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Abstract— This paper illustrates the application of hybrid
modeling and receding horizon optimal control techniques
to the problem of air-to-fuel ratio and torque management
in advanced technology gasoline direct injection stratified
charge (DISC) engines. A DISC engine represents an exam-
ple of a constrained hybrid system, because it can operate
in two discrete modes (stratified and homogeneous) and
because the mode-dependent constraints on the air-to-fuel
ratio and on the spark timing need to be enforced. The paper
extends the prior work by the authors [1] and reports the
development of an explicit controller which implements the
optimal solution using piecewise affine functions of the state,
thereby avoiding the need for on-line optimization. Strategies
to simplify the explicit controller by reducing the number
of regions in its characterization are discussed.

I. INTRODUCTION

In direct-injection stratified charge (DISC) engines the
operating mode changes between stratified combustion
(with non-homogeneous fuel-air mixture across the cylin-
der) and homogeneous combustion (with homogeneous
fuel-air mixture across the cylinder). This combustion
mode changes is effected by changing the fuel injection
timing between late and early. Due to the reduction in
pumping losses in the stratified mode, the fuel economy
can be improved, but the stratified operation can only be
sustained in a restricted part of the engine operating range.

In DISC engines the torque and air-fuel ratio need to be
seamlessly and optimally controlled through coordination
of throttle, spark timing and fuelling with the combustion
mode selection. In addition, the mode-dependent state and
control constraints on the ranges of the air-to-fuel ratio
and spark timing need to be enforced.

The existing approaches to this control problem rely
on logic-based switching applied to a family of low
level controllers, see [2], [3] and references therein.
The construction of the switching logic and low level
controllers in these references is, to a large extent, DISC
engine-specific. From the standpoint of reducing time-to-
market, more systematic control design procedures which
can be effortlessly applied to various (DISC and non-
DISC) engine and powertrain configurations with multiple
operating modes and constraints are of significant interest.

The hybrid modelling and the Receding Horizon (RH)
optimal control framework discussed in this paper pro-
vides, in principle, a systematic control design procedure
of this kind. In it, the receding horizon controller is first

tuned in simulations on Mixed Logic Dynamical (MLD)
characterization of the system dynamics. The tuning
process involves adjusting the horizon and the weights in
the cost function (which act as knobs with direct influence
on shaping the closed-loop response) until the desired
performance is achieved. Then the equivalent explicit
piecewise linear form of the receding horizon controller
is computed off-line by using a multi-parametric solver.
If the explicit form of the receding horizon controller has
a sufficiently small number of regions, it may be suitable
for implementation in the automotive micro-controllers,
which, in comparison to the regular PCs, have limited
computational capabilities.

In the prior work [1], we already developed a re-
ceding horizon controller for the DISC engine model.
This controller utilized on-line optimization to seamlessly
coordinate throttle, fuel, spark timing and combustion
mode selection so that to effect torque and air-to-fuel ratio
tracking while enforcing pointwise-in-time constraints on
the air-to-fuel ratio and spark timing. In [1] we have
also shown that the transient response can be shaped
by changing the weights in the cost function; in this
way the controller can switch between torque tracking
as the primary objective and air-to-fuel ratio tracking as
the primary objective, depending on the engine operating
conditions.

In the present paper we discuss the explicit form of
the receding horizon controller and measures taken to
reduce the number of the regions in its representation.
They include the use of a 2-norm cost function instead
of an ∞-norm one (as in [1]) and the treatment of the
reference commands as states with constant dynamics and
not the inputs.

The paper is organized as follows. A mathematical
model of the DISC engine is summarized in Section II.
The hybrid modeling and the optimal control strategy
are discussed in Sections III and IV, respectively. In
Section V we report the simulation results. The imple-
mentation of the control law in the explicit piecewise
affine form is discussed in Section VI. Finally, Section VII
contains some concluding remarks.

