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Abstract

This paper proposes an active learning (AL) algorithm to solve regression
problems based on inverse-distance weighting functions for selecting the feature
vectors to query. The algorithm has the following features: (i) supports both
pool-based and population-based sampling; (ii) is not tailored to a particular
class of predictors; (iii) can handle known and unknown constraints on the
queryable feature vectors; and (iv) can run either sequentially, or in batch
mode, depending on how often the predictor is retrained. The potentials of
the method are shown in numerical tests on illustrative synthetic problems
and real-world datasets. An implementation of the algorithm, which we call
IDEAL (Inverse-Distance based Exploration for Active Learning), is available
at http://cse.lab.imtlucca.it/~bemporad/ideal.

Keywords: Active learning (AL), inverse distance weighting, pool-based
sampling, query synthesis, supervised learning, regression, neural networks.

1. Introduction

Active learning (AL) strategies are used in supervised learning to let the
training algorithm “ask questions” [34], i.e., choose the feature vectors to
query for the corresponding target value during the training phase, usually
based on the model learned so far. The main aim of AL is to possibly
reduce the number of training samples required to train the model, or in other
words, to get a model of the same prediction quality with a smaller dataset.
This is particularly useful when knowing the target value associated with a
given combination of features is an expensive operation, for example, it may
involve asking a human to “label” samples manually, running a costly and
time-consuming laboratory experiment, or performing a complex computer
simulation.
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AL methods are usually categorized in query synthesis (or population-
based) methods, in which the feature vector to query can be chosen arbitrarily,
pool-based sampling methods, in which the vector can only be chosen within a
given finite set (or “pool”) of unlabeled values, and selective-sampling methods,
in which vectors are proposed in a streaming flow and the AL algorithm can
only decide online whether to ask for the corresponding target or not [34].

Several approaches to AL are available in the literature, see, e.g., the survey
papers [34, 39, 16, 1, 22]. Most of the literature focuses on classification
problems [1, 33], although AL has been investigated also for regression [27,
11, 38, 13, 12, 10, 9, 41, 42, 25]. We will describe in detail some of the most
popular AL algorithms for regression in Section 3.4. For a detailed and updated
taxonomy of AL methods for classification, regression, and clustering we refer
the reader to the recent survey paper [22].

As pointed out in [41], AL methods should collect data that are infor-
mative, representative, and diverse, i.e., respectively, contain rich information
for reducing modeling errors, cover portions of the feature vector space where
the predictor is evaluated most frequently and in particular reject outliers,
and explore such a space trying to avoid sampling the same regions too often.
AL methods are often linked to a specific class of predictors, such as neural
networks [27] or mixtures of Gaussians and locally weighted regression [11],
or to a particular learning algorithm [38, 13, 12, 9]. Moreover, AL methods
can be computationally involved in the case optimal sampling is sought, or in
query-by-committee (QBC) methods [35, 31, 8] in which multiple predictors
need to be retrained repeatedly to measure their disagreement.

In general, in AL the acquisition function that is used to drive the selection
of the next sample has two components. The first is related to the position
of the feature vector within the feature-vector space and is used for pure
exploration of that space. The second aims at the exploitation of the target
values acquired so far, learning a model on the available feature vectors/target
pairs and using it for predicting target values. Such a model-based approach
usually tries to estimate a form or another of target uncertainty, such as to
locate feature vectors whose target is supposed to be farthest from the target
values already acquired [42], sample where a committee of predictors mostly
disagree [35, 31, 8], or select the feature vector that is expected to make the
most change in the prediction function [9].

AL is related to the problem of optimally designing experiments, whose
origins date back at least to the 30s [15], and has attracted an extensive litera-
ture for decades [7]. Another problem related to AL is black-box derivative-free
optimization [32] in which a surrogate of the objective function is learned incre-
mentally from a finite number of samples of it, such as in Bayesian optimization
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methods [36]. Compared to solving a supervised learning problem, where the
objective is to find a model that reproduces well the underlying process over the
entire set of feature-vectors of interest, in black-box optimization the problem
is somehow simpler, as the interest is limited to approximating the objective
function well around one of its global minimizers.

1.1. Contribution

In this paper, we provide an AL framework for regression that is applicable
to any prediction model, can address both pool-based and population-based
settings, and is not computationally involved. By leveraging on ideas we
previously investigated for global optimization based on surrogate functions [3,
5], we propose an AL method in which the uncertainty associated with the
currently available predictor and the exploration function used to sample the
feature-vector space are characterized by inverse-distance weighting (IDW)
functions [23, 37].

The proposed algorithm that we call IDEAL (Inverse-Distance based Ex-
ploration for Active Learning) blends different requirements: informativeness,
by sampling regions of the feature-vector space where model uncertainty is
estimated to be large; representativeness, in the case of pool-based sampling,
by possibly taking into account a density function similar to the one used in
density-based spatial clustering approaches [14]; and diversity, using an IDW
exploration term that is higher far away from samples that have already been
queried. The algorithm can also handle constraints on the feature vectors that
can be queried, that can either be known a priori or even unknown. The latter
case covers the situation in which one discovers only after querying certain
combinations of features that the corresponding target cannot be retrieved;
for example, because a specific physical experiment cannot be performed or
a computer simulation does not converge. Finally, the proposed algorithm
can be run either sequentially, by retraining the predictor after each successful
query, or in batch mode, by retraining only after querying a certain prescribed
finite number of samples.

IDEAL belongs to the class of model-based AL methods for regression, in
that the prediction model learned on the currently available samples is used
in combination with IDW terms to quantify model uncertainty and look for
samples that are expected to provide maximum informativeness. Moreover, the
latter only requires the currently learned predictor, contrarily to QBC methods
that require instead training multiple predictors, and does not involve complex
computations required by optimal sampling methods, which makes them only
applicable to relatively simple prediction models.

Similarly to the greedy sampling method proposed in [42], which combines
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diversity in the feature vector and (predicted) target spaces, IDEAL combines
the informativeness measure mentioned above with the diversity quantification
in the feature-vector space provided by IDW terms only. As we will show
in several numerical examples, such a combination of model-based uncer-
tainty characterization and feature-vector diversity is beneficial with respect
to uncertainty characterization only, as in QBC methods [31, 8], and input
diversity only, as in the greedy method [43, Algorithm 1] and the improved
representativeness-diversity maximization method [25].

