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A B S T R A C T

This article proposes using the extended Kalman filter (EKF) for recurrent neural network (RNN) training
and fault estimation within a parabolic-trough solar plant. The initial step involves employing an RNN to
model the system. Given the challenge of fault discernibility in the collectors, parallel EKFs are employed to
reconstruct the parameters of the faults. The parameters are used independently to estimate the system output,
and the type of fault is isolated based on the estimation errors using another feedforward neural network. To
evaluate the effectiveness of the methodology, simulations are conducted on a loop of the ACUREX plant with
irradiances from sunny and cloudy days. The results reveal a fault classification accuracy of approximately
90% and a fault reconstruction error below 3%, with even better accuracies in the cloudy dataset than in the
sunny dataset.
1. Introduction

In modern industries, many autonomous systems are integrated into
processes, resulting in an increasing number of sensors and actuators
that may fail unexpectedly. However, this progress also brings with it
concerns about safety and reliability [1], a focus that is also crucial
for today’s companies [2]. Therefore, there is a need to automatically
detect faults and failures in the system [3]. To this end, the field of fault
detection and diagnosis (FDD) aims to determine the occurrence of a
fault and reveal some relevant information about it. Fault diagnosis is
further categorized into fault isolation, which locates and assesses the
type of fault, and fault identification, which determines its magnitude.

FDD is a rapidly expanding field with diverse applications across
various industrial sectors. For instance, Molinié et al. [4] propose
an unsupervised clustering method to identify anomalies in industrial
systems. Their approach involves recursively partitioning a space using
an integrity criterion. In another study, Chen et al. [5] introduce an
interpretable mechanism based on convolutional neural networks with
score-weighted class activation to classify faults in climate control
systems. Abdel Karim et al. [6] apply FDD to communication networks
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using power-line communications and residuals. In the field of photo-
voltaics, Hajji et al. [7] apply and compare different artificial neural
networks (ANNs) to diagnose several typical faults. The work by Kumar
and Devakumar [8] focuses on diagnosing sensor faults by estimating
state variables with recurrent neural networks (RNNs) and obtaining
residuals. In the event of a fault, a new ANN classifies it into different
sensor conditions. Rodríguez et al. [9] use digital twins in a solar
cooling plant, incorporating a neuro-fuzzy system to detect faults and
an RNN to identify them. Additionally, a Kalman filter with the Rauch-
Tung-Striebel (RTS) smoother is used by Bidou et al. [10] to estimate
failure and restart times in heat sources.

As introduced earlier, the FDD field is enriched by the use of arti-
ficial intelligence (AI), with artificial neural networks being one of its
well-known components. The use of AI is well developed in systems en-
gineering, with applications such as intrusion monitoring [11], digital
twins in Fresnel plants [12], reinforcement learning for adaptive con-
trol of solar collector plants [13], or Lagrange multipliers initialization
for computational reduction in distributed model predictive control
(MPC) [14]. The continuous evolution of technology has allowed the
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Nomenclature

Parameters and variables
𝛼(t) Fault multiplier (−)
𝛿s Declination (◦)
𝜔s(t) Hourly angle (◦)
𝜌(𝑇 ) Density (kg/m3)
𝐴 Pipe cross-sectional area (m2)
𝐶(𝑇 ) Specific heat capacity (J/ (kg ◦C))
𝐺 Collector aperture (m)
𝐻l(𝑇 ) Thermal loss coefficient (W/ (m2 ◦C))
𝐻t(𝑇 ) Convective heat transfer coefficient (W/ (m2

◦C))
𝐾opt Optical efficiency (−)
𝐿 Tube perimeter (m)
𝑛o(𝑡) Geometric efficiency (−)
𝑞(𝑡) Flow rate (m3/s)
𝑆 Total area of the field (m2)
𝑡 Time (s)
𝑇 (𝑡, 𝑥) Temperature (◦C)
𝑥 Space (m)
Subscripts

𝑎 Ambient
f Fluid
in Input
m Metal
mean Mean between input and output
ref Reference

development of many different neural network architectures. Notably,
ecurrent neural networks are models that can capture unknown dy-
amics well, although their peculiarity of incorporating hidden states
akes them much more challenging to train. While stochastic gradient
escent (SGD) [15] is the most commonly used algorithm, alternative

approaches offer different advantages. In this study, an RNN is trained
using the Extended Kalman Filter (EKF) due to its faster performance, as
demonstrated by Trebatický and Pospíchal [16] and by Bemporad [17]
or nonlinear systems within the framework of MPC.

Solar energy has garnered substantial attention due to the grow-
ng interest in renewable energy sources [18]. This research delves
xplicitly into the realm of thermal solar plants, focusing on parabolic

trough collectors (PTCs). These collectors reflect solar radiation to heat
a fluid to produce thermal energy. The application of FDD techniques
o thermal solar plants is a broad research topic to be explored, with

most applications in the existing literature focusing on water systems
and small-scale plants. Notably, most applications center around fault
detection or isolation rather than identifying collector module parame-
ters. For example, the work by Schmelzer et al. [19] detects faults in a
ombi system by analyzing fractional solar consumption, and Brenner

et al. [20] estimate mirror soiling in a PTC plant using feedforward
neural networks. A related application of machine learning is presented
in [21], where information from the defocusing mechanism of the plant
feeds into an ANN classifier that detects and categorizes faults in the
collector area. Despite these efforts, there remains a need for focused
exploration into fault identification of collector module parameters in
hermal solar plants. Most of the research in FDD is focused on systems
ith many outputs and subsystems. In the case of PTCs, the only output

s the temperature, and the faults are highly correlated, which makes
hem difficult to isolate. This work uses neural networks to distinguish
aults when the plant models cannot by including them in a new
2 
fault detection and reconstruction methodology. Specifically, RNNs are
helpful to model the complex internal dynamics of the system. An
EKF was chosen to train the RNN and estimate faults with the RNN
trained because of its fastness and ability to reject measurements with
significant errors.