II. NONLINEAR MODEL

The controller development and the simulation results
are based on a control-oriented, mean-value DISC engine
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model developed in [4], [5]. For simplicity, the model is
restricted to zero exhaust gas recirculation rate and engine
speed of 2000 rpm. The intake manifold pressure and
mass flow rates into the intake manifold are related by
the following equation

ṗm = cm (Wth −Wcyl) = cm (Wth − kcyl · pm) ,
(1)

where pm [kPa] is the intake manifold pressure; cm =
RTm

Vm
, Tm [K] is the intake temperature, R is the dif-

ference of specific heats for air [kJ/kg/K], and Vm is
the intake manifold volume [m3]; Wth is the mass flow
rate through the electronic throttle [kg/sec] which is a
nonlinear function of pm obtained from a standard orifice
flow representation; Wcyl = kcylpm is the mass flow rate
of air into the engine cylinders [kg/sec], and kcyl is a
pumping coefficient that depends on the engine speed
and intake temperature. The equation (1) for the manifold
filling dynamics represents the differentiated ideal gas law
under isothermal conditions.

The in-cylinder air-to-fuel ratio is defined as

λ =
Wcyl

Wf
=

kcylpm

Wf
, (2)

where Wf is the mass flow rate of fuel into the engine
cylinders [kg/sec].

The engine brake torque is a sum of three terms,

τ = τmfr + τpump + τind, (3)

where τmfr [Nm] and τpump [Nm] are the mechanical
friction torque and the pumping torque, respectively, and
are modelled by affine functions of pm which also depend
on the engine speed. The τind [Nm] is the indicated
torque,

τind = (θa + θb(δ − δmbt)2)Wf , (4)

where θa, θb, δmbt are affine functions of λ that depend on
the spark timing δ and the combustion mode ρ (ρ = 0 cor-
responds to the stratified mode, while ρ = 1 corresponds
to the homogeneous mode). The binary character of ρ
is the main source of “hybridness” in the DISC engine
model.

The goal of this paper is to design a control law
that generates the inputs Wth, Wf , δ, ρ as a function
of the measurements or estimates of pm, τ and λ so
that the latter follow some desired reference trajectories
pmref , τref and λref . In addition, constraints must be
satisfied which enforce engine operation within a feasible
range. Because of the presence of the binary input ρ, we
will solve the control problem within a hybrid systems
framework. To this end, we need a hybrid model of the
DISC engine.

III. HYBRID MODEL FOR CONTROL

Hybrid systems provide a unified framework for
describing processes evolving according to continuous
dynamics, discrete dynamics, and logic rules [6]–[12].
The interest in hybrid systems is mainly motivated by
the large variety of practical situations where physical
processes interact with digital controllers, as for instance

in embedded systems. Several modeling formalisms
have been developed to describe hybrid systems [13],
[14], among them the class of Mixed Logical Dynamical
(MLD) systems [15]. Examples of real-world applications
that can be naturally modeled within the MLD framework
have been reported in [15]–[17]. The language HYSDEL
(HYbrid Systems DEscription Language) was developed
in [18] to obtain MLD models from a high level
textual description of the hybrid dynamics, and it will
be exemplified in this paper. The model described in
Section II is transformed into an equivalent discrete-time
hybrid model through the following steps:

1) Linearization and time-discretization. We define two
operating points, one for the stratified mode: τd(0) = 40
Nm, λd(0) = 35, δd(0) = 16 deg, pd

m(0) = 74.86 kPa,
and the other one for the homogeneous mode: τd(1) = 40
Nm, λd(1) = 14, δd(1) = 14 deg, pd

m(1) = 35.52 kPa
with W d

f (ρ) = kcylp
d
m(ρ)

λd(ρ)
. We linearize the model

(1), (2), (3) around these two points. The resulting linear
models are then discretized in time using the exact
sampling. Denoting by T = 0.01 sec the sampling period
and by t the current time instant, Equation (1) becomes

pm(t + 1) = e−Tcmkcylpm(t)+
1

kcyl
(1− e−Tcmkcyl)Wth(t), (5)

while Equations (2) and (3) become

λ(t) =λd(ρ) +
kcyl

W d
f (ρ)

p̃m(t) −kcylp
d
m(ρ)

W d
f (ρ)2

W̃f (t), (6)

and

τ(t) = τd(ρ) +
∂τ

∂pm

∣∣∣∣∣
d(ρ)

p̃m +
∂τ

∂Wf

∣∣∣∣∣
d(ρ)

W̃f

+
∂τ

∂δ

∣∣∣∣∣
d(ρ)

δ̃ +
∂τ

∂λ

∣∣∣∣∣
d(ρ)

λ̃, (7)

where [·]d denotes the operating point for variable [·],
[̃·] = [·] − [·]d, (ρ) denotes the dependence on the mode
ρ of the engine, and the notation

∣∣
d(ρ)

denotes the value
at pd

m(ρ), λd(ρ), W d
f (ρ), δd(ρ).

