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Abstract— The optimal control problem of a quarter-
car semi-active suspension has been studied in the past.
Considering that a quarter-car semi-active suspension can
either be modeled as a linear system with state dependent
constraint on control (of actuator force) input, or a bi-
linear system with a control (of variable damping coefficient)
saturation, the seemingly simple problem poses several inter-
esting questions and challenges. Does the optimal control law
derived from the corresponding un-constrained system, i.e.
“clipped-optimal”, remain optimal for the constrained case?
If the optimal control law of the constrained system does
deviate from its un-constrained counter-part, how different
are they? What is the structure of the optimal control
law? In this paper, we attempt to answer some of the
above questions by utilizing the recent development in model
predictive control (MPC) of hybrid dynamical systems. The
constrained quarter-car semi-active suspension is modeled as
a switching affine system, where the switching is determined
by the activation of passivity constraints, force saturation,
and maximum power dissipation limits. Theoretically, over
an infinite prediction horizon the MPC controller corre-
sponds to the exact optimal controller. The performance
of different finite-horizon hybrid MPC controllers is tested
in simulation using mixed-integer quadratic programming.
Then, for short-horizon MPC controllers, we derive the
explicit optimal control law and show that the optimal
control is piecewise affine in state. In particular, we show
that for horizon equal to one the explicit MPC control law
corresponds to clipped LQR. We will compare the derived
optimal control law to various semi-active control laws in
the literature including the well-known “clipped-optimal”.
We will evaluate their corresponding performances for both
a deterministic shock input case and a stochastic random
disturbances case through simulations.

I. I NTRODUCTION

For a quarter-car suspension problem, its ride and
handling performance can be quantified based on the`2
norm of its states and output [1]. Therefore, linear optimal
control theory such as LQ control can be applied to an
(un-constrained) active suspension problem. [2], [3], [4]
suggested a semi-active controller by passing the optimal
active force through a limiter. This control law is known
as the “clipped optimal” law. The question arises if the
“clipped-optimal” is optimal for the constrained case. If
the optimal control law of the constrained system does
deviate from its un-constrained counter-part, how different
are they? And what would be the structure of the optimal
control law?

Different attempts have been made over the years to
answer the questions arisen above. For a deterministic
road disturbance case, the existence of the optimal semi-
active control based on two point boundary problem

has been shown in [5]. [6] showed that the clipped
optimal law cannot be optimal and postulated that the
constrained optimal control maintains a linear feedback
form. However, the solution of optimal control in [6]
involves switching among three state dependent Riccati
equations and must be done through off-line iterations.
To date, to the author’s knowledge, no explicit optimal
control law for semi-active suspension has been shown.

In this paper, we address the above optimal semi-
active suspension problem in the context of model pre-
dictive control (MPC) of hybrid systems. Hybrid systems
are characterized by the interaction between continuous
states, whose dynamics is governed by differential or dif-
ference equations, and discrete states, whose dynamics is
described by finite state machines, logic rules, if-then-else
conditions, etc. Typically, different continuous dynamics
(or “modes”) are associated with different discrete states
and discrete inputs, and mode transitions (or “switches”)
are triggered by variables crossing specific thresholds
(state events), by the elapse of certain time periods (time
events), or by external decisions (input events) [7]. The
MPC control strategy consists of solving at each sampling
time, starting at the current state, an open-loop optimal
control problem over a finite horizon. At the next time
step the optimal control problem is solved starting from
the new state and over a shifted horizon, leading to a
moving horizon policy.

Recently, in [8], [9], [10] optimal control problems for
discrete-time hybrid systems were solved by modeling
the hybrid system as a mixed logical dynamical (MLD)
system. This consists of a set of linear equalities and
inequalities involving both real and (0-1) variables, so
that the MPC control problem can be solved by a mixed-
integer programming (MIP) solver. Despite the fact that
efficient MIP solvers exist, on-line implementation of hy-
brid MPC control may require a substantial computational
effort. This is usually acceptable in simulation while
tuning the controller, but inadequate in fast-sampling
automotive applications. In [10] and [11], it was shown
that the MPC control law can be expressed explicitly as
a collection of affine state feedback control gains and of
corresponding polyhedral cells in the state-space: the cell
the current state belongs to determines the corresponding
gain to be applied. In this way, the computational burden
associated with the hybrid-MPC controller becomes that
of a lookup-table of linear gains.