The methodology proposed in this work consists of two steps: First,
n RNN is trained using an EKF to model the dynamics of a PTC system,
aking into account several faults introduced into the plant, benefiting
rom the fact that RNNs are time-aware and take into account the
ctivations from previous data. In this step, the EKF helps capture the
ystem dynamics and adapt the RNN to fault conditions. In this type of
lants, the faults are highly coupled and different faults can produce

the same changes in the output. For this reason, three EKFs governed
by a feedforward neural network are applied in parallel, each dedicated
o diagnosing a single fault. These filters utilize the previously trained
NN model to estimate the values of the faults present in the PTC
ystem. The flowcharts in Fig. 1 describe the complete process. To the
est of the authors’ knowledge, this is the first time a combination

of EKF and RNN is applied to PTC plants and fault reconstruction.
This work proposes a new FDD methodology applied to solar plants
using RNNs and EKFs and is not published elsewhere. The primary
contributions of this research are outlined as follows:

• Use of an EKF-trained RNN to model the outlet and intermediate
temperatures in one collector loop of a PTC plant with batch
learning and taking into account fault parameters as inputs to the
model.

• Fault estimation achieved through parameter reconstruction with
EKF in the optical efficiency, flow rate, and thermal losses.

• Fault classification with an ANN governing a set of EKFs and
selection of inputs based on output estimation error.

The remainder of this paper is as follows. Section 2 presents an
overview of the system. The training of the neural network and the
FDD process are described in Sections 3 and 4, respectively. Section 5
describes the evaluation metrics used in this paper. Some simulation re-
sults, focusing on the estimation and classification errors, are presented
in Section 6. Finally, Section 7 elaborates on the principal findings of
the study and draws conclusions.

2. System description

A PTC plant is a type of solar thermal system that comprises loops
of parabolic mirrors designed to concentrate solar rays onto a focal
line through which a heat transfer fluid (HTF) circulates. This fluid,
typically water or oil, is heated to generate thermal energy. The heated
HTF is then usually transported to a steam generator to drive a turbine,
as illustrated in Fig. 2 [22].

The loops of a PTC system are described by the distributed parame-
ter model, which accounts for the energy balances in the tubes and the
HTF as follows [23]:

𝜌m𝐶m𝐴m
𝜕 𝑇m
𝜕 𝑡 = 𝛼𝐾opt𝐼 𝐾opt𝑛o𝐺 − 𝐿𝐻t(𝑇m − 𝑇f) − 𝛼𝐻l𝐻l𝐺(𝑇m − 𝑇a) (1)

𝜌f𝐶f𝐴f
𝜕 𝑇f
𝜕 𝑡 + 𝛼𝑞𝜌f𝐶f𝑞

𝜕 𝑇f
𝜕 𝑥 = 𝐿𝐻t(𝑇m − 𝑇f ) (2)

The model has been adapted to incorporate the parameters 𝛼 rep-
resenting the faults introduced into the system. These faults include
optical efficiency faults 𝛼𝐾opt , flow rate faults 𝛼𝑞 , and thermal loss
faults 𝛼𝐻l [24]. It is presupposed that the metal’s temperature remains
constant radially, and the dimensions of the reflector and receiver
remain the same along the loop, except for the passive parts (those not
exposed to solar radiation), resulting in a uniform local concentration
ratio.
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Fig. 1. Flowchart of the proposed methodology.
Fig. 2. General scheme of a PTC plant.
2.1. Faults considered

The three types of faults considered in this work, located in the
collector area, are described as follows:

• Faults in the optical efficiency, denoted as 𝛼𝐾opt < 1. Since
optical efficiency is influenced by tube absorptance, reflectiv-
ity, interception factor, and soiling of the reflectors, these faults
encompass coating, breakage, tube deterioration, mirror defects,
dirt, degradation, and corrosion.
3 
• Faults in the flow rate, expressed as 𝛼𝑞 ≠ 1, are related to
flowmeter failures and loop imbalances.

• Faults in the thermal loss, indicated by 𝛼𝐻l > 1, are linked to
pressure drop in the tubes resulting from wear, insulation, dirt
accumulation, and pipe breakage.

The parameters represent deviations from the nominal values and
signify various issues that can affect the performance of the PTCs, al-
though these faults only affect the model of the loop and not the rest of
the subsystems. To adapt this methodology to a real plant, three paths
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Fig. 3. ACUREX collector loops.

Table 1
Parameters of the ACUREX plant.

Parameter Value

𝜌m 7800 kg/m3

𝐶m 550 J/kg◦C
𝐴m 2.4806 ⋅ 10−4 m2

𝐺 1.82 m
𝐿 7.98 ⋅ 10−2 m
𝐴f 5.0671 ⋅ 10−4 m2

𝑆 2672 m2

could be taken: first, using a digital twin that accurately reproduces
the system and from which to take the data for training the neural
networks. Secondly, one can provoke these faults in the actual plant in
an instrumented loop to gather the necessary data (by partially cover-
ing the mirrors, modifying the insulation of the pipes, or mismatching
the flow rate). Finally, this information can be gathered from large-
scale plants where knowledge of failures is acquired retrospectively as
analysis and maintenance tasks are performed periodically. In this case,
the advantage of the proposed methodology would be to detect these
failures with greater immediacy.

2.2. Case study

The methodology was tested in simulation on one loop of ACUREX
[25], an experimental, 1-MW PTC plant that was situated at the
Plataforma Solar de Almería. Fig. 3 depicts some of the collectors
within ACUREX. The plant is comprised of 10 loops of single-axis col-
lectors aligned in an east–west orientation, with each loop containing
12 modules grouped into 4 collectors. The loops are composed of an
active part of 142 m and a passive part of 30 m. ACUREX serves
as a practical and representative case for evaluating the proposed
methodology.

Table 1 contains the parameters of the ACUREX plant, and the
thermal loss coefficient 𝐻𝑙 and convective thermal exchange within the
inner tube 𝐻𝑡 are given by, respectively [26]:

𝐻l = 0.00249 (𝑇f − 𝑇a
)

− 0.06133 (3)

𝐻t = 𝑞0.8(2.17 ⋅106 − 5.01 ⋅104𝑇f + 4.53 ⋅102𝑇 2
f − 1.64𝑇 3

f + 2.1 ⋅10−3𝑇 4
f ) (4)

The geometric efficiency [27,28] is derived from the correlation
between the radiation beam’s direction and the perpendicular vector of
the mirror. As the sun is tracked in elevation, the geometric efficiency
is calculated using the following equation [29]:

𝑛o =
(

1 − cos2(𝛿s) sin2(𝜔s)
)

1
2 (5)

The plant is equipped with a sun tracking system that precisely
controls the mirror rotation around an axis aligned parallel to the
4 
pipe, enhancing the geometric efficiency for solar radiation capture and
utilization [26].