2) Integrators. The model is augmented by two integra-
tors to obtain zero offsets in steady-state

ετ (t + 1) = ετ (t) + T · (τref − τ), (8a)
ελ(t + 1) = ελ(t) + T · (λref − λ), (8b)

where [·]ref represents the reference value for variable
[·]. In particular, this augmentation of the integrators
ensured zero offsets in τ and λ from τref and λref

on the nonlinear simulation model, despite some model
mismatch between it and the MLD design model.

The hybrid model that will be used later for control
design has pm, ετ , ελ as state variables, τ , λ as output
variables and Wth, Wf , δ, ρ as manipulated variables.
The references τref , λref are passed to the hybrid model
as “states” with constant dynamics. This represents the
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simplest way to introduce references into HYSDEL and
reduce the number of free parameters in the computation
of explicit controller as we will further discuss in Section
VI.

3) Constraints. Constraints are added to guarantee the
correct operation of the engine:

a. A constraint on the air-to-fuel ratio. It is due
to engine roughness and misfiring at air-to-
fuel ratios that are too lean, and increases in
hydrocarbon and smoke emissions at air-to-fuel
ratios that are too rich. The constraint takes the
form

λmin(ρ) ≤ λ(t) ≤ λmax(ρ). (9)

Note that the limits λmin(ρ), λmax(ρ) depend
on the combustion mode ρ.

b. A constraint on the mass flow rate through the
electronic throttle, 0 ≤ Wth ≤ K, where K
is assumed to be a constant representing the
physical limits of the throttle1. We subsequently
treat Wth as a control input and assume that the
throttle position is backtracked to provide the
specified value of Wth.

c. A constraint on the spark timing δ(t) to avoid
excessive engine roughness:

0 ≤ δ(t) ≤ δmbt(λ, ρ), (10)

where δmbt(λ, ρ) is modeled as a piecewise
affine function of λ and ρ, i.e., δmbt(λ, ρ) =
k1λ + k2ρ + k3.

The above dynamic equations and constraints have been
modeled in HYSDEL . The corresponding list is reported
in the Appendix. The HYSDEL compiler translates dif-
ference equations and constraints into the MLD system,

x(t + 1) = Ax(t) + B1u(t) + B2γ(t) + B3z(t), (11a)
y(t) = Cx(t) + D1u(t) + D2γ(t) + D3z(t), (11b)

E2γ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5. (11c)

In our case, x = [pm ετ ελ τref λref ] ∈ R5, y = [λ τ ]′ ∈
R2, u = [Wth Wf δ ρ]′ ∈ R3 × {0, 1}, where Wth,
Wf , δ, ρ are the manipulated variables and τref , λref are
the references for the integrators, and γ, z are auxiliary
variables introduced for the translation of the constraints
and dynamics into (11). In general, γ and z are, respec-
tively, a binary and a real auxiliary vector whose values
are determined uniquely by the inequalities (11c) once
x(t) and u(t) are fixed [15]. In our case the binary vector
γ is empty, as no additional Boolean variables are needed
to describe the hybrid dynamics of the DISC engine, and
z ∈ R5.

1In a more complete approach to this problem K may be represented
as a piecewise affine function of pm that approximates the orifice
equation; this more elaborate representation for K can also be handled
with our design approach.