In this paper we derive the explicit optimal control law
based on MPC and hybrid models, and re-visit various
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control laws such as “clipped-optimal” control law and
“steepest gradient” method [6].

An optimal semi-active suspension problem is de-
scribed in Section II where the performance index and
constraints are defined. Section III reviews two constant
(i.e. non-time varying nor state dependent) feedback
gain control laws discussed in previous literature and
illustrated how the “clipped optimal” solution is not
the optimal one. In Section IV, the constrained quarter-
car semi-active suspension was modeled as a switching
affine system, where the switching is determined by
the activation of passivity constraints, force saturation,
and maximum dissipation limits. Section V discusses the
explicit control law by solving the switching affine sys-
tem through model predictive/hybrid control and shows
the MPC results compared to the well-known “clipped
optimal” control law.

II. SEMI-ACTIVE SUSPENSIONMODEL AND

CONSTRAINED OPTIMIZATION PROBLEM

A. Quarter Car Model
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Fig. 1. Two degree of freedom quarter car model

A two degree of freedom quarter car model equipped
with an adjustable force element is considered here, see
Figure 1. With the assumptions that the springs and
damping are linear and the tire damping is negligible
and with the help of bond graph analysis, the active
suspension system can be represented mathematically as

ẋ = Ax + Bf̄ + Bww (1)

wherex = [x1, x2, x3, x4]
′ ∈ R

4, x1 [m] is the tire
deflection from equilibrium,x2 [m/s] is the unsprung
mass velocity,x3 [m] is the suspension deflection from
equilibrium, x4 [m/s] is the sprung mass velocity,̄f
[N/Kg] is the normalized adjustable force,w [m/s] is the
road velocity disturbance,
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




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with

ρ =
Ms

Mus

, ωus =

√

kus

Mus

, (4)

ωs =

√

ks

Ms

, ζ =
βs

2
√

Msks

, (5)

f̄ =
f

Ms

, (6)

where Mus [kg] is the unsprung mass,Ms [kg] is the
sprung mass,ks [kg/s2] is the suspension spring constant,
kus [kg/s2] is the unsprung mass constant, andβs [kg/s]
is the suspension damping coefficient.

B. Constrained Optimization Problem

If we consider only adjustable force elements that is
constrained by passivity, we have to impose on the model
(1) the passivity constraint

f̄(x4 − x2) ≥ 0. (7)

To illustrate the deviation of the constrained optimal
from clipped optimal, we further restrict the maximum
magnitude that can be generated by the adjustable semi-
active force elements, that is, we consider the saturation
constraint

|f̄ | ≤ σ, (8)

where σ is a constant indicating the maximum force
capacity.

Maximum dissipating power constraint is also consid-
ered:

0 ≤ f̄(x4 − x2) ≤ (2 · ζmax · ωs)(x4 − x2)
2, (9)

whereζmax = 25.5 is the maximum damping ratio.
The objective of our problem is to control the con-

strained adjustable force element to minimize the suspen-
sion performance defined as [1]

J =

∫

(q1x
2
1 + q3x

2
3 + ẋ2

4)dt

=

∫

(xT Qx + ẋ2
4)dt, (10)

where

Q =









q1 0 0 0
0 0 0 0
0 0 q3 0
0 0 0 0









. (11)

Performance index (11) is a combination of the RMS
value of tire deflections, suspension displacements, and
sprung mass accelerations that indicates road holding,
packaging, and comfort respectively. We see that our
semi-active suspension optimization problem can be
viewed as the optimal control problem of a linear system
under linear (8) and nonlinear (7), (9) constraints.
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III. L INEAR CONSTANT FEEDBACK GAIN CONTROL

FOR SUB-OPTIMAL SEMI-ACTIVE SUSPENSIONS

A. Clipped-Optimal

A way to look at the constrained optimization problem
is noting the relation between the performance of the
optimal active suspension and that of any semi-active
suspension [6]:

Jsemi = Jactive,LQR +

∫

∞

0

(f̄a − f̄)2dt, (12)

where

Jactive,LQR = xT
0 Pax0, (13)

f̄a = (BT Pa + S0)x, (14)

S0 = B4A(4,:), (15)

