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This paper revisits the fundamental equations for the solution of the frictionless unilateral normal contact
problem between a rough rigid surface and a linear elastic half-plane using the boundary element
method (BEM). After recasting the resulting Linear Complementarity Problem (LCP) as a convex quadratic
program (QP) with nonnegative constraints, different optimization algorithms are compared for its
solution: (i) a Greedy method, based on different solvers for the unconstrained linear system (Conjugate
Gradient CG, Gauss–Seidel, Cholesky factorization), (ii) a constrained CG algorithm, (iii) the Alternating
Direction Method of Multipliers (ADMM), and (iv) the Non-Negative Least Squares (NNLS) algorithm,
possibly warm-started by accelerated gradient projection steps or taking advantage of a loading history.
The latter method is two orders of magnitude faster than the Greedy CG method and one order of
magnitude faster than the constrained CG algorithm. Finally, we propose another type of warm start
based on a refined criterion for the identification of the initial trial contact domain that can be used
in conjunction with all the previous optimization algorithms. This method, called cascade
multi-resolution (CMR), takes advantage of physical considerations regarding the scaling of the contact
predictions by changing the surface resolution. The method is very efficient and accurate when applied
to real or numerically generated rough surfaces, provided that their power spectral density function is
of power-law type, as in case of self-affine fractal surfaces.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Contact mechanics between rough surfaces is a very active area
of research for its paramount importance to address several prac-
tical applications in physics and engineering. Understanding the
evolution of the contact domain and contact variables, such as
load, real contact area, contact stiffness, and many others, that
depend on the morphological properties of roughness, is still con-
sidered a challenging problem today. The reader is referred to
(Barber, 2003; Nosonovsky and Bhushan, 2005; Ciavarella et al.,
2006; Hyun and Robbins, 2007; Ciavarella et al., 2008a,b;
Carbone and Bottiglione, 2008; Paggi and Ciavarella, 2010;
Campana et al., 2001; Paggi and Barber, 2011; Paggi et al., 2014;
Yastrebov et al., 2015) for an overview of research results devel-
oped during the last decade.

Semi-analytical contact theories that are able to provide syn-
thetic predictions of the contact response is also a challenging
topic. A comparison and validation on benchmark results is neces-
sary to understand the limitations of existing approaches and
propose further improvements. Experimental investigations are
difficult to make and involve approximations, for example very
often the contact parameters can only be estimated by indirect
measurements of thermal or electric resistances of compressed
rough joints (McCool, 1986; Sridhar and Yovanovich, 1994) or are
mostly limited to measurements of real contact area under special
conditions (O’Callaghan and Probert, 1970; Hendriks and Visscher,
1995). Therefore, numerical methods are essential to acquire as
much information as possible about the contact problem at hand
and infer general conclusions.

In spite of its effectiveness and versatility, the finite element
method (FEM) has been mainly applied in mechanics to solve con-
tact problems between rough surfaces in which the constitutive
behavior of the bulk is not linear elastic. For instance, the study
of elasto-plastic contact problems with roughness (Hyun et al.,
2004), where an explicit approach was used to reduce the high
computational cost, and the study involving frictional dissipative
phenomena in visco-elastic materials, where the energy dissipa-
tion in the bulk is essential and can be well predicted by FEM
(Wriggers and Reinelt, 2009), are worth mentioning.

In the linear elastic regime, when the multi-scale character of
roughness covering a wide spectrum of wavelengths is the main
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1 According to documentation, mldivide solves linear systems with symmetric
positive definite matrices by computing a Cholesky factorization, see http:/
www.mathworks.it/help/MATLAB/ref/mldivide.html.
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focus, the use of the boundary element method (BEM) is histori-
cally preferred over FEM (Andersson, 1981; Man, 1994). This is
essentially due to the fact that only the surface must be discretized
and not the bulk. Moreover, it is not necessary to adopt surface
interpolation techniques, like Bezier curves, to discretize the inter-
face (see, e.g., the rigorous studies in (Wriggers, 2006, Ch. 9) and in
(Hyun et al., 2004)), which must be used with care to avoid
smoothing out artificially the fine scale geometrical features of
roughness.

In the application of BEM, the frictionless contact problem
between two linear elastic rough surfaces is mathematically equiv-
alent to the problem of the normal contact between a rigid rough
surface and an elastic half-plane with equivalent elastic parame-
ters, see (Barber, 2003) for a rigorous proof. The core of BEM is
based on the so-called Green’s functions, that relate the displace-
ment of a generic point of the half-plane to the action of a concen-
trated force on the surface caused by contact interactions. An
integral convolution of all the contact tractions provides the
deformed contact configuration. After introducing a discretization
of the half-plane consisting of a grid of boundary elements, the
problem of point-force singularity is solved numerically by using
the closed-form solution for a patch load acting on a finite-size
boundary element (Johnson, 1985, Ch. 3,4). The contact problem
is then set in terms of equalities and inequalities stemming from
the unilateral contact constraints and can be solved by constrained
optimization. In this regard, apart from the discretization error
intrinsic in any numerical method, BEM provides the highest
attainable accuracy for discrete problems (Polonsky and Keer,
1999). The basic version of BEM can be also extended to solve
rough contact problems with friction (Li and Berger, 2003; Pohrt
and Li, 2014) and between viscoelastic materials (Carbone and
Putignano, 2013).

With the aim of investigating the effect of roughness at multiple
scales, the availability of computational methods that can solve
large contact problems in an efficient and fast way is of crucial
importance. The size of the linear system of equations relating
the contact pressures to the normal deflections can be in fact quite
large, as it arises from high resolution profilometric surface sam-
ples of 512�512 heights and very large indentations. Hence, the
computational challenges regard two main aspects: ðiÞ efficiently
solve the system of linear equations; ðiiÞ impose the satisfaction
of the unilateral contact constraints (contact inequalities). Regard-
ing the first issue, iterative methods like the Conjugate Gradient
algorithm or the Gauss–Seidel method (Francis, 1983;
Borri-Brunetto et al., 1999; Borri-Brunetto et al., 2001) have been
widely used. Alternatively, the capabilities of multigrid or multi-
level methods have been exploited (Raous, 1999; Polonsky and
Keer, 1999) to approximately solve the equation system on coarse
grids and then project the results on finer grids. Finally, we men-
tion the fast method and its variants based on the solution of the
linear system of equations in the Fourier space (see, e.g., Nogi
and Kato, 1998; Polonsky and Keer, 2000a,b; Batrouni et al.,
2002; Scaraggi et al., 2013; Prodanov et al., 2014).