IV. ONLINE RH CONTROLLER

Receding horizon control has found many industrial
applications and it has been successfully applied to hybrid
dynamical systems [15], [16]. In this section we show how
we can derive a RH controller for the DISC engine. In
the RH philosophy at each instant of time a finite horizon
open loop optimization problem is solved, by assuming
the current state as the initial condition. The optimization
results in a control sequence and only the first element of
this sequence is applied to the hybrid system. This process
is iteratively repeated at each subsequent time instant
thereby providing a feedback mechanism for disturbance
rejection and reference tracking. The optimal control
problem is defined as:

min
ξ

J(ξ, x(t)) ,
N−1∑

k=0

‖Ruk‖2 + ‖Qyk‖2 +
N∑

k=1

‖Sxk‖2,

(12a)

subj. to





x0 = x(t),
xk+1 = Axk + B1uk + B2γk + B3zk,
yk = Cxk + D1uk + D2γk + D3zk,
E2γk + E3zk ≤ E1uk + E4xk + E5,

(12b)

where N is the control horizon, x(t) is the state
of the MLD system at time t, ξ , [u′0, γ

′
0, z

′
0, . . . ,

u′N−1, γ
′
N−1, z

′
N−1]

′ is the optimization vector, Q, R and
S are weighting matrices, and ‖ · ‖2 is the 2-norm (i.e.,
‖Qy‖2 = y′Qy). In our case,

yk = [τk − τref , λk − λref ]′, (13a)
uk = [Wth,k −Wth,ref , Wf,k −Wf,ref ,

δk − δref , ρk − ρref ]′, (13b)
xk = [pm,k − pm,ref , ετ , ελ]′, (13c)

and

Q =
(

qτ 0
0 qλ

)
, R =




rWth
0 0 0

0 rWf
0 0

0 0 rδ 0
0 0 0 rρ


 ,

S =




spm 0 0
0 sετ 0
0 0 sελ


 . (14)

The reference values for Wth,ref , Wf,ref , and pm,ref

are calculated to match in steady-state the values of τref ,
λref , δref and ρref according to the specified feed-
forward maps.

In (12) we assume that possible physical and/or logical
constraints on the variables of the hybrid system are
already included in the mixed-integer linear constraints
of the MLD model, as they can be conveniently modeled
through the language HYSDEL . Problem (12) can be
translated into a mixed integer quadratic program (MIQP),
i.e., into the minimization of a quadratic cost function
subject to linear constraints, where some of the variables
are constrained to be binary, see [19] for details.

Since the RH controller based on the optimal control
problem (12) can not be directly implemented on standard
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Fig. 1. Left: Time history of engine brake torque τ(t) (dashed line:
desired value, solid line: response of the nonlinear model). Right: Time
history of air-to-fuel ratio λ(t) (dashed line: desired value, solid line:
response of the nonlinear model, dash-dot line: A/F bounds).

automotive control hardware, as it would require an MIQP
to be solved on-line, the design of the controller is
performed in two steps. First, the RH controller is tuned
in simulation using MIQP solvers, until the desired per-
formance is achieved. Then, for implementation purposes,
the explicit piecewise affine form of the RH law (see Sec-
tion VI) is computed off-line by using a multiparametric
mixed integer quadratic programming solver [20]. The
value of the resulting piecewise affine control function
is identical to the one which would be calculated by the
RH controller designed in the first phase, but the on-line
complexity is reduced to the simple function evaluation
instead of on-line optimization.

V. SIMULATIONS

The closed-loop behavior of the DISC engine under RH
control has been evaluated through the simulations on the
nonlinear model (1)–(4). We selected the control horizon
as N = 1, and we set the weights as

qτ = 10, qλ = 0.01,

rWth
= 1, rWf

= 1, rδ = 1, rρ = 0.1,

spm = 0.1, sετ = 104, sελ
= 10.

Note that we selected qτ much greater than qλ and set
sετ to a large value to emphasize torque tracking as the
primary objective. The weight rρ was set to a sufficiently
small value to leave enough freedom to choose the best
mode at each time instant, yet not too small in order to
avoid chattering behavior.

We have assumed the following mode-dependent
bounds on the air-to-fuel ratio:

(ρ = 0)
{

λmax = 38
λmin = 19 , (ρ = 1)

{
λmax = 21
λmin = 13 .

The resulting closed-loop responses are shown in Fig-
ures 1–3.