The paper is organized as follows. After formulating the AL problem in
Section 2, we describe the proposed algorithm in Section 3. Numerical tests
on synthetic and real-world regression problems are reported in Section 4 and
some conclusions are drawn in Section 5.

A Python implementation of IDEAL, and of other passive and active learn-
ing methods we have compared with, is available at http://cse.lab.imtlucca.
it/~bemporad/ideal.

2. Active learning problem

We consider a process y : X → Y generating data yk = y(xk), where X ⊆
Rn is the set of feature vectors, xk ∈ X , and Y ⊆ Rm the set of corresponding
targets yk, yk ∈ Y . As the process y is unknown, we wish to find a predictor
ŷ : X → Y solving the supervised learning problem

min
ŷ

∫
X̄∩X

ℓ(y(x), ŷ(x), x)dx (1)

where ℓ : Y × Y × X → R is a loss function, for instance ℓ(y(x), ŷ(x), x) =
∥y(x)− ŷ(x)∥22, and X̄ ⊆ Rn is a bounded set of feature vectors x of interest,
i.e., for which we want to obtain a good approximation ŷ(x) of y(x). While
the set X̄ is known, for example, it may be defined by the set of inequality
constraints

X̄ = {x : Rn : gi(x) ≤ 0, i = 1, . . . , nc}
gi : Rn → R, the set X for which y(x) is defined could be unknown, as we might
not be able to know a priori whether for a given x ∈ X̄ its corresponding target
y(x) can be obtained. For example, all features xi of interest may take any
value between -10 and 10, i.e., X̄ = {x : Rn : |xi| ≤ 10, i = 1, . . . , n} and
y(x) = log(x), which is only defined for x > 0. In this case, y(x) cannot be
queried when x ≤ 0, i.e., X = {x : xi > 0, i = 1, . . . , n} and we are in the
presence of the unknown constraint x ∈ X .

In practical real-world applications, unknown constraints may arise when
evaluating y(x) may require running a complex experiment or computer sim-
ulation, and this could not be completed for various reasons for the particular
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parameter settings defined by x. In such cases, characterizing the shape
of X , if of interest, would be a binary classification problem itself that is
amenable for active learning. Note that in the case of multiple targets (m > 1),
we could generalize the setting by assuming that each process component
[y]i : Xi → Yi, i = 1, . . . ,m. However, for simplicity of notation, we assume
here that X = ∩mi=1Xi, i.e., that either the entire output vector y(x) is defined
or it is entirely undefined at a given x.

Special cases of (1) are (multivariate) regression problems (Y = Rm) and
classification problems (Y = {0, 1}m). We assume that possible discrete fea-
tures have been one-hot encoded, and that hence in general X ⊆ {0, 1}nb×Rnn ,
where nb and nn are the number of binary and numeric features, respectively,
n = nb + nn, and that the loss ℓ contains impulsive terms (Dirac delta terms)
so that (1) can be rewritten as

min
ŷ

∑
xb∈Xb∩X̄b

∫
Xc∩X̄c

ℓ(y(x), ŷ(x), xc, xb)dxc (2)

where xb denotes the subvector of binary components of the feature vector x,
Xb (X̄b) the corresponding set of their admissible combinations (of interest),
and Xc (X̄c) the set of admissible subvectors xc of numeric features (of interest).

In order to address problem (1), we will solve its empirical approximation

min
ŷ

1

N

N∑
k=1

ℓ(yk, ŷ(xk), xk) (3)

where DN ≜ {(xk, yk)}Nk=1 is a training dataset, with yk = y(xk) for some
unknown function y2.

In (supervised) passive learning the training dataset DN is given, where
clearly xk ∈ X for all k = 1, . . . , N , as the corresponding targets yk have been
acquired. Instead, in active learning we are free to select the training vectors
xk to query, i.e., for which we want to get the corresponding target value yk, if
it is defined, or a declaration that xk ̸∈ X . We have a pool-based AL problem
when xk can only be selected from a pool

XP = {x̄j}Mj=1 (4)

of samples, M ≥ N , with XP ⊆ X̄ , or a population-based AL problem when
xk can be chosen freely within the given bounded set XP = X̄ .

2Although function y is rather arbitrary, the formulation could be extended to explicitly
include a noise term ηk ∈ Rnη , so that yk = y(xk, ηk) is available rather than y(xk). This
would allow modeling non-reproducible queries, i.e., yk ̸= yj for xk = xj , k ̸= j.
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3. Active learning algorithm

Let [xmin, xmax] ⊂ Rn be the smallest hyper-box containing the feature
vectors we are allowed to sample, i.e.,

[xmin]i ≜ min
x∈XP

[x]i, [xmax]i ≜ max
x∈XP

[x]i (5a)

which in case of pool-based AL (4) is equivalent to setting

[xmin]i ≜ min
j=1,...,M

[x̄]j, [xmax]i ≜ max
j=1,...,M

[x̄]j (5b)

In order to be immune to different scaling of the individual features, when
querying samples we consider the scaling function σ : Rn → Rn defined as

σi(x) ≜
2

[xmax]i − [xmin]i

(
xi −

[xmax]i + [xmin]i
2

)
, i = 1, . . . , n (5c)

where clearly σ(x) ∈ [−1, 1]n for all x ∈ [xmin, xmax].
Let Nmax be the total budget of queries we have available to perform the

AL task. During AL, we collect in the set3 Q ⊆ {1, . . . , Nmax} the indices of
the samples xk that have been selected and for which the corresponding target
could be acquired, i.e., k ∈ Q if and only if xk ∈ X . Moreover, in the case of
pool-based sampling, we keep track of the indices of samples already extracted
and queried from the pool XP in the set E ⊆ {1, . . . ,M}, to avoid possibly
querying them again.