The HTF used in the system is Therminol 55 thermal oil. The
specific heat capacity 𝐶f and density 𝜌f of the HTF characterize its
thermophysicial properties and are, respectively:

𝐶f = 3.478𝑇f + 1820 (6)

𝜌f = −0.672𝑇f + 903 (7)

The loop is discretized longitudinally into 172 segments, each with
a length of 1 m. The model is computed with an integration step of
0.25 s. Initially, the metal temperature is calculated. Subsequently,
the fluid temperature is obtained under the assumption of steady-state
conditions. Finally, the fluid temperature is corrected by considering
the energy transfer between each fluid control volume. For further
details, the reader is referred to [26].

2.3. Flow-rate controller

The flow rate is manipulated using valves to control the outlet
temperature and track a reference. The concentrated parameter model
of the plant, which describes the variation of the internal energy of the
fluid in steady state, is used to implement the following feedforward
controller:

𝑞 =
𝑛o𝐾opt𝑆 𝐼 −𝐻l𝐴(𝑇mean − 𝑇a)

𝑃cp(𝑇ref − 𝑇in)
(8)

where 𝑃cp = 𝜌m𝐶m.
The flow rate is constrained within the range [0.2, 1.2] l/s and

the controller sampling time is 39 s. This control strategy effectively
adjusts the flow rate per loop to attain the target outlet temperature,
considering the objectives of this work. It is important to note that the
primary focus of this study is not on optimizing control actions but
rather on implementing an FDD strategy, so no other control technique
is applied. In practice, an advanced control technique like MPC would
be used. It is not relevant for this work because the ranges in which the
control signal varies are similar for both controllers.

3. Recurrent neural network

A recurrent neural network is a type of ANN that incorporates
delayed feedback loops in its layers [30]. Similar to multilayer percep-
trons, RNNs comprise an input layer, an output layer, and one or more
hidden layers. Each hidden layer contains a varying number of neurons
with an activation function that produces nonlinear effects. RNNs
are time-aware and can capture the system dynamics by considering
previous data in the sequence as inputs. They can be described by the
state-space model:
𝑥(𝑘 + 1) = 𝑓𝑥(𝑥(𝑘), 𝑢(𝑘), 𝜃𝑥)

�̂�(𝑘) = 𝑓𝑧(𝑥(𝑘), 𝑢(𝑘), 𝜃𝑧)
(9)

where 𝑢 ∈ R𝑛𝑢 represents the input, �̂� ∈ R𝑛𝑧 is the predicted output,
𝑥 ∈ R𝑛𝑥 is the state vector and 𝜃𝑥 ∈ R𝑛𝜃𝑥 , and 𝜃𝑧 ∈ R𝑛𝜃𝑧 are the trainable
model parameters.

More explicity, as done in [17], Eq. (9) can be expressed by:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝑣𝑥1 (𝑘) = 𝐴𝑥
1

[

𝑣𝑥𝐿𝑥
(𝑘 − 1)
𝑢(𝑘)

]

+ 𝑏𝑥1

𝑣𝑥2 (𝑘) = 𝐴𝑥
2𝑓

𝑥
1 (𝑣

𝑥
1 (𝑘)) + 𝑏𝑥2

⋮

𝑣𝑥𝐿𝑥
(𝑘) = 𝐴𝑥

𝐿𝑥
𝑓𝑥
𝐿𝑥−1

(𝑣𝑥𝐿𝑥−1
(𝑘)) + 𝑏𝑥𝐿𝑥

𝑥

(10)
⎩

𝑥(𝑘 + 1) = 𝑣𝐿𝑥
(𝑘)



S. Ruiz-Moreno et al.

f
n
f
𝑏

t

𝓁

a

c

c
a
t

a

t
I

a
i
o

ISA Transactions xxx (xxxx) xxx 
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑣𝑧1(𝑘) = 𝐴𝑧
1

[

𝑣𝑥𝐿𝑥
(𝑘)

𝑢(𝑘)

]

+ 𝑏𝑧1

𝑣𝑧2(𝑘) = 𝐴𝑧
2𝑓

𝑧
1 (𝑣

𝑧
1(𝑘)) + 𝑏𝑧2

⋮

𝑣𝑧𝐿𝑧
(𝑘) = 𝐴𝑧

𝐿𝑧
𝑓 𝑧
𝐿𝑧−1

(𝑣𝑧𝐿𝑧−1
(𝑘)) + 𝑏𝑧𝐿𝑧

�̂�(𝑘) = 𝑣𝑧𝐿𝑧
(𝑘)

(11)

where 𝜃𝑥 =
(

𝐴𝑥
1 , 𝑏𝑥1 ,… , 𝐴𝑥

𝐿𝑥
, 𝑏𝑥𝐿𝑥

)

and 𝜃𝑧 =
(

𝐴𝑧
1, 𝑏𝑧1,… , 𝐴𝑧

𝐿𝑧
, 𝑏𝑧𝐿𝑧

)

, 𝐿𝑥
and 𝐿𝑧 are the number of hidden layers in the state-update and output
unctions, 𝑣𝑥𝑖 ∈ R𝑛𝑥𝑖 and 𝑣𝑧𝑖 ∈ R𝑛𝑧𝑖 are values associated with the
eurons, 𝑓𝑥

𝑖 ∶ R𝑛𝑥𝑖 → R𝑛𝑥𝑖+1 and 𝑓 𝑧
𝑖 ∶ R𝑛𝑧𝑖 → R𝑛𝑧𝑖+1 are the activation

unctions, 𝐴𝑥
𝑖 ∈ R𝑛𝑥𝑖 ×𝑛

𝑥
𝑖−1 and 𝐴𝑧

𝑖 ∈ R𝑛𝑧𝑖 ×𝑛
𝑧
𝑖−1 are the weight matrices, and

𝑥
𝑖 ∈ R𝑛𝑥𝑖 and 𝑏𝑧𝑖 ∈ R𝑛𝑧𝑖 are the bias terms.