The simulation scenario starts in the homogeneous
combustion mode. A step reduction in the torque com-
mand occurs at t = 0.5 sec, in response to which the
controller changes the combustion mode from homoge-
neous to stratified synergistically with the adjustment
of throttle, spark and fuel rate, thereby realizing fuel
economy benefits of stratified operation. At t = 1 sec
the air-to-fuel ratio command changes to the value of
14 (e.g., in response to a request to purge the Lean
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Fig. 2. Left: Time history of combustion mode ρ(t). Right: Time
history of intake manifold pressure pm(t) (dashed line: desired value,
solid line: response of the nonlinear model).
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Fig. 3. Left: Time history of fuel mass flow rate Wf (t) (dashed line:
desired value, solid line: response of the controller). Right: Time history
of spark retard from MBT, δ(t)− δMBT (t).

NOx Trap), which causes the controller to switch the
combustion mode back to homogeneous synergistically
with the adjustment of throttle, spark and fuel.

It took approximately 8 sec to complete the simulations
on a PC Intel Centrino 1.2 GHz running the Hybrid
Toolbox for Matlab [19] and the MIQP solver of CPLEX
[21], that is about 32 msec per time step and slower than
the real time. Therefore, the receding horizon optimal
controller which uses the on-line optimization cannot be
directly implemented on the automotive hardware, both
because of the excessive CPU requirements and software
complexity. This problem is dealt with in the next section.

VI. EXPLICIT RH CONTROLLER

We are interested in an explicit representation [22],
u(t) = f(θ(t)), of the receding horizon control
law (12), with u = [Wth Wf δ ρ]′ and θ =
[pm ετ ελ τref λref pm,ref Wth,ref Wf,ref δref ]′. Such an
explicit controller can be obtained by using the Hybrid
Toolbox for Matlab [19] and it can be viewed as a
collection of affine gains over (possibly overlapping)
polyhedral partitions (regions) of the set of parameters.

For a control horizon N = 1 we started with an initial
control design containing 490 regions and succeeded in
reducing this number to 75 using the following design
steps. Firstly, we switched to a 2-norm cost function in
(12a) instead of the ∞-norm cost function (which was
used by us earlier in [1]). We have found that the 2-
norm cost function provided better on-line performance
and also resulted in a smaller number of regions because
of the reduction in the number of constraints in the
multi-parametric problem. Secondly, we implemented the
controller in a semi-explicit form. Specifically, the Hybrid
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Fig. 4. Cross-sections of the controller regions by pm-Wf,ref plane and
the simulated closed-loop trajectory with time stamps. Upper subplot:
ρ = 1, lower subplot: ρ = 0.

Toolbox was applied to produce explicit representations
of two control laws for the continuously-valued inputs
Wth,Wf and δ separately for ρ = 0 and ρ = 1. The
optimal value for ρ was then selected on-line based on the
comparison of the value functions for ρ = 0 and ρ = 1.
Finally, we chose to treat the references of the integrators
as states and not inputs; this reduced the number of free
parameters and led also to the reduction in the number of
regions.

In Figure 4 we illustrate the cross-sections of the
explicit controller regions for ρ = 0 and ρ = 1 cases
by the pm-Wf,ref plane assuming that ετ = 0, ελ = 0,
τref = 50 Nm, λref = 20, pm,ref = 51.84 kPa,
Wth,ref = 15.55, and δref = 16. In Figure 4 we also show
the trajectory of (pm(t),Wf,ref (t)) corresponding to the
simulations in Figures 1–3. Note that as ρ changes the
trajectory migrates from the upper plot to the lower plot
and back at 0.5 sec and 1.15 sec, respectively. In Figure
5 we illustrate the cross-sections of the explicit controller
regions for ρ = 0 and ρ = 1 cases by the τref -λref

plane, assuming that pm = 51.84 kPa, ετ = 0, ελ = 0,
pm,ref = 51.84 kPa, Wth,ref = 15.55, Wf,ref = 0.78 and
δref = 16. The (τ(t), λ(t)) trajectory corresponding to
the simulations in Figures 1–3 is also shown.

While the on-line solution of the RH optimal control
problem and its explicit off-line solution provide the same
result, the explicit controller requires a lower computa-
tional effort. The simulations, in fact, take just 0.52 sec,
which is about 2 msec per time step whereas the sampling
period is T = 10 msec. The Hybrid Toolbox for Matlab
[19] provides an option for automatically generating the
controller C-code which can then be used for the em-
bedded implementation in the production microcontroller.
This approach was pursued2, requiring 43 Kb of ROM
(this is a total size of code and constants) and execution
time of 3 msec to calculate u(t).