3.1. Initialization

Before fitting any prediction model, as commonly done in most AL ap-
proaches we must first select Ni samples x1, . . . , xNi

∈ X̄ ∩ X . As also
mentioned in [25, Section 4.3], unsupervised AL (i.e., AL that only selects
samples based on their position within the feature-vector space, without query-
ing targets) can be superior to model-based AL when the number of samples
is small, due to the possibly high inaccuracy of ŷ (and of the estimate of
its uncertainty) when trained on a small set of samples. In fact, without
first selecting x1, . . . , xNi

in an unsupervised way, the first trained predictors
ŷ could drive the search quite inefficiently, especially when the exploration
term is not dominant, leading to collecting weakly informative samples. As
a consequence, model-based criteria would remain quite inexact, leading to

3In case of multiple targets m > 1 and different feasible sets Xi, i.e., [y]i : Xi → Yi, one
could define a separate set Qi for each target i = 1, . . . ,m, with k ∈ Qi if and only if xk ∈ Xi
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further collect not-so-relevant samples, with consequent performances possibly
even worse than just randomly sampling X̄ .

In the case of population-based AL, we use Latin Hypercube Sampling
(LHS) [28] on the hyper-box [xmin, xmax]; in the case of pool-based AL, we run
instead the K-means algorithm [26] on the pool X σ

P ≜ σ(XP ) of scaled samples
with K = Ni and pickup the Ni different vectors σ(x̄1), . . . , σ̄(x̄Ni

) ∈ X σ
P that

are closest to the centroids obtained by K-means in terms of Euclidean distance
(cf. [41]). As some vectors may be infeasible (x̄k ̸∈ X̄ ) or cannot be queried
(x̄k ̸∈ X ), similarly to the LHS algorithm with constraints described in [3,
Algorithm 2] the vectors x̄k ̸∈ X̄ ∩ X are discarded, and the above procedure
is repeated until a set of Ni pairs (x̄k, ȳk) is collected.

We denote by Ninit, Ninit ≥ Ni, the total number of samples queried during
the initialization phase and by {(xi, yi)}, i = 1, . . . , Ni the resulting set of
collected samples. Note that in the case X ⊂ X̄ , Ninit > Ni queries might be
required to get Ni pairs (xk, yk), as samples x ∈ X̄ \ X might be encountered
for which y(x) is not defined. In this case, Ninit ∈ Q, as the initialization phase
terminates as long as Ni pairs have been successfully collected. Note also that
in case Ni valid samples cannot be retrieved at initialization within the total
budget Nmax of queries we have available, the AL task cannot proceed further.
In the case of absence or irrelevance of unknown constraints (X̄ ⊆ X ), we
always have Ninit = Ni.

3.2. Query-point selection

Assume that we have collected N samples xk and, ∀k ∈ Q, the correspond-
ing target values yk, and that we have fit a predictor ŷ(x) on them by solving
the supervised learning problem as in (3)

ŷ = argmin
ŷ

∑
k∈Q

ℓ(yk, ŷ(xk), xk) (6)

Then, we need to define a criterion to select the remaining Nmax − Ninit

samples xk to query. In this paper, we will select the next sample xN+1 to
query by maximizing an acquisition function a : Rn → [0,+∞) that we will
introduce in the sequel

xN+1 = arg max
x∈XP

a(x) (7)

retrain ŷ, update the acquisition function a, increase N , and so on, until
N = Nmax, i.e., the total available budget for queries is exhausted. In case
y(xN+1) is not defined because xN+1 ̸∈ X , we clearly do not need to retrain
ŷ. The approach can be extended easily to batch-mode active learning by
retraining ŷ only after T new queries have been performed, T > 1.
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To define the acquisition function a, we want to use an empirical estimation
of the uncertainty si(x), si : Rn → [0,+∞), associated with each component i
of the prediction ŷ(x), i = 1, . . . ,m, that we define here as we proposed in [3]
to promote exploration in global optimization using surrogate functions.

Given a set {xk}Nk=1 of vectors of Rn, we consider the squared (scaled)
Euclidean distance function d2 : Rn × Rn → R

d2(x, xk) = ∥σ(xk)− σ(x))∥22, i = 1, . . . , N (8)

In standard IDW functions [37], the weight functions wk : Rn \ {xk} → R are
defined by the squared inverse distances

wk(x) =
1

d2(x, xk)
(9a)

In order to make the weight decay more quickly as x gets more distant from
xk, as suggested in [18, 3], here we adopt the alternative weighting function

wk(x) =
e−d2(x,xk)

d2(x, xk)
(9b)

Then, we define the following functions vk : Rn → R for k = 1, . . . , N as

vk(x) =


1 if x = xk

0 if x = xj, j ̸= k
wk(x)∑N
j=1wk(x)

otherwise
(10)

As suggested in [18, 3], we then define s2 : Rn → Rm as the IDW variance
function

s2i (x) =
∑
k∈Q

vk(x)([yk]i − [ŷ(x)]i)
2, i = 1, . . . ,m (11)

associated with the current training dataset {(xk, yk)}Nk=1 and predictor ŷ.
Note that for x = xk and k ∈ Q we have s2i (xk) = ([yk]i − [ŷ(xk)]i)

2, which
in the case of perfect interpolation [ŷ(xk)]i = [yk]i gives s2i (xk) = 0 (this
corresponds to having no prediction uncertainty about yi(x) at x = xk). Note
also that the sum in (11) only considers the indices k ∈ Q, as for k ̸∈ Q vector
xk ̸∈ X and therefore yk = y(xk) is undefined. This is equivalent to assume
that yk = ŷ(xk) for all xk ̸∈ X and sum in (11) for k = 1, . . . , N .

Regarding promoting diversity in exploring the feature-vector space, as
suggested in [3] we also consider the IDW exploration function z : Rn → R
defined as

z(x) =

{
0 if x ∈ {x1, . . . , xN}
2
π
tan−1

(
1∑N

k=1 wk(x)

)
otherwise

(12)
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Figure 1: Function y of Example 1 (blue line), samples (xk, yk) (blue dots), NN predictor
ŷ (red line), band ŷ(x) ± 3

√
s2i (x) (light blue area), scaled and shifted IDW functions s2

(green line) and z (dashed gray line)

Similarly to the passive sampling approach in [43], function z returns a pure
exploration term that is only based on the geometric position of the (scaled)
feature vectors {xk}, and hence, contrarily to the IDW variance function s2,
is not influenced by the predictor ŷ learned up to step N . Note that s2 also
promotes exploration, but only indirectly.