3.1. Training with EKF

Typically, the parameters of ANNs are updated using gradient de-
scent (GD) methods [31,32]. However, in this work, the supervised
training of the RNN is performed using the EKF algorithm to achieve
much faster and less expensive computations, as emphasized by Bem-
porad [17].

For the specific case of modeling a system with faults 𝛼, the input
vector is extended to include them, treating them as inputs to the sys-
tem. To obtain training and test data, these faults must be intentionally
introduced and known to the training algorithm. The model can be
rewritten in the form of:
𝑥(𝑘 + 1) = 𝑓𝑥(𝑥(𝑘), ̃𝑢(𝑘), 𝜃𝑥(𝑘)) + 𝜂𝑥(𝑘)

�̂�(𝑘) = 𝑓𝑧(𝑥(𝑘), ̃𝑢, 𝜃𝑧) + 𝜂𝑧(𝑘)

𝛼(𝑘 + 1) = 𝛼(𝑘) + 𝜂𝛼(𝑘)

𝜃(𝑘 + 1) = 𝜃(𝑘) + 𝜂𝜃(𝑘)

(12)

where �̃�(𝑘) = [𝑢(𝑘), 𝛼(𝑘)]𝑇 and 𝜃(𝑘) = [𝜃𝑥(𝑘), 𝜃𝑧(𝑘)]𝑇 and 𝜂𝑥(𝑘) ∈ R𝑛𝑥 ,
𝜂𝑧(𝑘) ∈ R𝑛𝑧 , 𝜂𝛼(𝑘) ∈ R𝑛𝛼 and 𝜂𝜃(𝑘) ∈ R𝑛𝜃 are white noise vectors. Since
noise estimation [33,34] is not part of the scope of this work, noises are
assumed to be white. The covariance matrices are 𝑄𝑥(𝑘), 𝑄𝑧(𝑘), 𝑄𝑎(𝑘)
and 𝑄𝜃(𝑘), respectively.

The state vector �̂�(𝑘) and the RNN coefficients �̂�(𝑘) are estimated
with the EKF updates [35] by augmenting the state vector with the
parameter vector using the RNN model of Eqs. (10) and (11) as
he transition and observation models 𝑓𝑥 and 𝑓𝑧 and computing the

derivatives at each step, in accordance with the following:

𝐻(𝑘) =
[

𝜕 𝑓𝑧
𝜕 𝑥 0 𝜕 𝑓𝑧

𝜕 𝜃𝑧
]

|

|

|

|�̂�(𝑘|𝑘−1), ̂𝑥(𝑘|𝑥−1), ̃𝑢(𝑘)
(13a)

𝐾(𝑘) = 𝑃 (𝑘|𝑘 − 1)𝐻(𝑘)𝑇 [𝐻(𝑘)𝑃 (𝑘|𝑘 − 1)𝐻(𝑘)𝑇 +𝑄𝑧(𝑘)]−1 (13b)

𝑒(𝑘) = 𝑧(𝑘) − 𝑓𝑧(�̂�(𝑘|𝑘 − 1), ̃𝑢(𝑘), �̂�𝑧(𝑘|𝑘 − 1)) (13c)
[

�̂�(𝑘|𝑘)
�̂�(𝑘|𝑘)

]

=
[

�̂�(𝑘|𝑘 − 1)
�̂�(𝑘|𝑘 − 1)

]

+𝐾(𝑘)𝑒(𝑘) (13d)

𝑃 (𝑘|𝑘) = (𝐼 −𝐾(𝑘)𝐻(𝑘))𝑃 (𝑘|𝑘 − 1) (13e)
[

�̂�(𝑘 + 1|𝑘)
�̂�(𝑘 + 1|𝑘)

]

=
[

𝑓𝑥(�̂�(𝑘|𝑘), ̃𝑢(𝑘), �̂�𝑥(𝑘|𝑘))
�̂�(𝑘|𝑘)

]

(13f)

𝐴(𝑘) =
⎡

⎢

⎢

⎢

⎣

𝜕 𝑓𝑥
𝜕 𝑥

𝜕 𝑓𝑥
𝜕 𝜃𝑥 0

0 𝐼 0
0 0 𝐼

⎤

⎥

⎥

⎥

⎦

|

|

|

|

|

|

|

|�̂�(𝑘|𝑘), ̂𝑥(𝑘|𝑘), ̃𝑢(𝑘)
(13g)

𝑃 (𝑘 + 1|𝑘) = 𝐴(𝑘)𝑃 (𝑘|𝑘)𝐴(𝑘)𝑇 +
[

𝑄𝑥(𝑘) 0
0 𝑄𝜃(𝑘)

]

(13h)

The initial covariance matrix 𝑃 (0| − 1) is chosen to incorporate
2-regularization by analogy with Newton’s method as stated by [17]:

𝑃 (0| − 1) =
[ 1

𝑁 𝜌𝑥 𝐼 0
1

]

(14)

0 𝑁 𝜌𝜃

5 
where 𝑁 is the number of instances in the training set and 𝜌𝑥 and 𝜌𝜃
re the penalizing terms on 1

2‖𝑥‖
2
2 and 1

2‖𝜃‖
2
2.

The EKF is applied by processing the data for several epochs,
each one corresponding to a one-day simulation. This process involves
omparing the estimation error of the RNN and the correct output on a

test set. The stopping criteria are selected to ensure that the number of
epochs falls within a specified range, and the mean squared error (MSE)
on the validation set is neither constant nor increasing for a certain
number of epochs. To recover the initial state and covariance matrix
after each epoch, the extended Rauch-Tungg-Striebel smoother was
applied [36]. This smoother first applies the EKF to the new data using
the previous state and covariance matrix and then performs smoothing.

For the present problem, the input vector contains the inputs to the
oncentrated parameter model, so 𝑢 = (𝑇in, 𝑇𝑎, 𝐼 ⋅ 𝑛𝑜, 𝑞)𝑇 , the outputs
re the temperatures measured at the central point of every collector,
he outlet temperature as 𝑧 = (𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇out)𝑇 , and the fault vector

contains the three aforementioned parameters 𝛼 = (𝛼𝐾opt , 𝛼𝑞 , 𝛼𝐻l )
𝑇 .