(whereB4 is the 4th element of vectorB and A(i,:) is
the i-th row ofA), x0 ∈ R

4 is the initial condition,Pa is
the solution of the Riccati equation

Pa(A−BS0)+(A−BS0)
T Pa = Q−(ST

0 S0)+PaBBT Pa.

(16)
If one tries to minimize the integrand of the perfor-

mance differences at every instant but not the whole inte-
gral, the control would attempt to follow the active force
whenever it can. As a result, the corresponding desired
semi-active forcef is clipped whenever it exceeds its
constraints due to either passivity or actuator limitations
and can be expressed as

f̄clipped−LQR = sat[f̄a]

= sat[(BT Pa + S0)x]

= sat[KLQx], (17)

wheresat[·] operates on the commanded linear feedback
term and saturated whenever it exceeds the constraints (8)
and (9). Note thatBT Pax is the desirable total suspension
force andf̄p = −S0x is the passive suspension force from
the passive spring and damper.

B. Steepest Gradient

Another way to look at the constrained optimization
problem is noting the relation between the performance
of a passive suspension and that of any semi-active
suspension [6]:

Jsemi = Jpassive +

∫

∞

0

(−2f̄(BT PLx + S0x) + f̄2)dt

= Jpassive +

∫

∞

0

(−2f̄(BT PLx − f̄p) + f̄2)dt

(18)

Similarly, one can relate any semi-active suspension with
the optimal passive suspension as

Jsemi = Jpassive,opt+
∫

∞

0

(−2f̄(BT PL,optx − f̄p,opt) + f̄2)dt, (19)

where

Jpassive = xT
0 PLx0, (20)

Jpassive,opt = xT
0 PL,optx0, (21)

TABLE I

PARAMETER VALUES USED IN SIMULATION

Parameter Value Description
Ts 10 ms Sampling time
ωs 1.5 Hz Sprung mass natural frequency
ωus 10 Hz Wheel-hop natural frequency
ρ 10 Sprung-to-unsprung mass ratio
ζ 0 Damping ratio
σ 1 Maximum force capacity
q1 1100 Weight on tire deflection
q3 100 Weight on suspension deflection

PL is the solution of the Lyapunov equation,

AT PL + PT
L A = Q + AT

(4,:)A(4,:), (22)

PL,opt is the solution of the Lyapunov equation,

AT
optPL + PT

L Aopt = Q + AT
opt,(4,:)Aopt,(4,:), (23)

andAopt is theA matrix with optimal damping, i.e.,βs =
βs,opt.

Since (19) relates the performance of the optimal
passive suspension and that of a semi-active suspension,
one can improve upon the optimal (damping) passive
suspension by minimizing the second term in (19). If one
minimizes the integrand of the performance differences
at every instant (to be negative) but not necessarily the
whole integral (due to state dependent constraint) in (19),
the semi-active force which improves upon the optimal
passive suspension can be expressed as

f̄SGM = sat[BT PL,optx − f̄p,opt]

= sat[(BT PL,opt + S0,opt)x]

= sat[KSGMx] (24)

where S0,opt = B4Aopt(4,:) and sat[·] operates on the
commanded adjustable force and saturates whenever it
exceeds the constraints (8) and (9).

C. Simulation of Sub-Optimal Semi-Active Suspensions

In this section, through two “shock tests” of different
initial conditions, we illustrate that the “clipped optimal”
solution is not the optimal one. To study the optimal
semi-active suspension with on-line control implementa-
tions, discrete time simulations of sampling timeTs were
considered and the weighting factors of design point “A”
described in [1] were used (see Table 1). The semi-active
suspension parameters studied are listed in Table I and the
control feedback gains (described in Sections III-A and
III-B) for the discrete time equivalent of the semi-active
system described in Section II are derived.

With the discrete time implementation, for the “clipped
optimal” control, we have,

KLQ = [−10.4748 0.2446 79.1519 − 3.9295].

For the “steepest gradient” method, we have

KSGM = [1.5325 6.6053 43.8503 − 10.0321].