Example 1. Let the data yk be generated by the following scalar function
y : R→ R

y(x) = x4 sin2

(
1

3
x2

)
(13)

that we want to approximate over the interval X̄ = [−3, 3] by a simple
feedforward neural network (NN) ŷ with two layers of five neurons each, logistic
activation function 1

1+e−x , and linear output function. As depicted in Figure 1,
we assume that we have collected N = 7 samples (xk, yk) (blue dots), yk =
y(xk), and fit a NN via the MLPRegressor function in scikit-learn [30] with
ℓ2-regularization term α = 10−2, by using the L-BFGS nonlinear optimization
algorithm [24]. Figure 1 also shows the original function y(x) (blue line), the
NN predictor ŷ(x) (red line), and the band ŷ(x)± 3

√
s2i (x) (light blue area).

The figure also shows scaled and shifted versions of the IDW functions s2(x)
(green line) and z(x) defined in (12) (dashed gray line).
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Let us now define the acquisition function

a(x) =

(
m∑
i=1

s2i (x)

)
+ δz(x) (14)

where δ ≥ 0 is a hyperparameter balancing the role of IDW variance s2(x)
and IDW distance z(x). Note that δ trades off between model-based learning
(small δ) and learning based on the pure exploration of the feature-vector space
to promote diversity (large δ).

In the case of population-based AL, the maximization problem (7) can
be solved by global optimization; in this paper, we will use the derivative-free
Particle Swarm Optimization (PSO) algorithm [21], as a(x) is a cheap function
to evaluate whenever ŷ(x) is easy to compute. In pool-based sampling, when
the number M of samples in the pool is not too high, problem (7) can be
solved by enumeration by setting

xN+1 = x̄k∗ , k∗ = arg min
k∈{1,...,M}\E

{a(x̄k)} (15a)

We assume that possible duplicates x̄k = x̄j, k ̸= j, are removed upfront from
the pool XP .

When (15a) is impractical due to a large number M of samples in the
pool, one can first use PSO to optimize over the entire set X̄ to get x̄∗ =
argmaxx∈X̄ a(x) as in population-based AL and then set (cf. [40])

xN+1 = x̄k∗ , k∗ = arg min
k∈{1,...,M}\E

d2(x̄k, x
∗) (15b)

Algorithm 1 reports the pseudocode of the proposed AL algorithm that
we call Inverse-Distance based Exploration for Active Learning (IDEAL). The
complexity of the algorithm will be discussed in Section 3.5. Note that output
data scaling can be updated before retraining ŷ at Step 6.1, such as by applying
standard scaling based on the currently available values {yk}, k ∈ Q.

3.3. Extensions of the acquisition function

The basic acquisition function (14) can be extended in two directions. First,
for pool-based AL we can consider the density function ρ : XP → (0,+∞)
that measures how much “isolated” is a sample x̄k ∈ XP with respect to the
remaining samples. Similar to density-based spatial clustering approaches [14],
one can use the average (scaled) distance of x̄k from its n nearest neighbors,

dk =
1

n

∑
j∈Nk

∥σ(x̄k)− σ(x̄j)∥2
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Algorithm 1 Inverse-Distance based Exploration for Active Learning
(IDEAL).

Input: Set XP = {x̄k}Mk=1 (pool-based) or XP = X̄ (population-based)
of queryable feature vectors; budget Nmax of available queries; number Ni of
initial samples to acquire; pure exploration hyperparameter δ ≥ 0.

1. Remove possible duplicates x̄k from XP (pool-based only);

2. Compute scaling functions σi as in (5);

3. Extract Ni samples (xk, yk) as described in Section 3.1 by K-means (pool-
based) or LHS (population-based); if it is not possible to extract them
within Nmax queries go to Step 7, otherwise set Ninit = number of queries
done;

4. Q ← {k ∈ {1, . . . , Ninit} : xk ∈ X};

5. E ←
{
i ∈ {1, . . . ,M} : x̄i = xk for some k ∈ {1, . . . , Ninit}

}
(pool-based

only);

6. For N = Ninit, . . . , Nmax do:

6.1. If N ̸∈ Q then update predictor ŷ by solving (3);

6.2. Compute new sample xN+1 as in (7) (population-based) or (15)
(pool-based);

6.3. If xN+1 ∈ X acquire yN+1 and set Q ← Q∪ {N + 1};
6.4. E ← E ∪ {k∗} (pool-based only);

7. End.

Output: Predictor ŷ, or declaration of failure in collecting Ni feasible initial
samples.

where Nk is the set of indices corresponding the n nearest neighbors of x̄k in
XP \ {x̄k}, to estimate the density as proportional to the normalized inverse
volume of the sphere of radius dk, i.e.,

ρ(x̄k) =

1
dnk

maxj=1,...,M

{
1
dnj

} =
minj=1,...,M {dnk}

dnk
(16)
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Note that (16) is always defined, as n duplicates cannot exist such that they
have a zero average distance due to the fact that we have assumed that all
possible duplicates x̄k = x̄j, k ̸= j, have been removed. Note that ρ does not
depend on the predictor ŷ learned and can be therefore computed upfront.
Regarding population-based AL, one can simply set ρ(x) = 1, ∀x ∈ X̄ .

Next, we can introduce weight functions ci : Rn → [0,+∞) to actively learn
the predictor in a non-uniform way with respect to the target index i and x
(or uniformly, if ci(x) ≡ 1 for all i = 1, . . . ,m). Accordingly, we extend (14)
to

a(x) = (1 + ωρ(x))
m∑
i=1

ci(x)

(
s2i (x) +

δ

m
z(x)

)
(17)

where ω ≥ 0 is a scalar weight on density. Note that ω is redundant in the
case of population-based AL, having assumed that ρ(x) ≡ 1.