4. Fault detection and estimation

Once the system has been modeled, a second EKF is applied online
to identify the values of the faults using the RNN trained as described
in Section 3. In this case, the parameters 𝜃 of the model in Eq. (12) are
fixed, while the inputs 𝛼 are estimated. Since the three fault parameters
re highly correlated, three parallel EKFs are applied, one for each type

of fault, using the RNN model of Eqs. (10) and (11) as the transition
and observation models 𝑓𝑥 and 𝑓𝑧. For each fault 𝛼𝑖 ∈ 𝛼, the new EKF
process is given by:

𝐻(𝑘) =
[

𝜕 𝑓𝑧
𝜕 𝑥

𝜕 𝑓𝑧
𝜕 𝛼

]

|

|

|

|�̂�𝑖(𝑘|𝑘−1), ̂𝑥(𝑘|𝑥−1), ̃𝑢(𝑘)
(15a)

𝐾(𝑘) = 𝑃 (𝑘|𝑘 − 1)𝐻(𝑘)𝑇 [𝐻(𝑘)𝑃 (𝑘|𝑘 − 1)𝐻(𝑘)𝑇 +𝑄𝑧(𝑘)]−1 (15b)

𝑒(𝑘) = 𝑧(𝑘) − 𝑓𝑧(�̂�(𝑘|𝑘 − 1), ̃𝑢(𝑘), 𝜃𝑧(𝑘|𝑘 − 1)) (15c)
[

�̂�(𝑘|𝑘)
�̂�𝑖(𝑘|𝑘)

]

=
[

�̂�(𝑘|𝑘 − 1)
�̂�𝑖(𝑘|𝑘 − 1)

]

+𝐾(𝑘)𝑒(𝑘) (15d)

𝑃 (𝑘|𝑘) = (𝐼 −𝐾(𝑘)𝐻(𝑘))𝑃 (𝑘|𝑘 − 1) (15e)
[

�̂�(𝑘 + 1|𝑘)
�̂�𝑖(𝑘 + 1|𝑘)

]

=
[

𝑓𝑥(�̂�(𝑘|𝑘), ̃𝑢(𝑘), 𝜃𝑥(𝑘|𝑘))
�̂�𝑖(𝑘|𝑘)

]

(15f)

𝐴(𝑘) =
[ 𝜕 𝑓𝑥

𝜕 𝑥
𝜕 𝑓𝑥
𝜕 𝛼𝑖

0 𝐼

]

|

|

|

|

|

|𝜃(𝑘|𝑘), ̂𝑥(𝑘|𝑘), ̃𝑢(𝑘)
(15g)

𝑃 (𝑘 + 1|𝑘) = 𝐴(𝑘)𝑃 (𝑘|𝑘)𝐴(𝑘)𝑇 +
[

𝑄𝑥(𝑘) 0
0 𝑄𝛼(𝑘)

]

(15h)

During plant operation, three estimations are made, each assuming
hat the rest of the fault parameters are set to 1 (i.e., no more faults).
n this context, to decide which is the correct one, each estimate 𝛼𝑖(𝑘)

is used to feed the neural network, resulting in different output vector
estimates �̂�𝑖(𝑘) for every fault 𝑖 ∈ {𝐾opt, 𝑞 , 𝐻l}. For instance, �̂�𝐾opt (𝑘)
and �̂�𝐾opt (𝑘) are the estimated state and output, assuming there is only
 fault in the optical efficiency 𝐾opt. The entire process is illustrated
n Fig. 4. This iterative estimation process occurs during the dynamic
peration of the plant.

4.1. Fault selection with neural network

In order to select which of the three estimates is the correct one, a
fault detection phase is implemented based on the previous estimates
using the EKF. For this purpose, we trained a second feedforward
neural network classifier. It is constructed on the basic structure of the
multilayer perceptron (MLP) with input-transformation blocks added
at the input, as depicted in Fig. 5. The output of the ANN represents
the likelihood of each fault and the case without fault in a vector
�̂�(𝑘) ∈ R𝑛𝛼+1. In this case, �̂�(𝑘) = (�̂� (𝑘), �̂� (𝑘), �̂� (𝑘), �̂� (𝑘)).
faultless 𝐾opt 𝑞 𝐻l
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Fig. 4. Scheme of the fault parameters and output estimates. An EKF is applied three
imes to independently estimate the faults and feed the RNN model, assuming the
emaining faults are 1. This is performed to obtain the different output estimates that

will be used to isolate the correct fault and discard the rest.

Fig. 5. Scheme of the fault detection phase.

This fault detection phase aids in determining the most plausible fault
cenario based on the estimates generated during plant operations.

The first block obtains the errors 𝐸𝐾opt , 𝐸𝑞 and 𝐸𝐻l over the actual
outputs as 𝐸𝑖(𝑘) = �̂�𝑖(𝑘)∕𝑧(𝑘), where 𝐸𝑖(𝑘) ∈ R𝑛𝑧 . The second block
performs a preliminary fault detection by selecting the type of fault
corresponding to the minimum estimation error 𝐸𝑖(𝑘) in the vector �̂�0 ∈
R𝑛𝛼+1. If the estimated fault is approximately 1 (by 5%), it is considered
that there is no fault. The third block selects the system outputs that
will be used as inputs to the MLP. For this problem, only the outlet
temperature 𝑇out was considered. The ANN underwent training utilizing
the scaled conjugate gradient backpropagation algorithm [37].

5. Evaluation

The methodology is evaluated according to (1) fault detection and
solation capabilities and (2) fault reconstruction capabilities. For the
irst purpose, the classification accuracy and F1-scores are computed
s:

𝐴𝑐 𝑐 = 𝑇 𝑁 + 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 + 𝑇 𝑁 + 𝐹 𝑃 (16)

𝐹1 = 2 ⋅ 𝑅𝑒𝑐 ⋅ 𝑃 𝑟𝑒
𝑅𝑒𝑐 + 𝑃 𝑟𝑒 , where

{

𝑃 𝑟𝑒 = 𝑇 𝑃
𝐹 𝑃+𝑇 𝑃

𝑅𝑒𝑐 = 𝑇 𝑃
𝐹 𝑁+𝑇 𝑃

(17)

where TP is the correct identification of faults, TN is the correct
identification of the absence of faults, FP is the incorrect identification
of faults, and FN is the failure to identify actual faults.