If we consider a control horizon N = 2 the number
of regions increases to 5637. In Figure 6 we report the

2The authors wish to acknowledge Mr. Craig Cox of Ford Motor
Company for performing the production microcontroller assessment.
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Fig. 5. Cross-sections of the controller regions by τref -λref plane and
the simulated closed-loop trajectory with time stamps. Upper subplot:
ρ = 0, lower subplot: ρ = 1.
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Fig. 6. Left: Time history of engine brake torque τ(t) for N = 2
(dashed line: desired value, solid line: response of the nonlinear model).
Right: Time history of air-to-fuel ratio λ(t) for N = 2 (dashed line:
desired value, solid line: response of the nonlinear model, dash-dot line:
A/F bounds).

simulations for this control horizon. The closed loop
behavior with N = 2 is very similar to the case N =
1 which suggests that the control horizon N = 1 is
adequate.

VII. CONCLUSIONS

In this paper we described an approach to implementing
a receding horizon (RH) hybrid optimal controller for the
DISC engine. The controller simultaneously manipulates
discrete and continuous control inputs of the engine to
effect torque and air-to-fuel ratio tracking and to enforce
pointwise-in-time state and control constraints on the air-
to-fuel ratio and spark timing. The explicit implemen-
tation of the RH controller, in the form of a piecewise
affine control law computed off-line, avoids the need
for on-line optimization altogether. Still, a large number
of regions in the explicit controller implementation may
make it prohibitive for the memory and chronometrics
constrained automotive micro-controllers. Strategies to
reduce the number of regions in the polyhedral partition
of the explicit controller have been discussed in the paper
and their application has been shown to reduce the number
of regions by factor of more than 6.

VIII. APPENDIX: HYSDEL MODEL OF DISC ENGINE

/*
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HYSDEL model of open-loop DISC engine.

Model: Courtesy of Ford Research Laboratory
(D. Hrovat and I. Kolmanovsky)

Purpose: Used to generate MPC controller

(C) 2003-2005 N. Giorgetti, A. Bemporad.
*/

SYSTEM hysdisc{
INTERFACE{

STATE{
REAL pm [1, 101.325];
REAL xtau [-1e3, 1e3];
REAL xlam [-1e3, 1e3];
REAL taud [0, 100];
REAL lamd [10, 60];}

OUTPUT {
REAL lambda;
REAL tau;}

INPUT{
REAL Wth [0,38.5218];
REAL Wf [0, 2];
REAL delta [0, 40];
BOOL rho;}

PARAMETER{
REAL Ts;
REAL pm1, pm2;
REAL l01, l02, l0c;
REAL l11,l12,l1c;
REAL t01,t02,t03,t04,t05;
REAL t11,t12,t13,t14,t15;}

}
IMPLEMENTATION{

AUX{
REAL lam;
REAL taul;
REAL lmin,lmax;
REAL dmbt;}

DA{
lam={ IF rho THEN l11*pm+l12*Wf+l1c

ELSE l01*pm+l02*Wf+l0c };
taul={IF rho THEN t11*pm+t12*Wf+
t13*delta+t14*lam+t15

ELSE t01*pm+t02*Wf+
t03*delta+t04*lam+t05 };

lmin ={IF rho THEN 13 ELSE 19};
lmax ={IF rho THEN 21 ELSE 38};
dmbt ={IF rho THEN -28.74+3.1845*lam

ELSE 14.0877+0.2810*lam};}
CONTINUOUS{

pm=pm1*pm+pm2*Wth;
xtau=xtau+Ts*(taud-taul);
xlam=xlam+Ts*(lamd-lam);
taud=taud;
lamd=lamd;}

OUTPUT {
lambda=lam;
tau=taul;}

MUST{
lmin-lam <=0;
lam-lmax <=0;
delta-dmbt <=0;}

}
} REFERENCES

[1] A. Bemporad, N. Giorgetti, I. Kolmanovsky, and D. Hrovat. A
hybrid system approach to modeling and optimal control of disc
engines. In Proc. of IEEE Conf. on Decision and Control, pages
1582–1587, Las Vegas, Nevada, 2002.