Regarding the imposition of the contact inequalities, Johnson
(1985, p.149-150) suggested to apply a greedy approach: after
solving the equation set for the unknown tractions, the boundary
elements for which these are negative (tensile) are excluded in a
following iteration from the assumed contact area and the corre-
sponding pressures set equal to zero. Johnson (1985, p.149–150)
stated that ‘‘experience confirms that repeated iterations converge
to a set of values of pressures which are positive where contact
takes place and zero otherwise’’. To the best of the authors’ knowl-
edge, a rigorous proof of convergence of this method has not been
provided in the literature. However, if valid, it allows to use any
numerical method to solve the unconstrained set of linear equa-
tions and then impose a correction in a recursive way. Indeed, this
numerical approach has been successfully applied by many
authors, such as Kubo et al. (1981) and Borri-Brunetto et al.
(1999, 2001) who used this greedy approach in conjunction with
a Gauss–Seidel iterative algorithm for the solution of the uncon-
strained set of linear equations, and Karpenko and Akay (2001)
and Batrouni et al. (2002) who applied it together with a numerical
scheme based on the Fast Fourier Transform (FFT).

In alternative to the greedy approach, Polonsky and Keer (1999)
proposed a constrained Conjugate Gradient method based on the
theory in (Hestenes et al., 1980, Ch. 2,3) to solve the linear system
of equations and rigorously impose the satisfaction of the contact
constraints. For the solution of the system of equations, a
multi-grid solution scheme was proposed in (Polonsky and Keer,
1999) and then a FFT algorithm was considered in (Polonsky and
Keer, 2000a,b).

In this paper, we first examine the validity of the greedy
approach based on a monotonic elimination of tensile points. We
show that this approach usually finds the exact solution but, as
we prove by a counter-example, it may fail. Then, we show that
other optimization algorithms such as Non-Negative Least Squares
(NNLS) and the Alternating Direction Method of Multipliers
(ADMM) can be used in alternative to the greedy approach, by
exploiting the equivalence between the contact problem and quad-
ratic programming with unilateral non-negativity constraints.
Moreover, we propose warm starting techniques for the optimiza-
tion algorithms that are especially useful in case of a solution of a
sequence of increasing or decreasing displacements.

This paper provides a comprehensive comparison of the compu-
tational performance of the greedy approach (used in conjunction
with different unconstrained solvers like the Conjugate Gradient,
the Gauss–Seidel iterative scheme, or the MATLAB’s mldivide

solver1), of the original constrained CG method by Polonsky and
Keer (1999), and of novel optimization algorithms that are able to
exploit warm starts for solving convex quadratic programs subject
to non-negativity constraints. As a main conclusion, the proposed
NNLS algorithm with warm start based on accelerated gradient pro-
jections (GPs) is found to be one order of magnitude faster than the
algorithm by Polonsky and Keer (1999) and two orders of magnitude
faster than the greedy approach.

Finally, by exploiting the morphological features of the contact
domain of fractal surfaces, we propose a cascade multi-resolution
algorithm that can further reduce computation time by at least a
factor two with respect to the NNLS algorithm with accelerated
GPs.
2. Mathematical formulation

In the framework of BEM, the normal displacements uðxÞ at any
point of the half-plane identified by the position vector x are
related to the contact pressures pðyÞ at other points as follows
(Johnson, 1985; Barber, 2010):

uðxÞ ¼
Z

S
Hðx; yÞpðyÞdy; ð1Þ

where Hðx; yÞ represents the displacement at a point x due to a sur-
face contact pressure p acting at y and S is the elastic half-plane. For
homogeneous, isotropic, linear elastic materials, the influence coef-
ficients are:

Hðx; yÞ ¼ 1� m2

pE
1

kx� yk ; ð2Þ
/
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Fig. 1. Sketch of the contact problem between a rigid rough surface and an elastic
half-plane. Its deformed configuration corresponding to the imposed far-field
displacement D is depicted with a black solid line. The red dashed line
corresponding to a rigid-body motion of the half-plane identifies the heights to
be included in the initial trial contact domain. Once Problem 1 is solved we may
have: (i) heights certainly not in contact from the beginning, type ðaÞ; (ii) heights
loosing contact due to elastic interactions, type (b); (iii) heights in contact, type (c).
(For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this article.)
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where E and m denote, respectively, the composite Young’s modulus
and Poisson’s ratio of half-plane, and k � k the standard Euclidean
norm. The total contact force P is the integral of the contact traction
field

P ¼
Z

S
pðxÞdx: ð3Þ

By referring to Fig. 1, in the following we define for each surface
point x 2 S its elevation nðxÞ, measured with respect to a reference
frame, and set nmax ,maxx2SnðxÞ the maximum elevation. The
indentation of the half plane at the points in contact is denoted
by �u, whereas a generic displacement along the surface is u.

We consider the following problem:

Problem 1. For a given far-field displacement D P 0 in the
direction perpendicular to the undeformed half-plane, find the
solution of the normal contact problem uðxÞ; pðxÞ satisfying (1) and
the unilateral contact (linear complementarity) conditions

uðxÞ � �uðx;DÞP 0; ð4aÞ

pðxÞP 0; ð4bÞ

ðuðxÞ � �uðx;DÞÞpðxÞ ¼ 0; ð4cÞ

for all points x 2 S, where contact tractions are positive when
compressive.

Introducing the quantity wðx;DÞ ¼ uðxÞ � �uðx;DÞ, Eq. (4) can be
rewritten as:

wðx;DÞP 0; ð5aÞ

pðxÞP 0; ð5bÞ

wðx;DÞpðxÞ ¼ 0: ð5cÞ

Problem 1 is an infinite-dimensional linear complementarity
problem. We find a finite-dimensional approximate solution by
discretizing the surface as a square grid of spacing d consisting of
N � N average heights. Let Sij be the cell of area d2 indexed by
i; j 2 IN , with IN , f1; . . . ;Ng � f1; . . . ;Ng. Let xi;j ,

R
x2Sij

xdx,

ni;j ,
R

x2Sij
nðxÞdx, pi;j ,

R
x2Sij

pðxÞdx, and ui;j ,
R

x2Sij
uðxÞdx be,

respectively, the barycentric coordinate, average height, resultant
of the contact tractions, and the corresponding displacement on
the surface element Sij. Consider the following discretized version
of (1)

ui;j ¼
XN

k¼1

XN

l¼1

Hi�k;j�l pk;l ð6Þ

for all ði; jÞ 2 IN , where the term Hi�k;j�l is the Green function used in

(1) averaged over the elementary area d2, which corresponds to the
displacement induced by a uniformly loaded square:

Hi�k;j�l ¼
1
d2

Z
Sij

Z
Skl

Hðx; yÞdydx; ð7Þ

and

pk;l P 0; 8ðk; lÞ 2 IN : ð8Þ

For instance, Borri-Brunetto et al. (1999) used the following approx-
imation related to a uniform pressure acting on a rounded patch of
radius d=2:

Hi�k;j�l ¼
2

Epd ; if i ¼ k and j ¼ l
2

Epd arcsin d
2kxi;j�xk;lk

; if i – k; j – l

(
ð9Þ
but other formulae for a square patch can also be taken as in (Pohrt
and Li, 2014).

Let �IC , fði; jÞ 2 IN : ni;j < nmax � Dg be the set of indices corre-
sponding to elements Sij that are certainly not in contact (cf.
Fig. 1), and hence

pk;l ¼ 0; 8ðk; lÞ 2 �IC ; ð10Þ

let m ¼ #�IC be the number of elements of �IC and n ¼ #IC the num-
ber of elements belonging to the initial trial contact domain,
IC , IN n�IC . The set IC is only a superset of the set I�C of actual contact
points, since the corrections to the displacements induced by elastic
interactions may induce lack of contact in some elements ði; jÞ, i.e.,
ui;j > �ui;j, where �ui;j , D� nmax þ ni;j is the value of the compenetra-
tion of the height corresponding to the element ði; jÞ in the
half-plane (see Fig. 1).