The fault reconstruction effectiveness is evaluated with the aver-
age estimation error 𝐸𝑖

𝑖 (𝑘) obtained for the actual fault 𝑖 with its
corresponding EKF, as described in Section 4.1.

6. Simulation results

The methodology was tested by simulating the ACUREX plant. For
his purpose, two datasets were created: one obtained from synthetic
6 
irradiances representing sunny days and the other consisting of real
rradiance profiles obtained from the Plataforma Solar de Almería data
ith different types of clouds. All computations were performed in
ATLAB R2020b with Intel® Core™ i7-9700F CPU at 3 GHz and 16 GB
AM using CasADi [38] for automatic differentiation.

6.1. Sunny dataset

To create the dataset, 450 single-day simulations were run, collect-
ing data every 39 s with random inputs, disturbances, and fault values.
All the simulations utilized synthetic irradiance profiles of one day of
various random shapes, assuming sunny days. The peak irradiances of
hese profiles ranged from 750 W/m2 to 1000 W/m2. The reference
emperatures varied from 200 ◦C to 300 ◦C, with steps up to 15 ◦C
very hour. The fault values were fixed throughout the day and selected
o that only one type of fault co-occurred. Specifically, faults in the
ptical efficiency ranged from 0.1 to 0.9, faults in the flow rate were
rom 0.5 to 1.5, and faults in the thermal losses ranged from 1.1 to 1.2.
t the end of the day, the fault was restored to its nominal value and a
ew time series began with a new fault, a new reference temperature,
nd a new irradiance profile. With this, it is assumed that the system
s not working during shutdowns of the plant, and an operator will fix
he failure. The dataset was divided into training, validation, and test
ets of 320, 80, and 50 instances, respectively.

The learning process was carried out for the entire batch with a
inimum of 15 epochs and a maximum of 5000 epochs, stopping

raining when the error remained constant or increased for four consec-
tive steps. The activation functions employed were hyperbolic tangent

across all layers, excluding the final layer, which utilizes a linear
unction. The rest of the RNN parameters and hyperparameters were
elected in a process of trial and error by comparing the mean squared
rror on the validation set, and the data were normalized. The selected
NN has 𝑛𝑥 = 2, 𝐿𝑥 = 2 with 20 and 10 neurons in each layer, and
irectly a linear connection for the output with 𝐿𝑦 = 1 and one neuron.
dditionally, 𝑄𝑥(𝑘) = 0.1𝐼 , 𝑄𝑧(𝑘) = 100𝐼 , and 𝜌𝑥 = 𝜌𝜃 = 0.001.

Fig. 6 shows the results of four random, closed-loop experiments
of the validation set with the selected RNN architecture, one corre-
sponding to each type of fault. This neural network was trained with 22
epochs in 32.5890 min, achieving average MSEs of 2.0638 ⋅ 10−3 on the
training set, 1.6604 ⋅ 10−3 on the validation set and 8.2602 ⋅ 10−4 on the
test set. The graphs show the good adaptation of the neural network in
its five outputs with minimal deviations, even when fluctuations occur.
This confirms the behavior of this RNN as a model of the plant.

Once the neural network was trained, the second EKF was applied
with the components of 𝑃 (0| − 1) = 𝑑 𝑖𝑎𝑔(102, 102, 10−2, 10−2, 10−2),

𝑥 = 10−8𝐼 , 𝑄𝛼 = 𝑑 𝑖𝑎𝑔(10−3, 10−3, 10−3) and 𝑄𝑧 = 10−4. The estimates
ere smoothed with a low-pass filter of 15 min before being passed

o the feedforward neural network. Fig. 7 shows an example of the
hree estimates in a case with a fault of 𝛼𝑞 = 0.625. Judging from
he graph, the estimates only approached the real value for the flow
ate estimator, as one would expect, with a small error. The estimates
btained considering only the optical efficiency and thermal losses are
ffected by the flow rate fault, producing wrong values and evidencing
he importance of a decoupling strategy. Since the faults are strongly
oupled, the next step needed is to isolate the faults and select the
orrect estimate, discarding the other two. It is also important to
otice that the perturbations in the temperature do not affect the
KF estimations. Regarding time consumption, the mean time of each
teration of the EKF was 0.013 s.

The second ANN was trained with the following hyperparameter
values: 𝜆 = 5 ⋅ 10−7 that regulates the indefiniteness of the Hessian
matrix, 𝜎 = 5 ⋅ 10−5 that determines changes in the weighting of the
second derivative approximation, a maximum number of epochs of
4 ⋅ 103, a minimum gradient of 10−6 and a maximum of 6 validation
checks. All layers have hyperbolic tangent, except for a softmax func-
tion in the last layer. The ANN consists of three hidden layers, with
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Fig. 6. Modeling results of the RNN on four of the experiments of the sunny validation set. Outlet temperature and temperatures at the center of each collector obtained from
the sensors and the RNN.
Fig. 7. Simulation conditions and results of the parameter estimation with the three parallel EKFs in an experiment with 𝛼𝑞 = 0.625 of the sunny validation set.
200, 100, and 50 neurons in each one. Fig. 8 shows the outputs of the
feedforward neural network in four different random experiments, each
 o

7 
corresponding to a different faulty case. In these examples, the higher
utput corresponded to the correct type of fault most of the time, with
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Fig. 8. Outputs of the feedforward neural network on four experiments of the sunny validation set.
Table 2
Evaluation metrics of the methodology on the training, validation and test sets.