Figure 2 shows a shock test with initial suspension deflec-
tion or a step change in suspension deflection defined by
the initial conditionx0 = [0, 0, 0.1, 0]′. In Figure 2, we
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Fig. 2. Shock Test of Initial Conditionx0 = [0 0 0.1 0]′ (Solid line:
SGM; Dash-dotted line: clipped-LQR=MPC with horizon N=1; dashed
line: Active-LQR).
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Fig. 3. Shock Test of Initial Conditionx0 = [0.09, 0, 0, 0]′ (Solid
line: SGM; Dash-dotted line: clipped-LQR=MPC with horizonN=1;
dashed line: Active-LQR).

see that the “steepest gradient” method is 17% better (in
terms of performance index) than the “clipped optimal”
solution in this case. It should be pointed out that the
amount of improvement is highly dependent on the initial
condition and constraints. While the “clipped optimal”
method is superior (in terms of the performance index)
to the “steepest gradient” method in other simulation
conditions, Figure 2 offers an important counter example
that “clipped optimal” is at least 17% away from the true
optimal in some cases.

Figure 3 shows a shock test with initial tire deflection
or a step change in tire deflection defined by the initial
conditionx0 = [0.09 0 0 0]′. In Figure 3 we see similarly
that the “steepest gradient” method, being used as a
counter example, illustrates that the “clipped optimal”
solution is at least 16% away from the true optimal in
this particular case.

IV. H YBRID DYNAMICAL MODEL AND MODEL

PREDICTIVE CONTROL

A. Hybrid Dynamical Model

The interest in hybrid systems is mainly motivated by
the large variety of practical situations where physical
processes interact with digital controllers, as for instance
in embedded systems. Several modeling formalisms have
been developed to describe hybrid systems [12], [13],
among them the class of Mixed Logical Dynamical
(MLD) systems [8]. Examples of real-world applications
that can be naturally modeled within the MLD framework
are reported in [14], [15], [8]. The language HYSDEL
(HYbrid Systems DEscription Language) was developed
in [9] to obtain MLD models from of a high level textual
description of the hybrid dynamics. HYSDEL models are
used in the Hybrid Toolbox for Matlab [10] for modeling,
simulating, and verifying the safety properties of hybrid
systems, for designing MPC controllers for linear systems
with constraints and hybrid systems, and for determining
equivalent piecewise affine control functions that can be
immediately prototyped on hardware.

In this section we explain how model (1) with con-
straints (7), (8) can be described as a hybrid dynamical
system, and later we will show how the derived model can
be used to define an optimal control policy which satis-
fies the passivity condition and a maximum dissipative
constraint.

The nonlinear constraint (7) can be translated into a
set of thresholds and logic conditions by introducing two
binary variablesδv, δf̄ such that

[δv = 1] ↔ [x4 − x2 ≥ 0], (25a)

[δf̄ = 1] ↔ [f̄ ≥ 0], (25b)

[δv = 1] → [δf̄ = 1], (25c)

[δv = 0] → [δf̄ = 0]. (25d)

The maximum dissipating power constraint (9) can be
rewritten as

F =

{

f̄ − (2 · 25.5 · ωs)(x4 − x2) if (x4 − x2) ≤ 0
−f̄ + (2 · 25.5 · ωs)(x4 − x2) otherwise

(26a)
whereF ∈ R is an auxiliary continuous variable on which
is imposed the constraint

F ≥ 0. (26b)

By assigning

y =
dx4

dt
=

[

0 2ζωs −ω2
s −2ζωs

]

x − f̄ (27)

as the output of the system, the discrete-time version of
(1), obtained by sampling (1) with the sampling time
Ts (see Table I), constraints (25) and (26) are modeled
as a hybrid system in HYSDEL [9]. Constraint (8) is
included in the optimal control setup. The corresponding
list is reported in the appendix. The HYSDEL compiler
translates differences equations and constraints into the
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MLD system

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t), (28a)

y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t), (28b)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5. (28c)

In our case,x = [x1 x2 x3 x4]
′ ∈ R

4, y ∈ R,
u = [f̄ ] ∈ R. The values of vectorsδ(t) and z(t) are,
respectively, binary and real, and are determined uniquely
by inequalities (28c) oncex(t) andu(t) are fixed [8]. In
our case the binary vector isδ = [δv δf̄ ]′ ∈ {0, 1}2 and
the continuous vector isz = F ∈ R.