For a generic ði; jÞ 2 IC corresponding to an element of the sur-
face which is potentially in contact with the elastic half-plane,
we denote by

wi;j , ui;j � �ui;j P 0 ð11Þ

the corresponding elastic correction to the displacement. Clearly, it
must hold that

wi;jpi;j ¼ 0; 8ði; jÞ 2 IC ð12Þ

since wi;j > 0 implies no contact between the surfaces and therefore
no pressure, while pi;j > 0 implies contact, ui;j ¼ �ui;j, or equivalently
wi;j ¼ 0.

By taking into account that pk;l ¼ 0 for all ðk; lÞ 2 �IC , Eq. (6) can
be recast as the following condition

wi;j þ �ui;j ¼
X
ðk;lÞ2IC

Hi�k;j�l pk;l; 8ði; jÞ 2 IC ; ð13Þ

which is limited to the nodes belonging to the initial trial contact
domain IC , whose number of elements is in general significantly
smaller than those of IN . The relations (8)–(13) can be recast in
matrix form as the following Linear Complementarity Problem
(LCP) (Cottle et al., 1992):

w ¼ Hp� �u ð14aÞ

w P 0; p P 0; w0p ¼ 0; ð14bÞ

where w 2 Rn is the vector of unknown elastic corrections
wi;j; ði; jÞ 2 �IC ;w0 denotes its transpose, p 2 Rn is the vector of
unknown average contact forces pi;j; ði; jÞ 2 IC ; �u 2 Rn is the vector
of compenetrations �ui;j; ði; jÞ 2 IC , and H ¼ H0 is the matrix obtained
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by collecting the compliance coefficients Hi�k;j�l, for ði; jÞ; ðk; lÞ 2 IC .
Due to the properties of linear elasticity (Johnson, 1985, p.144)
we have that

H ¼ H0 � 0; ð15Þ

that is H is a symmetric positive definite matrix (with the additional
property deriving from (9) of having all its entries positive). After
solving (14), the vector u 2 Rn of normal displacements
ui;j; ði; jÞ 2 IC is then simply retrieved as u ¼ �uþw.

By the positive definiteness property (15) of H, we inherit
immediately the following important property (Cottle et al.,
1992, Th. 3.3.7):

Property 1. The discretized version (8), (10)–(13) of Problem 1
admits a unique solution p;u, for all D P 0.

The LCP problem (14) corresponds to the Karush–Kuhn–Tucker
(KKT) conditions for optimality of the following convex quadratic
program (QP)

minp
1
2

p0Hp� �u0p ð16aÞ

s:t: p P 0 ð16bÞ

in that the solution p of (16) and its corresponding optimal dual
solution w solve (14), and vice versa.

Problem (16) is consistent with former pioneering considera-
tions by Kalker and van Randen (1972) and also summarized in
Johnson (1985, p.151–152). In fact, the contact pressures solving
the unilateral contact problem can be obtained by minimizing
the total complementary energy W of the linear elastic system,
subject to the constraint pðxÞP 0;8x 2 S. For a continuous system,
the total complementary energy is

W ¼ U �
Z
S

pðxÞ�uðx;DÞdx; ð17Þ

where U is the internal complementary energy of the deformed
half-plane in contact. For linear elastic materials, we have:

U ¼ 1
2

Z
S

pðxÞuðxÞdx: ð18Þ

Although such an energy-based approach can be used to derive FEM
formulations, it is also possible to remain within BEM and introduce
a surface discretization as before. By invoking the averaged Green’s

functions in (7), the discretized version of fW leads to

fW ¼ 1
2

X
ði;jÞ2IC

X
ðk;lÞ2IC

Hi�k;j�l pk;lpi;j �
X
ði;jÞ2IC

pi;j�ui;j ð19Þ

which represents a quadratic function of p to be minimized, under
the constraints pi;j P 0;8ði; jÞ 2 IC , as in (16). Since it is unlikely that
the contact area is known a priori, the active set of nodes in contact
results only after solving problem (14) or equivalently (16).

A large variety of solvers for LCP and QP problems were devel-
oped in the last 60 years (Beale, 1955; Fletcher, 1971; Goldfarb and
Idnani, 1983; Cottle et al., 1992; Schmid and Biegler, 1994;
Patrinos and Bemporad, 2014), and is still an active area of research
in the optimization and control communities. Historically, in the
mechanics community, Kalker and van Randen (1972) proposed
the simplex method, although it was found to be practical only
for relatively small N. More recent contributions adopt algorithms
to solve the unconstrained linear system of equations and then cor-
rect the solution by eliminating the boundary elements bearing
tensile tractions (Francis, 1983; Borri-Brunetto et al., 1999;
Borri-Brunetto et al., 2001), or use a constrained version of the
Conjugate Gradient (CG) algorithm (Polonsky and Keer, 1999).
These methods are simply initialized by considering arbitrary non-
negative entries in p, without taking advantage of the monotonic
increase (or decrease) of pressures by increasing (or decreasing)
the far-field displacement, an important property guaranteed by
rigorous elasticity theorems (Barber, 1974). The history of pres-
sures is saved during a contact simulation and it is easy to access
and use and it can be beneficial to save computation time.

Next section presents effective optimization algorithms for
solving the QP problem (16) and compares their performance with
respect to the Greedy CG method. Contrary to the latter, not only
the considered QP have the guaranteed property of always con-
verging to the unique solution p;u for any given D P 0, but also
the history of loading can be more efficiently taken into account
as a warm-start, with a significant saving of computation time.

3. Optimization algorithms

Since now on, we use the subscript i to denote the i-th compo-
nent of a vector or the i-th row of a matrix, the subscript I to
denote the subvector obtained by collecting all the components
i 2 I of a vector (or all the rows i of a matrix), and the double sub-
script I ; I1 to denote the submatrix obtained by collecting the i-th
row and j-th column, for all i 2 I ; j 2 I1.

3.1. Greedy methods

A greedy method corresponds to solve problem (16) by itera-
tively solving the unconstrained linear system of equations
w ¼ Hp� �u ¼ 0 with respect to p and increasingly zeroing nega-
tive elements of p until the condition p P 0 is satisfied. By con-
struction we obtain w0p ¼ 0. The method is described in
Algorithm 1, in which a standard Conjugate Gradient employed
to solve the unconstrained linear system of equations. Steps 2.1–
2.4 can be replaced by any other algorithm for solving the linear
system of equations, like the Gauss–Seidel iterative scheme as in
(Borri-Brunetto et al., 1999, 2001), the MATLAB’s mldivide solver,
or even the FFT algorithm as in (Karpenko and Akay, 2001;
Batrouni et al., 2002).