Without feedforward ANN With feedforward ANN

Training Validation Test Training Validation Test

Average estimation error 2.07 2.37 2.77 2.07 2.37 2.77in the faulty parameter (%)

F1 in the faultless case (%) 94.55 97.30 96.08 97.01 100.00 98.04
F1 in the 𝐾opt fault (%) 77.60 85.19 78.18 87.80 84.62 81.62
F1 in the 𝑞 fault (%) 73.91 77.42 76.40 88.89 92.31 82.76
F1 in the 𝐻l fault (%) 89.61 94.74 92.93 94.87 83.87 91.09
Classification accuracy (%) 84.06 88.75 86.00 92.19 90.00 88.50
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some errors at the beginning of the day. To avoid these errors, alarms
were not triggered immediately; instead, they were activated after data
had been recorded during a specific time window. In this case, this
activation was performed at the end of the day. In the four cases, the
faults were correctly classified. There was a small degree of doubt in the
faultless day and the day with a fault in 𝐻l, but the neural network’s
output was able to distinguish the correct class effectively. The initial
𝐾opt classification during the first hour of the faultless day indicates the
need not to trigger alarms immediately.

Table 2 summarizes some average estimation and classification
errors computed for the training, validation, and test subsets at the
end of each day, both using only the preliminary fault selection with-
ut feedforward neural network �̂�0 and using the feedforward neural
etwork �̂�. The estimation errors are computed for the actual fault
ype instead of the estimated fault type to allow a separate analysis
etween estimation and classification behavior. The accuracies and F1-
cores improve with the feedforward ANN in all classes except for the
hermal losses, although the accuracy is still higher with the ANN. The
esults show the good behavior of the FDD system, with accuracies and
1-scores around 90% and close to 100% in the faultless case. Both
stimation errors are less than 3%, with even lower values in the test
et than in the training set, which could be due to the randomness
f the experiments. The results of the table also show the ability of
he feedforward ANN to improve the classification accuracy around 2
 a

8 
points in validation and test subsets.
To prove that the training is faster with EKF than with GD, Fig. 9

shows the evolution of the training MSE with the number of epochs
and the training time. The EKF algorithm is compared with (i) GD with
 learning rate of 10−4, (ii) RMSprop with a learning rate of 10−5.2

and 𝛽 = 0.8 with five initial steps of simple GD, (iii) RMSprop with
 learning rate of 10−4 and 𝛽 = 0.9, (iv) Adam with a learning rate
f 10−6, 𝛽1 = 0.87 and 𝛽2 = 0.65, and (v) Adam with a learning rate
f 10−3, 𝛽1 = 0.806 and 𝛽2 = 0.999 with five initial steps of gradient
escent, all of them with gradient clipping. A random search was
erformed in a coarse-to-fine scheme to select the hyperparameters. It is

worth noting that GD performs better than RMSprop and Adam. In the
only experiments where RMSprop and Adam were faster than EKF and
GD, the weights ended up unstabilizing, as one can see in the figure.
This can be due to the nature of this specific problem, which does not
enefit from adaptive learning rates provided by Adam and RMSprop.
lthough each epoch of the EKF is slower than GD, the number of

epochs needed to obtain a low MSE and the total training time are
uch lower. A similar experiment was carried out by Bemporad [17]

with Adam. There are several aspects that justify the fast training with
KF. First, gradient descent relies on first-order gradients, but EKF uses
econd-order information through a covariance matrix. This way, EKF
an adapt its updates more intelligently based on the local curvature,
llowing for more precise parameter updates and fewer iterations.
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Fig. 9. Comparison of training with EKF and GD.
Fig. 10. Modeling results of the RNN on four of the experiments of the cloudy validation set. Outlet temperature and temperatures at the center of each collector obtained from
the sensors and the RNN.
R
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Moreover, the Kalman gain reduces the impact of noisy measurements,
llowing a stable and rapid convergence.

6.2. Cloudy dataset

As done with the sunny dataset, 450 single-day simulations were
un, collecting data every 39 s with random values of inputs, dis-

turbances, and faults. These simulations were performed using irra-
iances from actual days when different types of clouds passed by.
he reference temperatures and fault values were introduced under
he same conditions as those used for the sunny dataset. The dataset
as divided into training, validation and test sets of 320, 80, and
0, instances, respectively. Each subset was obtained from different
 t

9 
irradiance profiles.
After trial and error, an RNN was trained using hyperbolic tan-

gent and linear functions. The RNN has the same characteristics as
the one used for the sunny dataset and was trained in 18 iterations
and 27.1178 min. This neural network achieved average MSEs of
5.9542 ⋅ 10−3 on the training set, 1.7679 ⋅ 10−3 on the validation set
and 3.6720 ⋅ 10−3 on the test set. Fig. 10 shows the adaptation of the

NN to four experiments of the validation set. Again, the RNN performs
atisfactorily and adapts well to the system output, although in this case
he error is slightly greater than with the sunny day due to the complex
ynamics introduced by the clouds.

To estimate the fault parameters, the second EKF was applied with
he components of 𝑃 (0| − 1) = 𝑑 𝑖𝑎𝑔(102, 102, 10−2, 10−2, 10−2), 𝑄 =
𝑥
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Fig. 11. Simulation conditions and results of the parameter estimation with the three parallel EKFs in an experiment with 𝛼q = 0.7 of the cloudy validation set.
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10−8𝐼 , 𝑄𝛼 = 𝑑 𝑖𝑎𝑔(10−8, 10−7, 10−6) and 𝑄𝑧 = 10−4 and the estimates
ere smoothed with another low pass filter of 15 min. An example of

he parameter estimation is shown in Fig. 11, where the estimates in
he faulty parameter approximate the correct value around hour 11:30.

As expected, the other estimates deviate from the correct value due to
he strong interconnection between the faults, but the estimates of the

actual class approach the correct value. Again, a classification phase
is necessary to isolate the fault type. Regarding time consumption, the
mean time of each iteration of the EKF was 0.012 s.

The second feedforward ANN was trained with 𝜎 = 5 ⋅ 10−5, 𝜆 =
5 ⋅ 10−7, a maximum number of epochs of 103, a minimum gradient
of 10−6 and a maximum of 6 validation checks. It contains hyperbolic
tangent functions in the first layers and a softmax function in the last
one. The neural network is formed by two hidden layers, with 200 and
100 neurons in each one.

The average estimation and classification errors at the end of each
day are summarized in Table 3. Although there is a loss of performance
across the subsets, the results on the test set are even higher than on the
sunny dataset since the variability of this dataset helped to isolate the
faults. The accuracies obtained are over 90% in the experiments where
the second ANN was applied and almost all F1-scores are above 90%,
except for the flow rate fault on the test set. Moreover, the estimation
errors were close to 2%, with a slightly higher value on the validation
and test sets.