Let us show that the active learning mechanism (7) under (14), possibly
extended as in (17), follows criteria of informativeness, representativeness,
and diversity, which are listed in [41] as essential for AL. Regarding the
first, maximizing a(x) implies looking for large values of the uncertainty s(x)
associated with the current predictor ŷ(x), i.e., to select the next sample xN+1

where ŷ is considered most uncertain according to (11), so that querying xN+1

is expected to bring significant new information. The second, which is only
applicable in the case of pool-based sampling under the extension (17), is
taken care of by ρ(x) when ω > 0, as in the maximization (7) those samples
x̄k that have a low density ρ(x̄k), for instance, because they are outliers, will
be discouraged. Third, diversity is promoted because s(x) and z(x) are small
close to samples that have been already visited, which ultimately makes the
AL algorithm visit unexplored areas of the feature-vector space. The tradeoff
between representativeness and diversity is taken care of by the coefficient ω.

In all the numerical tests reported in Section 4 we will always employ the
baseline acquisition function (14), as no significant improvements were found
by using ω > 0 in our benchmarks, and in addition we aim at a uniform
weighting ci(x) ≡ 1. Nonetheless, the extra versatility allowed by (17) might
be useful in certain AL applications.

3.4. Other active learning algorithms

Algorithm 1 (ideal) will be compared to some of the most common active
learning methods proposed in the literature that can support rather arbitrary
prediction models ŷ. The considered methods have some substantial differ-
ences, that we will see have consequences on AL performance. We review such
methods here below.
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3.4.1. Random sampling (random)

The method draws samples xN+1 from the uniform distribution defined
over X̄ in the case of population-based sampling, or by selecting a random
index in {1, . . . , Nmax} \ E in the case of pool-based sampling. This is the
simplest method we consider to have a baseline to compare with: any AL
method should be more efficient that random, at least statistically.

3.4.2. Greedy method (GSx)

The sampling technique GSx proposed in [43, Algorithm 1] selects xN+1 by
maximizing the minimum distance from existing samples, i.e.,

xN+1 = arg max
x∈XP

dx(x) (18a)

dx(x) = min
k=1,...,N

∥σ(x)− σ(xk)∥22 (18b)

The method is not model-based, in that the predictor ŷ is not used to select
the samples to query. Although conceived for pool-based AL, the method can
be extended also to population-based AL by maximizing d(x) with respect
to x ∈ X̄ in (18). For fair comparison, in the case of population-based AL,
rather than maximizing the minimum distance in our numerical tests we will
also adopt LHS to acquire the first Ni samples instead of using the approach
suggested in [42] for pool-based AL.

3.4.3. Greedy method (iGS)

The iGS method proposed in [42, Algorithm 3] is an extension of greedy
sampling that, in addition, considers the minimum predicted distance in the
y-space

dy(x) = min
k=1,...,N

∥ŷ(x)− yk∥22 (19)

where ŷ is the latest predictor trained on currently available samples, and
selects

xN+1 = arg max
x∈XP

dx(x)dy(x) (20)

(in case of multiple targets, we assume that the values in (19) refer to scaled
target values). The method can be extended also to population-based AL. In
such a case, similarly to GSx, we will use LHS for initialization.

Thanks to the additional term dy defined in (19), iGS also aims at getting
samples where the output y is expected to be different from the current values
yk observed so far. A possible drawback of (20), however, is that dx and dy are
multiplied by each other, i.e., diversity is sought in both the x- and y-space, so
that pure exploration of the x-space might be inhibited by predicted proximity
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in the y-space, i.e., by small (or zero) estimated values dy. Instead, ideal looks
for diversity in the x- or y-space, as z(x) and s2(x) are summed in (14) instead
of being multiplied by each other as in (20).

3.4.4. Query-by-Committee (QBC)

After a first initialization phase in which Ni feasible samples are generated
randomly, the QBC method for regression [31, 8] considered here creates KQBC

bootstrap samples obtained by randomly sampling the existingN samples with
replacement, trains a predictor ŷj on each set, j = 1, . . . , KQBC , and then
selects xN+1 to maximize the output-prediction variance

xN+1 = arg max
x∈XP

KQBC∑
j=1

∥∥∥∥∥∥ŷj(x)− 1

KQBC

KQBC∑
j=1

ŷj(x)

∥∥∥∥∥∥
2

2

(21)

(in case of multiple targets, the terms in (21) must be considered again as scaled
target values). It can be used for both pool-based and population-based AL.
In QBC, we set KQBC = 5 in all our tests and train the individual predictors ŷj

on bootstrapped samples as in [42], rather than leaving out a different subset
of ⌊ N

KQBC
⌋ samples as suggested in [8]. In fact, the former approach better

performed in our examples, in which the number of allowed samples is small
compared to the number of model parameters to learn and hence removing
⌊ N
KQBC

⌋ samples can dramatically change the resulting individual predictions

ŷj(x). An additional disadvantage of QBC when actively learning NN models
is that large disagreements may be caused by lack of global convergence of
the optimization method used to train the different predictors, due to the
non-convex nature of the NN training problem.

The QBC method we tested only relies on information related to the y-
space, i.e., is totally based on the predictor ŷ and its variants ŷj to drive the
acquisition, but not explicitly on measures defined purely on feature-vectors
for promoting diversity in the x-space. This ultimately has a potential negative
impact on the robustness of QBC. Extensions of QBC to improve performance
by taking into account diversity and density was introduced in [20] in the
context of classification.

3.4.5. Improved Representativeness-Diversity Maximization (iRDM)

The iRDM pool-based unsupervised active learning method [25] for regres-
sion generates Nmax samples in one shot (rather than incrementally) after
performing K-means [26] on X σ

P to create Nmax clusters. Then, the samples
closest to the resulting centroids are refined sequentially (up to cmax times) to
optimize the tradeoff between the representativeness of the selected point xk

14



within its cluster Ck (i.e., the average distance of xk from the points in Ck) and
the diversity of xk from the other selected samples x1, . . . , xk−1, xk+1, . . . , xNmax

in the remaining clusters (i.e., the minimum distance ∥σ(xk) − σ(xj)∥2, j =
1, . . . , Nmax, j ̸= k). We set cmax = 5 in all our tests as suggested in [25]. As
for GSx, the method does not exploit the predictor ŷ, which in fact is only
trained after acquiring all the Nmax samples.