Algorithm 1. Greedy method with Conjugate Gradient
(greedy CG)

Input: Matrix H ¼ H0 � 0, vector �u; initial guess p and initial
active set I # f1; . . . ;ng such that pf1;...;ngnI ¼ 0; maximum
number Kmax of iterations, tolerance � > 0.
(1) i 0; �I  f1; . . . ; ng n I;
(2) while (i 6 Kmax and minðpÞ < ��) or i ¼ 0 do:

(2.1) wI  HI ;IpI � �uI ;
(2.2) nw  kwIk2;
(2.3) bI  �wI
(2.4) while nw > � and i 6 Kmax do:
(2.4.1) sI  HI ;IbI ;
(2.4.2) pI  pI � wI 0bI

bI 0sI bI ;
(2.4.3) �wI  HI ;IpI � �uI ;
(2.4.4) bI  � �wI þ �wI 0sI

bI 0sI bI ;
(2.4.5) wI  �wI ;
(2.4.6) nw  kwIk2;
(2.4.7) i iþ 1;
(2.5) for j 2 I do:

(2.5.1) if pj < �� then pj  0;
I  I n fjg; �I  �I [ fjg;
(3) p�  p;
(4) u�I ¼ �uI ;u��I  H�I ;IpI ;
(5) end.

Output: Contact force vector p� and normal displacement
vector u�.
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Assuming that the prescribed initial p and I are such that pj ¼ 0 for
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Fig. 2. Counterexample showing that the Greedy CG method fails in getting the
correct solution (d ¼ 1 a.u. of L, as u and w�; E ¼ 0:01 F=L2). Green dots correspond
to the correct contact forces satisfying the LCP and are obtained by using the NNLS
method, Section 3.2. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
all j 2 f1; . . . ;ng n I , and Kmax is sufficiently large, the output of the
greedy algorithm leads to a contact pressure vector p� and a normal
displacement vector u� satisfying u� ¼ Hp�;p� P 0, ðu� � �uÞ0p� ¼ 0.
In fact, condition p� P 0 is guaranteed by the condition in Step 2
up to � precision. By letting w� , u� � �u, at termination of the algo-
rithm we have w�I ¼ HI ;Ip�I � �uI ¼ 0 because of the solution of the
CG method (Step 2.4), or equivalently u�I ¼ �uI (cf. Step 5). By setting
u��I , H�I ;IpI in Step 5, and recalling that p��I ¼ 0, we have

w�I
w��I

� �
¼

0 0
H�I ;I 0

� �
p�I
0

� �
þ

0
��u�I

� �
¼

HI ;I HI ;�I
H�I ;I H�I ;�I

� � p�I
p��I

� �
þ
��uI
��u�I

� �
and hence u� ¼ w� þ �u ¼ Hp�. The complementarity condition
ðu� � �uÞ0p� ¼ ðw�Þ0p� ¼ 0 follows by construction, as Step 2.4 zeroes
all the components of w�j that correspond to nonnegative p�j ;8j 2 I ,
and zeroes all the components p�j that correspond to possible non-

zero components w�j ;8j 2 �I .
However, to the best of the authors’ knowledge, no formal proof

exists that the condition w��I P 0 is satisfied after the algorithm ter-
minates, i.e., that u� P �u. If the algorithm is applied to randomly
generated �u vectors and H positive definite matrices with positive
coefficients, in many cases the LCP is not solved exactly. In contact
mechanics, the only evidence that this condition is satisfied has
been shown in simulations (see, e.g., Batrouni et al., 2002). Indeed,
we obtained the following counterexample in which the greedy
method failed in getting the solution also for H whose coefficients
are given by Eq. (9).2

Example 1. Consider a square mesh with grid spacing d
consisting of N � N boundary elements indexed by
ði; jÞ 2 IN; IN ¼ f1; . . . ;Ng � f1; . . . ;Ng. Suppose that all the bound-
ary elements are included in the initial trial contact domain IC

ðn ¼ N � NÞ by assigning a positive value of �ui;j to all elements. This
may represent a situation where a cluster of densely packed
heights comes into contact. Since �ui;j depends on the height field
ni;j, which is a random variable, for the sake of generality we
extract the values �ui;j randomly from a uniform distribution in the
interval ð0;1Þ. The matrix H is assembled according to (9). By
running a sequence of 100 random simulations, we find that in
approximately 40% of the simulations the greedy method provides
a solution which violates the condition w�i;j P 0 in at least one

element. This lack of convergence to the right solution is observed
for any size n of the problem. One of the wrong results obtained for
n ¼ 100 is shown in Fig. 2. The assigned random values of �u are
plotted in Fig. 2(a) for the sequence of boundary elements (from 1
to 100) composing the mesh. The solution w� presents a negative
entry in one single element (element 62 in Fig. 2(b)). The computed
contact forces are compared in Fig. 2(c) with the values corre-
sponding to the exact solution of the problem (green dots)
obtained by using the NNLS algorithm presented in Section 3.3,
that is proven to satisfy the LCP conditions (14) exactly. Although
just one value of w� is negative, the overall solution is affected by
this violation. We observe in fact a false contact detection for the
element number 62 violating the condition w�i;j > 0, a contact not

detected (element 81) and 7 contact forces significantly underes-
timated with respect to the exact ones. j

For less densely packed boundary elements belonging to IC , for
instance with a minimum distance of 2d between them instead of d
as in Example 1, the algorithm was found to always provide a
solution satisfying the condition w� P 0. Other benchmark tests

98 A. Bemporad, M. Paggi / International Journa
2 The MATLAB routine of the counterexample is available for download at
http://musam.imtlucca.it/counterexample.m.
considering a deterministic smooth variation of �u, as in case of
an indentation by a smooth sphere or by a flat punch, did not show
any convergence problem to the solution as well, although
the boundary elements in contact are densely packed as in the

http://musam.imtlucca.it/counterexample.m
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counterexample shown before. In conclusion, although it is likely
that the diagonally dominant property of the matrix H plays a role
in the robustness of the algorithm, it remains an open problem to
find exact mathematical requirements for H and �u that guarantee
the greedy method to provide a solution satisfying w� P 0, so that
all the LCP conditions (14) are met.

Therefore, as a word of caution, the reliability of the greedy
method should be carefully checked in case of applications of
BEM to contact problems governed by other forms of H, as in the
case of contact with an anisotropic or an inhomogeneous
half-space, or in the presence of multiple fields.

Another drawback of the algorithm is the difficulty to warm
start the method with a proper choice of the initial active set I .
Since at Step 2.5.1 the number of elements in the sequence I is
decreased by removing negative enough components pj of the cur-
rent solution vector, i.e., eliminating the points bearing tensile
(negative) forces, in a monotonic way (no index j that has been
removed from I can be added back), a safe cold start is to set
I ¼ f1; . . . ;ng and pick up a vector p P 0, usually a vector with
arbitrary non-negative numbers. The history of contact forces
obtained during the solution of a sequence of imposed displace-
ments is not taken into account by the method to accelerate its
convergence, although we know that contact forces are monoton-
ically increasing functions of the far-field displacement. In any
case, for a complex sequence of loading with an increased or
decreased far-field displacement, any warm starting on forces can-
not be implemented in the method, since the elimination of con-
tact points is irreversible.