[2] J.Sun, I.V. Kolmanovsky, J. Dixon, and M. Boesch. Control of
disi engines: Analytical and experimental investigations. In Proc.
of 3rd IFAC Workshop on Advances in Automotive Control, pages
249–254, Karsruhe, Germany, 2001.

[3] M.V. Druzhinina, I.V. Kolmanovsky, and J. Sun. Hybrid control
of a gasoline direct injection engine. In Proc. of IEEE Conference
on Decision and Control, Phoenix, Arizona, 1999.

[4] J.Sun, I.V. Kolmanovsky, D. Brehob, J. Cook, J. Buckland, and
M. Haghgooie. Modelling and control problems for gasoline direct
injection engines. In Proc. of IEEE Conf. Control Applications,
pages 471–477, Hawaii, 1999.

[5] I.V. Kolmanovsky, M.V. Druzhinina, and J. Sun. Nonlinear torque
and air-to-fuel ratio controller for direct injection stratified charge
gasoline engines. In Proc. of AVEC 2000, 5-th International
Symposium on Advanced Vehicle Control, Ann Arbor, Michigan,
2000.

[6] P.J. Antsaklis. A brief introduction to the theory and applications
of hybrid systems. Proc. IEEE, Special Issue on Hybrid Systems:
Theory and Applications, vol. 88, pages 879–886, 2000.

[7] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability
specifications for hybrid systems. Automatica, vol. 35, pages 349–
370, 1999.

[8] M.S. Branicky. Studies in hybrid systems: modeling, analysis, and
control. PhD thesis, LIDS-TH 2304, Massachusetts Institute of
Technology, Cambridge, MA, 1995.

[9] M.S. Branicky and S.K. Mitter. Algorithms for optimal hybrid
control. In Proc. of IEEE Conf. on Decision and Control, New
Orleans, USA, 1995.

[10] K. Gokbayrak and C.G. Cassandras. A hierarchical decomposition
method for optimal control of hybrid systems. In Proc. of IEEE
Conf. on Decision and Control, pages 1816–1821, Phoenix, AZ,
1999.

[11] S. Hedlund and A. Rantzer. Optimal control of hybrid systems. In
Proc. of IEEE Conf. on Decision and Control, pages 3972–3976,
Phoenix, AZ, 1999.

[12] C.C. Pantelides, M.P. Avraam, and N. Shah. Optimization of
hybrid dynamic processes. In Proc. of American Contr. Conf.,
2000.

[13] W.P.M.H. Heemels, B. De Schutter, and A. Bemporad. Equiv-
alence of hybrid dynamical models. Automatica, vol. 37, pages
1085–1091, July 2001.

[14] G. Labinaz, M.M. Bayoumi, and K. Rudie. A survey of modeling
and control of hybrid systems. In Proc. of 13th IFAC World
Congress, 1996.

[15] A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics, and constraints. Automatica, vol. 35, pages 407–427,
1999.

[16] F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat. A hybrid
approach to traction control. In Hybrid Systems: Computation
and Control, Lecture Notes in Computer Science. Springer Verlag,
2001.

[17] A. Bemporad, F.D. Torrisi, and M. Morari. Discrete-time hybrid
modeling and verification of the batch evaporator process bench-
mark. European Journal of Control, vol. 7, pages 382–399, 2001.

[18] F.D. Torrisi and A. Bemporad. Hysdel - a tool for generating com-
putational hybrid models. IEEE Trans. Contr. Systems Technology,
vol. 12, pages 235–249, March 2004.

[19] A. Bemporad. Hybrid toolbox for real time applications. Technical
report, University of Siena, 2004.

[20] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The
explicit linear quadratic regulator for constrained systems. Auto-
matica, vol. 38, pages 3–20, 2002.

[21] ILOG, Inc. CPLEX 9.0 User Manual. Gentilly Cedex, France,
2003.

[22] F. Borrelli, M. Baotic, A. Bemporad, and M. Morari. Constrained
optimal control of discrete-time linear hybrid systems. In Proc. of
American Control Conference, 2003.

Igor Sebo
                                                                                              252


	Main Menu
	Table of Contents
	Author Index
	Introductory Pages
	----------------------------
	Search CD-ROM
	Next Search Result
	Print