3.5. Numerical complexity

The initial phase of ideal (Algorithm 1) requires either extracting Ninit

samples by Latin Hypercube Sampling (LHS) [28] (population-based AL) or
K-means [26] (pool-based AL). In addition, ideal requires retraining the pre-
dictor ŷ at Step 6.1 and solving the optimization problem at Step 6.2 to
get a new sample. Depending on the class of predictors ŷ used, retraining
can be the most expensive computation effort. As for other AL methods,
warm-starting the training algorithm or incrementally learning ŷ could be
exploited, if supported by the particular class of prediction models and training
algorithms chosen. Regarding Step 6.2, the computation complexity mainly
depends on the number of operations required to evaluate the predictor ŷ(x)
in (11), and therefore on the complexity of the selected model class.

Algorithms ideal, iGS, and QBC require retraining the predictor ŷ, respec-
tively, Nmax − Ninit + 1, Nmax − Ninit + 1, and (KQBC + 1)(Nmax − Ninit + 1)
times, while random, GSx, and iRDM only once at the end of the acquisition,
as they are only based on the relative positions of the acquired samples xk in
the feature space.

In the case of pool-based sampling, ideal, iGS, and QBC require, after the
initialization phase, evaluating the predictor ŷ, respectively, (Nmax − Ninit +
1)M , (Nmax−Ninit+1)M , and (KQBC+1)(Nmax−Ninit+1)M times. In addition,
ideal requires evaluating the acquisition function a(x̄k) (Nmax − Ninit + 1)M
times, GSx and iGS evaluating the squared distances in (18b) (Nmax −Ninit +
1)M times, and in addition iGS evaluating the squared distances (19) (Nmax−
Ninit+1)M times, while QBC requires evaluating the output prediction variance
terms in (21) (Nmax−Ninit+1)M times. Then, ideal, GSx, iGS, and QBC require
computing Nmax − Ninit + 1 times the minima defined by (15a), (18a), (20),
and (21), respectively.

Regarding iRDM, it requires solving K-means to partition M points into
Nmax clusters, computing the representativeness measure M times, and then
repeat cmax times the construction of the diversity measure on all candidate
samples within the updated cluster with respect to the samples already fixed
in each one of the other clusters. Note that iRDM, contrarily to the other
methods, is not an incremental AL method, and therefore a change of Nmax
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(such as due to allowing more queries) would require redefining all the Nmax

samples to acquire.
Finally, we remark that the computation time required by the AL algorithm

is often negligible with respect to the time required to acquire a new target
value, which is often the most dominating effort in the practical situations AL
algorithms are employed.

4. Numerical tests

In this section, we test the proposed AL approach on synthetic illustrative
examples and real-world datasets, comparing it to the different AL methods
reviewed in Section 3.4.

Regarding the initial Ni samples, for the GSx and iGS methods we recur-
sively use (18b) starting from the centroid x1 of X P as proposed in [42], and
random sampling for the random and QBC methods. Different approaches
have been proposed in the literature for cold-starting AL, see for instance the
representative sampling method proposed recently in [17] in the context of
image classification, or the approach used by iRDM.

To analyze the performance of iRDM as a function of the number of acquired
samples, as iRDM is not an incremental method we execute it from scratch each
time we want to collect a different number of samples.

All computations were carried out in Python 3.9.15 using the scikit-learn
package [30] to train feedforward NNs for regression (MLPRegressor function)
and support vector regression (SVR) (SVR function). Regarding the considered
AL methods, for pool-based active learning we used the Python implementa-
tion developed by the author and available at http://cse.lab.imtlucca.it/

~bemporad/ideal.

4.1. Scalar example

We first test the proposed AL approach on the simple regression problem
defined in Example 1, i.e., with y(x) as in (13). Since n = 1, we generate a
grid XP of M = 1000 equally-spaced points on the line segment X̄ = [−3, 3]
and use pool-based sampling on the entire pool XP , so that problem (7) can be
solved by enumeration (15a). While training the NN, the parameter vector is
not warm-started when executing Step 6.1, to avoid possible low-quality local
minima inherited by the early steps of Algorithm 1 when only a few data are
available.

The median over 50 runs of the root-mean-square error (RMSE)

RMSE =

√√√√ 1

M

M∑
k=1

(yk − ŷ(xk))2
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Figure 2: AL of function (13): median RMSE as a function of the number of queries. Vertical
lines denote min and max RMSE values

and its range (min and max values) obtained with δ = 5, Ni = 10, Nmax = 30,
as a function of the number N of acquired samples, is depicted in Figure 2 and
compared with the RMSE obtained with random, GSx, iGS, QBC, and iRDM
sampling. It is apparent that ideal is superior to random and QBC, behaves
better than GSx and iRDM (which are not model-based methods) and similarly
to iGS after about half of the allowed samples have been acquired. The high
variance of QBC is possibly due to the small number of samples queried and,
consequently, the even smaller number of training samples used to train the
predictors forming the committee that may lead to large disagreements among
them.

Table 1 shows the mean and standard deviation of the RMSE obtained by
ideal when N = Nmax for different values of the hyperparameter δ and, for
comparison, by random sampling.

δ 0.0 0.1 1.0 5.0 10.0 R

mean 0.528 0.470 0.439 0.402 0.402 1.495

std 0.307 0.239 0.084 0.042 0.036 0.548

Table 1: AL of function (13): mean RMSE and its standard deviation after Nmax = 30 steps
obtained on 50 different runs of Algorithm 1 for different values of δ (R = random sampling)

We will take δ = 5 in all our remaining tests. For such a value of δ, to test
the robustness of AL against measurement noise we repeat the same test by
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perturbing the measurements yk = y(xk)+ηk, where ηk ∼ N (0, σ2
η) for different

values of the standard deviation ση. The mean and standard deviation of the
resulting RMSE over 50 runs after Nmax = 30 iterations is shown in Table 2.
The table shows that for increasing values of ση the RMSE deteriorates without
an excessive increase of variance and in a gradual way for ideal (proving its
robustness with respect to noisy target measurements), iGS, and iRDM, while
such a trend is less marked for GSx, random, and QBC.