3.2. Constrained Conjugate Gradient

A constrained CG algorithm was proposed by Polonsky and Keer
(1999) based on the theory by Hestenes et al. (1980, Ch. 2,3) to
solve the linear system of equations and rigorously impose the sat-
isfaction of the contact constraints. Algorithm 2 has been applied
by Polonsky and Keer (1999) to simulations under load control.
However, it can be used also for displacement control. The condi-
tion for convergence set by Polonsky and Keer (1999) in terms of
relative variation in the local contact forces from an iteration to
the next has been recast in terms of the error in the local contact
displacements. The two criteria are completely equivalent.

This constrained CG algorithm does not remove the points bear-
ing tensile forces from the active set. Therefore, the size of the lin-
ear system of equations is not reduced during the iterations,
increasing the computation time for its solution. On the other
hand, the method assures the satisfaction of the LCP conditions
(14) and it is found to convergence with a reduced number of iter-
ations as compared to the Greedy CG algorithm. Although not
investigated in (Polonsky and Keer, 1999), it can be warm started
in case of a sequence of loading steps by considering both an initial
trial contact domain and a set of contact pressures derived from
the previous converged solution. The FFT method can be used to
accelerate step (3.8) as in (Polonsky and Keer, 2000a).

Algorithm 2. Constrained Conjugate Gradient

Input: Matrix H ¼ H0 � 0, vector �u, initial guess p P 0, initial
active set I ¼ f1; . . . ;ng; maximum number Kmax of
iterations, tolerance � > 0.
(1) i 0;nw;old ¼ 1; d ¼ 0; err ¼ þ1;
(2) w Hp� �u;
(3) while (i 6 Kmax and err > �):
(3.1) if i ¼ 0 then t w else: t wþ d nw

nw;old
told;

(3.2) s ¼ w0t
t0Ht;

(3.3) p p� st;
(3.4) 8j 2 I : pj  maxfpj; 0g;
(3.5) Find Iol ¼ fj 2 I : pj ¼ 0;wj < 0g; if Iol ¼£ then

d ¼ 1 else d ¼ 0; pj  pj � swj;8j 2 Iol;
(3.6) I  fj : pj > 0g [ Iol;
(3.7) told  t;nw;old  nw;
(3.8) w Hp� �u;
(3.9) nw ¼ kwk2;

(3.10) err  jnw � nw;oldj=nw;old;
(3.11) i iþ 1;

(4) p�  p; u� ¼ Hp�;
(5) end.

Output: Contact force vector p� and normal displacement
vector u�.
3.3. Non-Negative Least Squares (NNLS)

In this section we show how a QP problem with positive defi-
nite Hessian matrix having the special form (16) can be effectively
solved as a nonnegative least squares problem.

Thanks to property (15), matrix H admits a Cholesky factoriza-
tion H ¼ C0C. Hence we can theoretically recast problem (16) as the
Non-Negative Least Squares (NNLS) problem:

minp
1
2
kCp� C�T �uk2

2 ð20aÞ

s:t: p P 0 ð20bÞ

A simple and effective active-set method for solving the NNLS prob-
lem (20) is the one in (Lawson and Hanson, 1974, p.161), that is
extended here in Algorithm 3 to directly solve (16) without explic-
itly computing the Cholesky factor C and its inverse C�1 and to han-
dle warm starts. After a finite number of steps, Algorithm 3
converges to the optimal contact force vector p� and returns the
normal displacement vector u� whose components pi;j;ui;j satisfy
pi;j P 0;ui;j P �ui;j; ðui;j � �ui;jÞpi;j ¼ 0, and (13), 8ði; jÞ 2 IC .

The method is easy to warm start in case of a loading sce-
nario consisting of an alternating sequence of increasing or
decreasing far-field displacements. The contact forces deter-
mined for a given imposed displacement are used to initialize
vector p. Due to the monotonicity of the contact solution, this
initialization is certainly much closer to the optimal solution
p� than a zero vector. This usually significantly reduces the iter-
ations of the method to convergence. Such a warm start has a
fast implementation requiring a projection of the forces of the
points belonging to I�CðDkÞ to the same points of the trial
domain I�CðDkþ1Þ for a new imposed far field displacement
Dkþ1. For an increasing far-field displacement, i.e., Dkþ1 > Dk

the forces in the elements belonging to I�CðDkþ1Þ � I�CðDkÞ are
simply initialized equal to zero. In the numerical experiments
of Section 4, the time required for this projection will be added
to the global solution time for a consistent comparison with the
greedy method with cold start and with the constrained CG
algorithm.
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Algorithm 3. Non-Negative Least Squares (NNLS)

Input: Matrix H ¼ H0 � 0, vector �u, initial guess p; maximum
number Kmax of iterations, tolerance � > 0.
(1) I  fi 2 f1; . . . ;ng : pi > 0g; init  FALSE; k 0;
(2) if I ¼£ then init  TRUE;
(3) w Hp� �u;
(4) if ((w P �� or I ¼ f1; . . . ;ng) and init ¼ TRUE) or

k P Kmax then go to Step 13;
(5) if init ¼ TRUE then i arg mini2f1;...;ngnIwi; I  
I [ fig; else init  TRUE;

(6) sI  solution of the linear system HIsI ¼ �uI

(7) if sI P �� then p s and go to Step 3;
(8) j arg minh2I : sh60

ph
ph�sh

n o
;

(9) p pþ pj

pj�sj
ðs� pÞ;

(10) I0  fh 2 I : ph ¼ 0g;
(11) I  I n I0; k kþ 1;
(12) go to Step 6;
(13) p�  p;
(14) u�  wþ �u;
(15) end.

Output: Contact force vector p� and normal displacement
vector u� satisfying u� ¼ Hp;u� P �u;p� P 0, ðu� � �uÞ0p ¼ 0.

Note that Step 6 of Algorithm 3 is equivalent to Step 2.4 of Algo-

rithm 1 and has been performed by using the MATLAB’s mldivide
solver. This step can be accelerated by the use of an approach based
on the FFT (for its implementation, see e.g. Batrouni et al., 2002).
Alternatively, since the set I0 changes incrementally during the
iterations of the algorithm, more efficient iterative QR (Lawson
and Hanson, 1974, Chap. 24) or LDLT (Bemporad, in press) factoriza-
tion methods can be employed.