6.2.1. Fault boundary
In this work, the faults are assumed to be greater than 10% for the

optical efficiency and thermal losses and than 0.5 m3∕s for the flow
ate. This assumption is taken based on an intuitive approximation of
he measurement systems. Minor faults would be confused with noise
nd errors in measurement instruments, and they have minimal effect
n the outlet temperature. To adapt it to smaller deviations, it would
 e

10 
be necessary to obtain a new dataset and retrain the system.
To provide an insight of this range of faults, we have carried out

experiments with different fault sizes (with 10 experiments for each
fault size). To obtain the preliminar classification with these new tests,

e considered that there is no fault when the estimation from the
Kalman filter is 1% around the nominal value. The average accuracies
and estimation errors are shown in Figs. 12 and 13.

In the case of the estimation error, there is no loss of performance
when including small faults, but there is a loss of accuracy. This is
ecause the RNN is able to model the system and the faults, but the
lassifier neural network is adjusted to the range of faults with which

it was trained.

7. Discussion and conclusions

In this paper, an EKF-based fault detection and diagnosis methodol-
gy has been presented and applied to a PTC system with both sunny
nd cloudy datasets. First, an RNN was implemented to model the
ystem using EKF to obtain the parameters with an MSE of the order
f 10−3 or even less in the three subsets of each dataset. A second EKF
tage was performed by independently estimating the fault parameters
ith a percentage error of less than 3% in the sunny dataset and a
aximum of 2.02% in the cloudy dataset. To select the correct type of

ault, a feedforward neural network was applied, obtaining accuracies
bove 90%.

The choice of RNNs is well-suited theoretically to capture the
ystem dynamics, as it learns sequential patterns. This design allows the
odel to capture long-term dependencies and obtain a fast representa-

ion of the system that can be combined with other methodologies. The
ests demonstrate the effectiveness of the methodology using an RNN to
odel the dynamic behavior of the system, combined with the knowl-

dge of the dynamics of solar radiation due to clouds. This leads to
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Table 3
Evaluation metrics of the methodology on the training, validation and test sets of the cloudy dataset.

Without feedforward ANN With feedforward ANN

Training Validation Test Training Validation Test

Average estimation error 1.45 2.02 1.68 1.45 2.02 1.68in the faulty parameter (%)

F1 in the faultless case (%) 91.72 95.24 90.72 98.77 93.02 96.15
F1 in the 𝐾opt fault (%) 87.01 89.47 82.57 98.09 91.89 90.20
F1 in the 𝑞 fault (%) 80.75 90.48 73.68 98.16 92.68 88.89
F1 in the 𝐻l fault (%) 80.95 94.74 76.77 98.73 97.44 94.74
Classification accuracy (%) 85.00 92.50 81.00 98.44 93.75 92.50
Fig. 12. Average accuracies with different fault sizes.
Fig. 13. Average estimation errors with different fault sizes.
11 
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results on the cloudy dataset that even outperform those on the sunny
dataset. Furthermore, the accuracies and F1 scores obtained in these
ests exceed those obtained in other previously published works using
ifferent machine learning-based approaches [24]. The depth of the

ANNs aligns with universal approximation theory, which suggests that
sufficiently deep networks can represent complex functions necessary
for this task. In addition, EKF is helpful for this application because it
s designed for systems with nonlinear dynamics by linearizing around
he current estimate and aligns well with real-time data processing
equirements.

The results obtained in this work prove the goodness of the method-
logy and open the way for possible future tests in an actual plant,
everaging the rapid training with EKF for a real-time learning ap-
roach. In experiments with commercial plants, real-time learning
ould be performed in parallel with plant operation, with each loop
erving as a component for mini-batch training due to the high num-
er of loops (for instance, 90 loops in Solacor 2 [39] and 282 in

Mojave [40]).
One possible limitation of this work is the dependency of the

odeled system on the controller used to generate the data. This work
ses a feedforward controller to manipulate the flow rate and track the
esired set-point. Different control techniques, such as MPC, may be
sed in actual plants. Although these controllers do not produce the
ame output, the control signal and the ranges in which it varies are
epresentative. Even though, this could create dependencies between
isturbances and the control actions that interfere with the model
ehavior. A deeper analysis of this dependency could be performed by
tudying the retraining of the neural networks in the case the plant
ontroller is changed.

Future work could analyze the detectable range of faults similarly
to the work in [21]. To adapt the methodology to smaller devia-
ions, it would be necessary to obtain a new dataset and retrain
he system. Moreover, although the method described only consid-
rs the possibility of separate faults, including coincident faults is
airly straightforward. It would be necessary to add four estimators
nd four outputs to the classifier, one for each possible fault com-
ination, thus obtaining eight fault classes. The inputs and outputs
f the MLP would be affected: its output vector would be �̂�(𝑘) =
�̂�faultless(𝑘), �̂�𝐾opt (𝑘), �̂�𝑞(𝑘), �̂�𝐻l (𝑘), �̂�Kopt+𝑞(𝑘), �̂�Kopt+𝐻l (𝑘), �̂�𝑞+𝐻l (𝑘),

�̂�Kopt+𝑞+𝐻l ). Instead of three EKFs, it would be necessary to have one
KF of each situation (one that considered that 𝛼𝐾opt = 1, another one
hat considered that 𝛼𝑞 = 1, another that considered that 𝛼𝐻l = 1 and
nother one that considered that neither of them is one). The dataset
hould be updated to include data with compound faults.

Regarding the application of this methodology to physical systems,
commercial plants have many loops, which facilitates gathering data
and augments the probability of finding faults. For example, Mojave
has 282 loops instead of the 10 loops that ACUREX has. This means
that if ACUREX needs 45 days to obtain 450 simulations, we would
obtain 12 690 simulations in the same time. Collecting data from every
loop over several months would cover the range of typical faults in the
plant. On the other hand, this could also be addressed with digital twins
that reproduce accurately the behavior of the plant. These aspects are
proposed for future development, adapting this methodology to large-
scale solar plants with a defocusing strategy and distinguishing faults
on every collector, not only loop by loop. Moreover, future work will be
applying other filter-based methods to improve the results of the EKF,
like the unscented Kalman filter or the particle filter.
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