ση ideal random GSx iGS QBC iRDM

0.0 0.40 (0.04) 1.44 (0.60) 0.76 (0.14) 0.41 (0.04) 1.16 (0.88) 0.63 (0.12)
1.0 0.62 (0.02) 1.45 (0.55) 0.80 (0.11) 0.62 (0.04) 1.15 (0.79) 0.74 (0.16)
2.0 0.86 (0.09) 1.60 (0.48) 0.92 (0.14) 0.86 (0.05) 1.38 (0.78) 0.91 (0.14)

Table 2: AL of function (13) with noise: mean (std) RMSE after Nmax =30 steps for different
values of ση

4.2. Multiparametric quadratic programming

Model predictive control (MPC) is a popular engineering technique for con-
trolling dynamical systems in an optimal way under operating constraints [6].
Evaluating the MPC law requires solving a quadratic programming (QP)
problem of the form

z∗(x) = argminz
1
2
z′Qz + x′F ′z

s.t. Az ≤ b+ Sx
ℓ ≤ z ≤ u

y(x) = [Im 0 . . . 0] z∗(x)

(22)

where z ∈ Rnz is a vector of future control moves, nz ≥ m, and x ∈ Rn is a
vector of parameters that change at run time, such as estimated states and
reference signals, and the Hessian matrix Q = Q′ ≻ 0. To alleviate the effort
of solving (22) online for each given vector x, multiparametric QP (mpQP)
was proposed in [4], showing that the solution z∗ : Rn → Rnz , and therefore
y(x), is continuous and piecewise affine over a polyhedral partition of a convex
polyhedron X ⊆ Rn. The main drawback of such an explicit form of MPC
is that the number of polyhedral cells tends to grow exponentially with the
number of constraints in (22).

Suboptimal methods were proposed to approximate y(x), such as via neural
networks [29, 19]. In order to find an approximation ŷ(x) of y(x), one must
collect a training dataset of pairs (xk, yk), where evaluating yk = y(xk) requires
solving a QP problem as in (22). Randomly sampling a given set X̄ ⊂ Rn of
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Figure 3: mpQP problem: median RMSE as a function of the number of queries. Vertical
lines denote min and max values. Only the population-based versions of ideal, GSx, iGS,
and QBC were used (iRDM is a pure pool-based method).

parameters x may result time-consuming, especially when the dimension n of
the parameter vector is large. To minimize the number Nmax of QP problems
solved to get a proper approximation quality, we use Algorithm 1 to actively
generate samples xk.

We consider here a mpQP problem with n = 2, nz = 12, m = 1, b ∈ R12,
S = 0, and all matrices in (22) generated randomly, with the entries of A, F
∼ N (0, 1) and the entries of b, u,−ℓ ∼ U [0, 1], where U [0, 1] is the uniform
distribution over the interval [0, 1], Q = Q′ ≻ 0, is randomly generated so
that its condition number equals 103, and X̄ = {x : ∥xi∥∞ ≤ 3}. Algorithm 1
is applied using population-based sampling with Ni = 10 and Nmax = 30 for
training a feedforward neural network with 3 layers of 10 neurons each and
ReLU activation function, without using warm starting while retraining the
model. The median RMSE and its range over 50 runs is shown in Figure 3,
where it is apparent that ideal performs better than random, GSx, and QBC,
and similar to iGS. Note that in this population-based AL example we could not
use iRDM, which is a pure pool-based method. Figure 4 shows the polyhedral
partition associated with the exact mpQP solution (unknown to the active
learning algorithms) computed as described in [2] along with the queried
samples and initial samples generated by one of the runs of Algorithm 1. It is
evident that the points acquired by ideal are not distributed uniformly.
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Figure 4: Exact mpQP solution, initial samples x1, . . . , xNi (red diamonds), and samples
xNi+1, . . . , xNmax

queried by ideal (green circles)
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Figure 5: Bell-shaped function (23)

4.3. Active learning with unknown constraints

In order to test Algorithm 1 in the presence of unknown constraints, we
consider data generated by the following bell-shaped function y : R2 → [0, 1]

y(x) = e
−
(
( 3
2
x1)

2
+( 3

2
x2)

2
)3

(23)
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plotted in Figure 5. Algorithm 1 is applied with Ni = 10 and Nmax = 120 to
fit a nonlinear model via support vector regression with radial basis function
(RBF) kernel, with penalty 1

C
= 0.1 for ℓ2-regularization and threshold ϵ = 0.1.

Pool-based sampling is used on a set XP of M = 1000 random feature vectors
generated uniformly in [−2, 2] × [−2, 2]. The median RMSE and its range
computed on all vectors x̄i ∈ XP over 50 runs is shown in Figure 6 (upper
plot). A possible reason for the poor performance of QBC in this example is
that the prediction uncertainty estimated by QBC is inaccurate, which leads to
sampling feature vectors that are in reality not worth sampling. In addition,
as mentioned earlier, improper sampling leads to poor predictors and hence a
poor target-uncertainty estimation, so that weak sampling persists. This leads
to a waste of queries.

Next, we add an unknown constraint by only defining y(x) for x ∈ X ,
where

X ≜ {x : 3x2 ≤
√
3|x1|} (24)

and repeat the same test, obtaining the RMSE results shown in Figure 6 (lower
plot), where the RMSE is computed only on the feasible vectors x̄i ∈ XP ∩X .

Note that for ideal, random, GSx, iGS, and QBC the RMSE values are not
available for k < Ninit. This is due to the fact that, as described in Sec-
tion 3.1, the first predictor is trained only after Ni feasible samples have been
collected, which may require Ninit > Ni queries. On the contrary, due to its
non-incremental nature, when running iRDM to acquire k = Ni, Ni+1, . . . , Nmax

samples, the predictor is always constructed on the available feasible samples,
no matter how many feasible samples have been collected (unless all samples
are infeasible, a situation that never occurred in our experiments).

In the above tests, when using GSx and iGS random sampling was employed
to get the first Ni samples, as in the case of unknown constraints the initializa-
tion method suggested in [42] was sometimes failing to get Ni feasible samples
within the maximum budget Nmax of queries.