3.3.1. Warm-started NNLS via accelerated Gradient Projection
(NNLS + GP)

An alternative method to solve Problem (16) is to use an accel-
erated gradient projection (GP) method for QP (Nesterov, 1983;
Patrinos and Bemporad, 2014). Because of the simple nonnegative
constraints in (16), rather than going to the dual QP formulation as
in (Patrinos and Bemporad, 2014), we formulate the GP problem
directly for the primal QP problem (16). Numerical experiments
have shown slow convergence of a pure accelerated GP method
to solve (16). However, we can use the method to warm start Algo-
rithm 3, as described in Algorithm 4. If Algorithm 4 is executed
ðK > 0Þ, it returns a vector p that is immediately used as an input
to Algorithm 3, otherwise one can simply set p ¼ 0 (cold start). As
shown in Section 4, GP iterations provide large benefits in warm
starting the NNLS solver, therefore allowing taking the best advan-
tages of the two methods: quickly getting in the neighborhood of
the optimal solution (GP iterations of Algorithm 4) and getting
solutions up to machine precision after a finite number of itera-
tions (the active-set NNLS Algorithm 3).
Algorithm 4. Accelerated Gradient Projection (GP)

Input: Matrix H ¼ H0 � 0 and its Frobenius norm L, vector �u,
initial guess p, number K of iterations.
(1) �p p;
(2) for i ¼ 0; . . . ;K � 1 do:

(2.1) b ¼max i�1
iþ2 ;0
n o

;
(2.2) s ¼ pþ bðp� �pÞ;
(2.3) w ¼ Hs� �u;
(2.4) �p p;
(2.5) p max s� 1

L w;0
� �

;
(3) end.

Output: Warm start for contact force vector p and elastic
correction vector w.
3.4. Alternating Direction Method of Multipliers (ADMM)
The QP problem (16) can also be solved by the Alternating
Direction Method of Multipliers (ADMM), which belongs to the
class of augmented Lagrangian methods. The reader is referred to
(Boyd et al., 2011) for mathematical details. The method treats
the QP (16) as the following problem

min
p;s

1
2

p0Hp� �u0pþ gðsÞ

s:t:p ¼ s
ð21Þ

where

gðsÞ ¼
0 if s P 0

þ1 if s < 0

�
Then, the augmented Lagrangian function

Lqðp; s;wÞ ¼
1
2

p0Hp� �u0pþ gðsÞ þw0ðp� sÞ þ q
2
kp� sk2

2

is considered, where q > 0 is a parameter of the algorithm. The
basic ADMM algorithm consists of the following iterations:

pkþ1 ¼ arg min
p

Lqðp; sk;wkÞ

skþ1 ¼ arg min
s

Lqðpkþ1; s;wkÞ

wkþ1 ¼ wk þ qðpkþ1 � skþ1Þ

ð22Þ

A scaled form with over-relaxation of the ADMM iterations (22) is
summarized in Algorithm 5. The algorithm is guaranteed to con-
verge asymptotically to the solution p�;u� of the problem. The
over-relaxation parameter a > 1 is introduced to improve conver-
gence, typical values for a suggested in (Boyd et al., 2011) are
a 2 ½1:5;1:8�.

A warm start of the algorithm that takes into account the load-
ing history is possible in a way analogous to that described for the
NNLS approach of Section 3.3. However, as an additional complex-
ity, also an initialization for the dual variable vector w must be pro-
vided, possibly obtained by projecting the solution obtained for a
certain Dk to that for Dkþ1.

Algorithm 5. Alternative Direction Method of Multipliers
(ADMM)

Input: Matrix H ¼ H0 � 0, vector �u, initial guesses p;w,
parameter q > 0, over-relaxation parameter a > 1,
maximum number Kmax of iterations, tolerance � > 0.
(1) M 1

q Hþ I
� ��1

;
(2) wq  � 1

q w;
(3) s p;
(4) i 0;
(5) while (i 6 Kmax and kp� sk1 > �) or i ¼ 0 do:

(5.1) s Mðp�wq � 1
q

�uÞ;
(5.2) �s asþ ð1� aÞp;
(5.3) p maxf�sþwq;0g;
(5.4) wq  wq þ �s� p;
(5.5) i iþ 1;

(6) p�  p;
(7) u�  �u� qwq;
(8) end.

Output: Contact force vector p� and normal displacement
vector u� satisfying u� ¼ Hp;u� P �u;p� P 0, ðu� � �uÞ0p ¼ 0.
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4. Performance comparison of the algorithms

The optimization algorithms presented in the previous section
are herein applied to the frictionless normal contact problem
between a numerically generated pre-fractal rough surface and a



Fig. 4. Comparison between the optimization algorithms in terms of computation
time.
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half-plane, in order to compare their performance in terms of num-
ber of iterations required to achieve convergence and computation
time.

The random midpoint displacement algorithm (Peitgen and
Saupe, 1988) is used to generate the synthetic height field of sur-
faces with multiscale fractal roughness, i.e., with a power spectral
density (PSD) function of the height field of power-law type. The
surface with a given resolution (pre-fractal) is realized by a succes-
sive refinement of an initial coarse representation by adding a
sequence of intermediate heights whose elevation is extracted
from a Gaussian distribution with a suitable rescaled variance,
see a qualitative sketch in Fig. 3. Several applications of the method
to model rough surfaces for contact mechanics simulations are
available in (Zavarise et al., 2004, 2007; Paggi and Ciavarella,
2010).

In particular, we consider a test problem consisting of a surface
with Hurst exponent H ¼ 0:7, lateral size L ¼ 100 lm and 512
heights per side, which corresponds to the highest discretization
used to sample real surfaces with a confocal profilometer, like
the Leica DCM3D available at the Multi-scale Analysis of Materials
(MUSAM) Laboratory of IMT Lucca, Italy. Similar discretizations are
obtained in case of AFM. The surface is brought into contact with
an elastic half-plane under displacement control. Ten displacement
steps are imposed to reach a maximum far-field displacement
which is set equal to ðnmax � naveÞ=2, where nmax and nave are the
maximum and the average elevations of the rough surface, respec-
tively. All the simulations are carried out with the server
653745-421 Proliant DL585R07 from Hewlett Packard with
128 GB Ram, 4 processors AMD Opteron 6282 SE 2.60 GHz with
16 cores running MATLAB R2014b.

The parameters for the Greedy CG method are the maximum
number of iterations Kmax ¼ 1� 105 and the convergence tolerance
� ¼ 1� 10�8. The contact forces are initialized at zero (cold start).
The constrained CG method also considers Kmax ¼ 1� 105 and
the same tolerance � ¼ 1� 10�8. Both the original version by
Polonsky and Keer (1999) (labeled P&K1999 in Fig. 4) and its
warm-started variant (labeled P&K1999 + warm start in Fig. 4)
are considered.

For the NNLS algorithm (Algorithm 3) we adopt the warm start
strategy based on the projection of contact forces from the solution
corresponding to a previous displacement step. Alternatively, for
NNLS + GP, 100 gradient projections are used to initialize vector
p. For the ADMM method we use a ¼ 1:5;q ¼ 1, Kmax ¼ 3� 103

and � ¼ 10�8. The total number n of optimization variables is vary-
ing with D and therefore with the force level. For the highest
indentation we have n ¼ 35555. Warm starting the algorithm is
achieved by projecting primal variables as for the NNLS and dual
variables w as well. The projection simply consists of assigning
the values of p�i;j and w� of the boundary elements in contact for
the step Dk to the same boundary elements belonging to the trial
contact domain IC corresponding to the higher indentation Dkþ1.