B. Optimal Control Problem

We describe how receding horizon optimal control for
hybrid systems [8] can be usefully employed here to
design a control law for the posed semiactive suspension
control problem. The main idea is to setup a finite-
horizon optimal regulation problem for the hybrid MLD
system (28) by solving the receding horizon optimization
problem

minξJ(ξ, x(t)) , x′(N)QNx(N) +

N−1
∑

k=1

x′(k)Qx(k)

+

N−1
∑

k=0

y2(k) (29a)

s. t.















x(0) = x(t)
x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k)
y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k)
E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5,

(29b)

where x(t) is the state of the MLD system at timet,
ξ , [u′

0, . . . , u
′

N−1, δ′0, . . . , δ
′

N−1, z
′

0, . . . , z
′

N−1]
′, andQ

is defined as in (11). The terminal weightQN is defined
as follows. LetKLQ be the LQR gain minimizing

min
∞
∑

k=0

x′(k)Qx(k) + y2(k). (30)

Then,QxN is the Riccati matrix associated with the LQR
problem (30).

Using the Hybrid Toolbox [10], problem (29) is
translated into a mixed integer quadratic program
(MIQP), i.e., into the minimization of a quadratic cost
function subject to linear constraints, where some of the
variables are constrained to be binary.

C. Simulations of MPC Semi-Active Suspensions

The performance of the derived MPC controller was
simulated for the two shock tests described in Section
III-C with no road disturbances as well as for a “white
noise” road velocity disturbance.

The shock tests simulation traces for the hybrid MPC
with a control horizon N=1 were illustrated in Figures
2 and 3, where we see that indeed MPC with N=1 is
identical to the “clipped optimal” control.

In Table II, we show the performance of the MPC
controller (with various design control horizons) with re-
spect to Clipped-LQR and LQR in terms of cost function
and PI values for the shock test with initial condition
x0 = [0 0 0.1 0]′. It improves beyond both ”clipped-
optimal” and ”steepest gradient method” described in
Section III. As we can see the hybrid MPC approach can
show that the “clipped-optimal” control is far from the
optimal solution for this particular initial condition and
constraints. It also shows that the performance of hybrid
MPC is equal to the “clipped-optimal” forN = 1. It turns
out that the hybrid MPC and the “clipped-optimal” laws
are equal forN = 1, as will be described in the next
section and shown in Figures 2 and 3.

In Figure 4 we compare the power generated by the
MPC controller with N=40 with respect to the SGM,
semi-active, and active controllers for the shock test with
initial condition x0 = [0 0 0.1 0]′.

For a “white noise” road velocity disturbance, a random
road disturbance described in [16] is implemented in
discrete time. The road velocityw is a discrete-time
noise signal normally distributed with zero mean and the
standard deviation of

wRMS =

√

2 · π · v · Aroad

Ts

, (31)

whereAroad = 4.9 · 10−6, v = 88 [Kmh] is considered,
andTs = 10 [ms] is the time interval of discretization.

Considering the weights reported in Table I, a simula-
tion time T = 20 s, the above road disturbance, and a
zero initial conditionx0 = [0 0 0 0]′ , we compare the
simulation traces of MPC with N=40 and MPC with N=1
(“clipped-optimal”) in Figure 5.

In Table III, we show the performance of the MPC
controller with respect to Clipped-LQR and LQR in terms
of cost function and PI values when we assume the road
velocity w as a noise signal normally distributed with
mean 0 and standard deviation (31).

The normalized RMS performance of the Active-LQR
was checked and confirmed against the design point “A”
in Figure 8 of [1] since the same weighting factors and
road disturbances were used.

V. EXPLICIT MODEL PREDICTIVE CONTROL

As shown in [11], it is possible to compute an explicit
representationu(t) = f(x(t)) of the receding horizon
control law (29) as a collection of affine gains over
(possibly overlapping) polyhedral partitions of the set of
statesx ∈ R

4. We denote bynr the total number of poly-
hedral cells and corresponding affine gains. The explicit
controller is obtained by using the Hybrid Toolbox for
Matlab [10].

If we consider a control horizonN = 1 we obtainnr =
8 regions. A section of these regions forx1 = x2 = 0 is
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shown in Figure 6. The corresponding control law is

u(x) =































10.4748x1 + 0.2446x2 +79.1519x3 − 3.9235x4

(= KLQ) Regions #1, #6
0 Regions #2, #5
(2 · ζmax · ωs)(x4 − x2) Regions #3, #7
−1 Region #4
1 Region #8

(32)
In regions #1 and #6 the explicit MPC control law is
equal to the LQR gain. Regions #4 and #8 represent the
saturated maximum dissipation constraint (8), whereas
regions #3 and #7 represent the saturated maximum
dissipating power constraint (9).