Figure 7 shows the level sets of the learned classifier ŷ during one of the
tests using all the considered methods, the pool XP of samples (gray circles),
the queried samples (green dots), the initial samples (red diamonds), and the
level sets of the prediction function (dark blue lines) and of function (23)
(dashed gray circles). It is apparent how GSx and iRDM scatter the points
uniformly no matter whether they are feasible or not, which wastes a large
percentage of the queries to get meaningful values yi (all the Nmax points
acquired by iRDM are marked in red, as they are selected altogether). Similarly,
iGS also samples infeasible areas of the x-space quite consistently, as it aims at
sampling the co-domain of ŷ uniformly due to the term dy in (19). Regarding
QBC, it mostly samples the infeasible set, where the KQBC predictors in the
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Figure 6: AL problem (23), median RMSE without (upper plot) and with unknown
constraint (24) (lower plot). Vertical lines denote min and max values

committee completely extrapolate due to lack of information and hence tend
to disagree the most. On the other hand, ideal spontaneously tends to avoid
querying infeasible vectors x ∈ XP \ X and concentrates most queries where
the underlying bell-shaped function has the largest variations.
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Figure 7: AL problem (23) with unknown constraint (24): pool XP (gray circles), queried
samples (green dots), initial samples (red diamonds), level sets of prediction function (dark
blue lines) and of the true function (23) (dashed gray circles)

4.4. Real-world datasets

We test the proposed AL approach on real-world datasets for regression
from the University of California, Irvine (UCI) Machine Learning Repository,
Kaggle, and StatLib, summarized in Table 3.

For the tests described in the upper half of Table 3, we train neural networks
ŷ with two layers of five neurons each with logistic activation function and
ℓ2-regularization term equal to 10−2 on the vector of weight/bias terms of the

4https://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test
5https://archive.ics.uci.edu/ml/datasets/auto+mpg
6https://archive.ics.uci.edu/ml/datasets/Wine+Quality (the first seven at-

tributes are considered as features, the ninth as target)
7https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics
8https://archive.ics.uci.edu/ml/datasets/QSAR+aquatic+toxicity
9https://www.kaggle.com/fedesoriano/body-fat-prediction-dataset/version/1

10https://www.kaggle.com/datasets/dongeorge/beer-consumption-sao-paulo
11http://lib.stat.cmu.edu/datasets/PM10.dat
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dataset M n m ŷ(x) Nmax

concrete-slump 4 103 7 1 neural network 103
auto-mpg 5 392 6 1 neural network 100
winequality-white 6 4898 7 1 neural network 100
yacht 7 308 6 1 neural network 100
qsar-aquatic-toxicity 8 546 8 1 RBF-SVR 120
bodyfat 9 252 14 1 RBF-SVR 120
beer 10 365 4 1 RBF-SVR 120
pm10 11 500 7 1 RBF-SVR 120

Table 3: Real-world datasets: M = number of available samples in the pool, n = number
of features, m = 1 (single target), Nmax = query budget.

model, while for the remaining tests we train predictors ŷ using RBF-SVR with
penalty 1

C
= 0.02 for ℓ2-regularization and threshold ϵ = 0.05. Pool-based AL

is used with parameters Ninit = 20 and the values of Nmax reported in Table 3.
Median RMSE results and their ranges over 50 tests are shown in Figures 8–11.

As expected, all the considered AL methods perform better than random
when the number of queries is large enough, with QBC being the method
that requires the largest number of queries to start becoming an effective AL
strategy. In spite of its unsupervised AL nature, iRDM is overall quite effective,
sometimes superior to model-based strategies. In all tests, ideal performs either
better or comparably with respect to the other methods, and is the only
method that, at least statistically, seems to perform consistently well with
respect to all the considered datasets. The latter feature, consistency, makes
it an “ideal” candidate to face a new active learning problem in practice.

5. Conclusion

In this paper we have introduced a new active learning method to solve
a very broad set of active learning problems of regression. The approach is
not linked to any particular class of predictors and supports both pool-based
and population-based sampling. The objective function driving the optimal
selection of the next feature vector to query only requires evaluating the
prediction function that has been currently learned and compare it to the target
values acquired so far. This is an advantage compared to other approaches such
as query-by-committee methods in which multiple predictors must be trained
and evaluated.

For low-dimensional problems (say up to three features) amenable for
population-based AL, our practical experience is that it is usually more efficient
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Figure 8: Regression problems, RMSE results (median and range) on concrete-slump (left
plot), auto-mpg (right plot) datasets

to create a pool XP containing a large but finite set of randomly-selected feature
vectors and use pool-based AL instead, i.e., to optimize the sample acquisition
problem by enumeration rather than by global optimization over a continuum
of values. Our proposed method also seems to be particularly advantageous
to learn functions that have plateaus (this would be the case if applied to
classification problems), because the IDW uncertainty terms tend to be small
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Figure 9: Regression problems, median RMSE results (median and range) on
winequality-white (left plot), yacht (right plot) datasets

in regions of the feature-vector space where the acquired targets have similar
values. While this is an advantage, it may also endanger the method, as it
may lead to miss areas of significant change in the underlying function. For
this reason, as for global optimization using surrogate functions, we found that
a safeguard is to have a large-enough weight δ on pure exploration, which is
entirely independent of the target values acquired and the predictor learned.
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Figure 10: Regression problems, median RMSE results (median and range) on
qsar-aquatic-toxicity (left plot), bodyfat (right plot) datasets

As mentioned at the beginning of Section 3.1, unsupervised AL (such as
GSx, iRDM, K-means, or simply random) is sometimes superior to model-based
AL (such as ideal, iGS, QBC), see for example Figures 10–11. It would be
interesting to investigate the combination of efficient unsupervised AL and
model-based AL methods, in particular use iRDM to perform the initialization
phase of ideal.
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Figure 11: Regression problems, median RMSE results (median and range) on beer (left
plot), pm10 (right plot) datasets

We also remark that a rather high variance can be observed when applying
all the methods considered in our numerical tests. There are several reasons
for this. First, when K-means is applied for initialization, the final cluster
centroids found may depend heavily on their initial values, due to the fact
that K-means is a coordinate-descent method that is not guaranteed to reach
a global minimum. Moreover, in the case of active learning of neural network
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models, additional variance is due to the non-convexity of the learning problem,
which may lead to largely different prediction models depending on the random
initial values of the trained weights/bias terms. Further variance is suffered
by QBC due to the random generation of bootstrap samples.

Future research will be devoted to analyze in depth the use of ideal to
solve classification problems, to adapt the weight on the exploration term
δ automatically while learning, to extend the method to streaming data to
support online learning problems, and to active learning for identification of
dynamical systems.
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