Once convergence is achieved for each imposed far-field dis-
placement, the optimization algorithms provide the same normal
Fig. 3. Rough surfaces with multi-scale roughness and different resolution,
numerically generated by the random midpoint displacement algorithm.
force P and contact domains, with small roundoff errors due to
finite machine precision. The CPU time required by each method
to achieve convergence are shown in Fig. 4 vs. the dimensionless
normal force P=ðEAÞ, where E is the Young’s modulus and A ¼ L2

is the nominal contact area. The best performance is achieved by
the application of the NNLS method with 100 gradient projections
(GP), which is 26 times faster than the original constrained CG
method by Polonsky and Keer (1999) and about two orders of mag-
nitude faster than the ADMM and the Greedy CG algorithms.

As outlined in the introduction, the Greedy method can be used
in conjunction with other algorithms for solving the unconstrained
linear system of equations (Step 2.4) than the CG algorithm.
Although an extensive comparison of different solvers of linear sys-
tems of equations with positive definite matrices is outside the
scope of this paper, we tested the Greedy algorithm after replacing
the CG Step 2.4 with the optimized built-in mldivide function of
MATLAB, or with the Gauss–Seidel algorithm, as proposed in
(Borri-Brunetto et al., 1999, 2001).

The MATLAB’s mldivide solver (which employs the Cholesky
factorization) leads to a reduction of computation time of
30� 40%, almost regardless of the size of the system n, see
Fig. 5. Even with this gain in computation speed, the overall perfor-
mance is still quite far from that of the NNLS Algorithm 3 on the
platform used for the tests. Moreover, the MATLAB solver leads
to an error of lack of memory for n > 20000, a serious problem
for large systems that is not suffered by the CG solver described
in Step 2.4 of Algorithm 1. The Gauss–Seidel algorithm does not
suffer for the lack of memory but it is about 3 times slower than
the CG method.
Fig. 5. Computation times for the Greedy method for different sizes n of the contact
superset IC : CG vs. MATLAB’s mldivide solver and CG vs. Gauss–Seidel algorithm.
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Fig. 6. Computation times of the NNLS algorithm depending on the number K of
gradient projection (GP) iterations.
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The effect of the number K of GP iterations applied before the
NNLS algorithm is investigated in Fig. 6 for the same test problem
whose results were shown in Fig. 4. By increasing K from 0 to 100
we observe a reduction in the total computation time due to a
decrease in the number of iterations requested by the NNLS algo-
rithm to achieve convergence thanks to a better initial guess of
p. However, a further increase in K (see, e.g., the blue curve in
Fig. 6 corresponding to K ¼ 200 iterations) does not correspond
to further savings of CPU time. This is due to the fact that the num-
ber of NNLS iterations was already reduced to its minimum for
K ¼ 100 GP iterations, so that the application of further gradient
projections are just leading to additional CPU time without further
benefit.

5. Cascade multi-resolution (CMR) method

5.1. Algorithm

A further speed-up of computation time, as compared to the
NNLS method, can be achieved by improving the criterion for the
guess of the initial set IC of points in contact. The standard criterion
based on checking the interpenetration of the surface heights into
the half-plane in case of a rigid body motion is the most conservative.
Surface refin

δ

√2 δ

In contact

Detected by the geometric 
criterion but not in contact 
after the simulation

Fig. 7. A sketch illustrating the property of lacunarity of the contact domain: the real c
fractal limit of d! 0. This implies that some boundary elements detected by the rigid-bo
they are outside the real contact area corresponding to the coarse scale contact solution
However, at convergence, only a small subset I�C of that initial set is
actually in contact. Therefore, a better choice of the initial trial
contact domain would reduce the size of the system of linear
equations with an expected gain in terms of computation time.

As shown in (Borri-Brunetto et al., 1999) via numerical simula-
tions on pre-fractal surfaces with Hurst exponent H > 0:5 and dif-
ferent resolution, by refining the surface height field via a recursive
application of the random midpoint displacement algorithm the
real contact area of each surface representation decreases by
reducing d, as illustrated in the sketch in Fig. 7. In the fractal limit
of d! 0, the real contact area vanishes. Therefore, this property of
lacunarity implies that the heights that are not in contact for a
coarser surface representation are not expected to come into con-
tact by a successive refining of the height field, for the same
imposed far-field displacement.

Therefore, as a better criterion, the initial trial contact domain
can be selected by retaining, among all the heights selected by
the rigid body interpenetration check, only those located within
the areas of influence of the nodes belonging to the contact domain
of a coarser representation of the rough surface for the same
imposed displacement D.

As graphically shown in Fig. 7, an area of influence of a given
node in contact can be defined by the radius

ffiffiffi
2
p

d, where d is the
grid size of the coarser surface representation. Since the criterion
is not exact, it is convenient to consider a multiplicative factor h
larger than unity for the radius defining the nodal area of influence.
It is remarkable to note that this numerical scheme can be applied
recursively to a cascade of coarser representations of the same
rough surface. As a general trend, computation time is expected
to drastically diminish by increasing the number of cascade projec-
tions. However, the propagation of errors due to the wrong exclu-
sion of heights that would actually make contact cannot be
controlled by the algorithm and it is expected to increase with
the number of projections as well. The advantage of the method
is represented by the fact that, in addition to saving computation
time with respect to that required by the NNLS algorithm to solve
just the contact problem for the finest surface, all the contact pre-
dictions for the coarser scale representations of the same surface
will be available for free, which is a useful result for the
multi-scale characterization of contact problems. Moreover, the
ement

δ/2

ontact area progressively diminishes by refining the surface, until vanishes in the
dy interpenetration criterion (dashed gray elements) can be neglected a priori since
.



Fig. 9. Performance of the CMR + NNLS method with respect to NNLS for a
numerically generated fractal surface with H ¼ 0:7, depending on the parameter h.
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CMR method can be used in conjunction with any of the optimiza-
tion algorithms presented in the previous sections.

The algorithm is illustrated in Algorithm (6).

Algorithm 6. Cascade multi-resolution (CMR) algorithm

Input: s ¼ 1; . . . ; l surface representations with different
resolution or grid spacing dðsÞ; area of influence parameter
h P 1.
(1) for s ¼ 1; . . . ; l do:

(1.1) Determine
ICðsÞ ¼ fði; jÞ 2 INðsÞ : ni;j P nmaxðsÞ � Dg;

(1.2) if s ¼ 1 then IC;pðsÞ ¼ ICðsÞ
else IC;pðsÞ ¼ fði; jÞ 2 ICðsÞ : ri�k;j�l ¼ kxi;j � xk;lk 6 hdðs� 1Þg;
8ðk; lÞ 2 I�Cðs� 1Þ
end
(2) Construct H based on the projected trial contact

domain IC;pðsÞ;
(3) Apply optimization algorithms (e.g., NNLS) and deter-

mine p�, u�; I�CðsÞ;
(4) end.

5.2. Validation in case of numerically generated and real rough
surfaces

To assess the computational performance of the approach
described in Section 5.1, the CMD method is applied in conjunction
with the NNLS algorithm to pre-fractal surfaces with different H
numerically generated by the RMD method. As an example, the lat-
eral size is 100 lm for all the surfaces and the finest resolution
whose contact response has to be sought corresponds to 256
heights per side. The method requires the storage of the coarser
representations of such surfaces that are in any case available by
the RMD algorithm during its various steps of random addition.

