will have been discarded
from the candidate list, eventhough these nodes may have
lead to an overall shorter path. This concludes the proof.

IV. NUMERICAL EXPERIMENTS

A. Orchard-like Areas

We consider field data of a real-world orchard in Northern
Germany with an inter-row space of 3.5m (operating width).
The resulting shortest path trajectories are shown in Figure
4. For the case of multiple target nodes being available,
we simply solve the shortest path problem for all of them,
before determining the best solution. Algorithmic runtimes
are given in Table I, whereby the LCA-based methods use
breadth-first search. We compared breadth-first, depth-first
and Dijkstra’s graph search method and found breadth-first to
be fastest. Eventhough the LCA-heuristic reduces the number
of iterations for the given example, it was slightly slower
because of the overhead in additional condition checking.
All simulations are conducted on a laptop running Ubuntu
14.04 equipped with an Intel Core i7 CPU @2.80GHz×8,
15.6GB of memory, and using MATLAB 8.6 (R2015b).

B. Agricultural Fields

The results of simulation experiments for a real-world
agricultural field in Northern Germany with an operating
width (inter-row space) of 24m are displayed in Figure 5.
Numerical results are given in Table II. Interestingly, because
of the stringent repressed area minimization constraint check,
very few nodes were ultimately added to the candidate list
resulting in very fast computation times. For every immediate
neighbor of e, a solution is analyzed as outlined in Algorithm
1. The target node for the third experiment in Figure 5(c)
has three immediate neighbors. In contrast, for the examples
in Figure 5(a) and Figure 5(b), there are only two nodes
immediately neighboring the exit node. This is the reason
for the larger number of 215 required iterations in the third
experiment. As indicated in Figure 5(c), despite a local
proximity of start and target node, the shortest path between
them under the repressed area minimization constraint may
be considerably longer and less intuitive.

V. CONCLUSION

We presented methods for shortest path finding for ground
vehicle operation in agriculturally used areas. It was distin-
guished between interior lanes and perimetric paths. Con-
straints such as admittance of an instantaneous turn of the
vehicle and, the usage of only already existing tractor traces
for repressed area minimization were discussed. Correspond-
ing solution approaches based on dynamic programming and
customized label correcting algorithms were given.

Future work will discuss the influence and suitability of
specific field coverage patterns for shortest path finding.
In addition, tree islands prohibited from trespassing in the
interior of an agricultural working area have to be accounted
for. Another topic may be the comparison of repeated but
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Fig. 4. Resulting shortest paths for the two experiments with an orchard-like area, see Section IV-A. (b) The ground vehicle is initially heading along
the current interior lane towards negative x- and y-direction. There are two admissable exit points. In both cases (a) and (b), the exit node with smaller
y-coordinate resulted in a slightly shorter traveling distance starting from s. The pathlengths for the displayed shortest paths are (a) 108m and (b) 171m.

0 200 400
0

200

400

x [m]

y
[m

]

(a) ψ(+)
0 , lp = 741m, Nrestart = 0.

0 200 400

x [m]

(b) ψ(−)
0 , lp = 1189m, Nrestart = 1.

0 200 400

x [m]

(c) ψ(−)
0 , lp = 1166m, Nrestart = 1.

Fig. 5. Resulting shortest paths for experiments within an agricultural field under the repressed area minimization constraint, see Section IV-B. The initial
heading of the ground vehicle along the current interior lane towards positive and negative x- and y-direction is indicated by ψ(+)
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0 , respectively.

The total pathlength and number of restarts required are lp and Nrestart, respectively. Three different scenarios are displayed.

TABLE I. Comparison of algorithms for the experiment with an orchard-
like area, see Section IV-A and Figure 4. The number of required iterations
and total computation time [ms] is denoted by Niter and τ̄total, respectively.
Results for both Figures 4(a) and 4(b) are given.

DP LCA-baseline LCA-heuristic
Fig. 4(a) Niter/τ̄total 10/70.4 44/4.4 20/6.1
Fig. 4(b) Niter/τ̄total 11/183.7 54/4.3 20/6.5

TABLE II. Comparison of the LCAmod-results for the three experiments
displayed in Figure 5. The total number of required LCAmod-iterations and
corresponding CPU-time [ms] is denoted by Niter and τ̄total, respectively.

Fig. 5(a) Fig. 5(b) Fig. 5(c)
Niter/τ̄total 54/11.5 114/3.3 215/5.2

only partial field coverage with frequent returning to a
(mobile) depot for refilling using shortest path planning
and smaller as well as lighter towed implements, versus
traditional one-run field coverage with larger and heavier
application machinery, e.g., for storage of larger amounts
of pesticides and fertilizers.
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