If we consider the control horizonN = 2 we obtain
62 regions, a few of which are overlapping. Techniques
for reducing the number of regions without changing the
control lawu(x) are currently under development. We do
see that, despite more regions are needed as N increases,
the MPC controller maintain a linear state feedback form
as N increases and approaches the optimal.

TABLE II

SHOCK TEST: MPC COST VALUE FOR DIFFERENT CONTROL

HORIZONS SUBJECTED TOI.C.=[0 0 0.1 0]’.

N MPC Clipped-LQR SGM LQR
1 20.4282 20.4282 17.4944 0.4446
2 20.4054
3 20.3290
4 20.1100
5 19.7380
10 20.9840
12 19.3084
14 18.4842
15 18.5996
16 19.3212
20 18.0764
30 17.1494
40 17.1304

TABLE III

RANDOM NOISE:MPC COST VALUE FOR DIFFERENT CONTROL

HORIZONS.

N MPC Clipped-LQR LQR
1 1.5155 1.5155 0.1874
2 1.5474
3 1.5445
4 1.4579
5 1.4416
10 1.5238
12 1.3079
14 1.3160
15 1.3083
16 1.2886
20 1.2204
30 1.1456
40 1.1462

VI. CONCLUSIONS

For the optimal control problem of a quarter-car semi-
active suspension modeled as a linear system under
state dependent linear and nonlinear constraints, we have
compared different semi-active control laws and proposed
MPC hybrid control tools as a way for obtaining control
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Fig. 4. Power constraint for the shock test with initial condition x0 =
[0 0 0.1 0]′ (solid line: MPC with N=40; dashed line: SGM; dash-dotted
line: Clipped-LQR; dotted line: active-LQR).
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0, x2 = 0).

laws with different degrees of optimality, depending on
the chosen control horizonN . In particular, we have
shown that forN = 1 the hybrid MPC law corresponds
to the “clipped-optimal” control law, obtained by com-
puting the active LQR control law and by clipping it to
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enforce the given constraints. Through the hybrid MPC
with increased control horizon N, we also have shown
that significant deviation of optimal from the “clipped
optimal” can occur. We also confirmed that the optimal
control does have a linear state feedback form.
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APPENDIX

/ * HYSDEL List: semiactive suspension system

(C) 2003-2005 by A. Bemporad, N. Giorgetti,
D. Hrovat, E. Tseng

* /

SYSTEM suspension {

INTERFACE {
STATE {

REAL x1 [-0.05,0.05];
REAL x2 [-5,5];
REAL x3 [-0.2,0.2];
REAL x4 [-2,2];}

INPUT{
REAL u [-10,10];}

OUTPUT {
REAL y;}

PARAMETER {
REAL A1dot,A2dot,A3dot,A4dot,B4dot;

REAL A11,A12,A13,A14,B1;
REAL A21,A22,A23,A24,B2;
REAL A31,A32,A33,A34,B3;
REAL A41,A42,A43,A44,B4;
REAL ws;}

}

IMPLEMENTATION {
AUX {

BOOL sign;
BOOL usign;
REAL F;}

AD {
sign = x4-x2<=0;
usign = u<=0;}

DA {
F={

IF sign THEN u-(2 * 25.5 * ws) * (x4-x2)
ELSE -u+(2 * 25.5 * ws) * (x4-x2)};}

OUTPUT {
y=A1dot * x1+A2dot * x2+A3dot * x3

+A4dot * x4+B4dot * u;}
CONTINUOUS {

x1 = A11 * x1+A12 * x2+A13 * x3
+A14* x4+B1* u;

x2 = A21 * x1+A22 * x2+A23 * x3
+A24* x4+B2* u;

x3 = A31 * x1+A32 * x2+A33 * x3
+A34* x4+B3* u;

x4 = A41 * x1+A42 * x2+A43 * x3
+A44* x4+B4* u;}

MUST {
sign -> usign;
˜sign -> ˜usign;
F>=0;}

}
}
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