We apply the cascade of projections starting by a coarser repre-
sentation of the surfaces with only 16 heights per side and then
Fig. 8. Performance of the CMR + NNLS method applied to numerically
considering 32, 64, 128 and finally 256 heights per side. A param-
eter h ¼ 2 has been used for the definition of the area of influence.
The solution of the contact problem for the surface with 16 heights
per side is obtained in an exact form since it is the starting point of
the cascade, whereas the contact predictions for the finer surface
representations can be affected by an error intrinsic in the crite-
rion. The approximate predictions for the surface with 256 heights
per side are compared with the reference solution corresponding
to the application of the NNLS algorithm with warm start directly
to the finest representation of the rough surface.

The computation time of the CMR + NNLS solution is the sum of
the CPU time required to solve all the coarser surface representa-
tions and it is found to be much less than the CPU time required
by the NNLS algorithm to solve just one single surface with the fin-
est resolution, see Fig. 8, where we observe a reduction of 50% in
CPU time almost regardless of H. The relative error in the compu-
tation of the maximum normal force between the predicted solu-
tion and the reference one is a rapid decreasing function of H, as
shown in Fig. 8(d). Considering that real surfaces have often a
Hurst exponent H > 0:5, this is very promising.
generated fractal surfaces with different Hurst exponent H, h ¼ 2.



Fig. 10. Surface of textured silicon solar cells sampled with a confocal profilometer at two different magnifications (10� and 100�) obtained by using two different lenses.
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A synthetic diagram illustrating the effect of the parameter h for
the surface with H ¼ 0:7 and for a single imposed displacement
corresponding to the maximum load in Fig. 8(c) is shown in
Fig. 9. The relative error is rapidly decreasing to values less than
1% by increasing h. The ratio between the number of points
expected to be in contact after the application of the CMR projec-
tion criterion, np, and the number of points that would be included
by using the classic rigid-body interpenetration check, n, is ranging
from 0.4 to 0.8 by increasing h from 1.25 to 3.0. The ratio between
CPU times, on the other hand, tends to an asymptotic value of 0.6,
which implies a saving of 40% of computation time as compared to
the exact solution, with less than 0.01% of relative error.

We also check the CMR method for warm starting on real sur-
faces not displaying the ideal fractal scaling at any length scale,
to better assess possible limits of applicability. As a practical exam-
ple we consider the surface of textured silicon solar cells sampled
with two different lenses in order to achieve two different magni-
fications (10� and 100�) by using the confocal profilometer Leica
DCM3D, see Fig. 10. The PSD function of such a surface sampled
with 512 points per side presents a power-law trend for high fre-
quencies (fine resolutions) and a cut-off to the power-law at low
frequencies (coarse resolutions). In the power-law regime the sur-
face is characterized by a Hurst exponent H ffi 0:6 that can be
determined by the slope of the PSD function as customary.

As a main difference with respect to pre-fractal rough surfaces
generated by the RMD algorithm, the application of the CMR
method requires a filter to downsample the acquired surfaces
and extract their coarser representations. The CMR method is
applied to the two surfaces acquired with 10� and 100� magnifi-
cations using h ¼ 1:5 and considering a cascade of projections
involving coarser representations of the finest surfaces with 64
and 128 heights per side. A single contact step corresponding to
Fig. 11. Power spectral density function (PSD) of the two sampled rough surfaces
shown in Fig. 10.
an imposed far-field normal displacement equal to ðnmax � naveÞ=5
is examined.

The application of the CMR + NNLS method to the surface
acquired at 100� leads to very good results in line with those
observed for ideal fractal surfaces. The relative error in the predic-
tion of the normal load is �0:4%, with a saving of CPU time of 18%

as compared to the direct application of the NNLS algorithm. On
the other hand, the method applied to the surface acquired at
10� leads to poor results in terms of accuracy with �98% of rela-
tive error and almost no saving in computation time. This bad per-
formance is due to the fact that the property of lacunarity of the
contact domain, strictly connected with the self-affine scaling of
roughness due to fractality, does not hold anymore for the surface
sampled at 10� due to the cut-off to its power-law PSD (see
Fig. 11). As a consequence, the CMR method erroneously excludes
many possible points from the initial contact domain suggested by
the rigid body interpenetration check that are actually relevant for
contact. Therefore, in conclusion, the CMR method is efficient for
warm starting the NNLS algorithm, but it should be strictly applied
to numerically generated or real rough surfaces provided that the
self-affine properties of roughness are confirmed by a PSD function
of power-law type.
6. Conclusion

This paper has shown how the problem of frictionless normal
contact between rough surfaces within the BEM framework can
be solved very efficiently by exploiting ideas from convex quadra-
tic programming. A series of efficient optimization algorithms has
been proposed and compared with the traditional Greedy method
and constrained CG algorithm. As the lack of convergence of the
Greedy method seems to be a rare phenomenon, it remains an
open question to establish the conditions on H and �u for which
the algorithm is guaranteed to converge.

The NNLS algorithm warm started by accelerated gradient pro-
jections was shown at least two orders of magnitude faster than
the Greedy method and 26 times faster than the original con-
strained CG algorithm.

Finally, we explored another method for warm starting the opti-
mization algorithms, this time focusing on a selective reduction of
the size of the initial trial contact domain based on the
multi-resolution properties of roughness. The resulting cascade
multi-resolution (CMR) method allows a further saving of about
50% of CPU time as compared to NNLS for contact simulations
involving numerically generated fractal surfaces. Relative errors
were found less than 2% for surfaces with H > 0:5, by using
h ¼ 2, that was found a good compromise between accuracy and
computation time. Moreover, it has to be remarked that not only
the solution of the finest contact problem is gained by the
CMR + NNLS method with much less CPU time, but also the contact
problems involving all the coarser representations of the finest sur-
face. These results are particularly important for speeding up
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intensive Monte Carlo simulations involving a sequence of contact
simulations for a population of fractal surfaces with different reso-
lution. So far, to the best of the authors’ knowledge, such extensive
simulations, that are important to determine more reliable trends
from the statistical point of view, have been limited to populations
of 20 to 50 randomly generated surfaces.

In case of real surfaces, a very good performance (less than 2%

of error with 3 cascades and at least 18% of CPU time saved for one
single imposed displacement step) has been demonstrated in case
of power-law PSDs, assuring the self-affine scaling of roughness
which represents the main underlying assumption for the algo-
rithm applicability. For surfaces with a cut-off to the power-law
PSD, on the other hand, the CMR + NNLS method has given poor
results in terms of accuracy and in any case almost no saving in
CPU time as compared to the pure application of NNLS. Therefore,
this warm start method should be used with care and only in a
range where the PSD is of power-law type.

Finally, we point out that the proposed optimization methods
can also be applied to frictional contact problems by using for
instance the complete BEM formulation as in (Pohrt and Li,
2014). Although this issue is left for further investigation, we
expect an even more significant gain in CPU time by applying the
algorithms presented in this paper instead of other optimization
methods, since the size of the problem is by far significantly
increased as compared to the frictionless case.
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