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Summary
This article presents a two-stage algorithm for piecewise affine (PWA) regres-
sion. In the first stage, a moving horizon strategy is employed to simultaneously
estimate the model parameters and to classify the training data by solving a
small-size mixed-integer quadratic programming problem. In the second stage,
linear multicategory separation methods are used to partition the regressor
space. The framework of PWA regression is adapted to the identification of
PWA AutoRegressive with eXogenous input (PWARX) models as well as linear
parameter-varying (LPV) models. The performance of the proposed algorithm
is demonstrated on an academic example and on two benchmark experimental
case studies. The first experimental example concerns modeling the placement
process in a pick-and-place machine, while the second one consists in the
identification of an LPV model describing the input-output relationship of an
electronic bandpass filter with time-varying resonant frequency.
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1 INTRODUCTION

Piecewise affine (PWA) models are defined by a collection of simple affine functions, each associated to a polyhe-
dral region of the input (or regressor) space. PWA regression aims at fitting a PWA model to a set of training data.
Such modeling paradigm can be used to describe systems which change their dynamics due to, for example: satura-
tions, thresholds, dead-zones, logic rules, abrupt changes of the working environment (for example, robot manipulators
which alternate between free and contact motion), and so on. Thanks to their universal approximation property,
PWA maps are able to approximate any nonlinear function with arbitrary accuracy,1 making PWA models also suit-
able to describe nonlinear systems that do not necessarily exhibit a switching behavior. Furthermore, because of the
equivalence between PWA and hybrid linear models2-4 (such as mixed logical dynamical and linear complementar-
ity models), well-settled tools for analysis and control of hybrid systems can be applied to systems represented in
PWA form.3,5

Learning PWA models from data is an NP-hard problem,6 which requires to estimate both the parameters defining
the local affine functions and the partition of the regressor space. Several algorithms/heuristics have been devel-
oped in the last years7,8 for PWA regression or, in general, for data-driven modeling of hybrid systems. Among these
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methods, we mention set-membership approaches9,10 which assume that the noise corrupting the output observations
is bounded (with known bound) in amplitude or energy; algorithms based on sparse optimization,11-13 which formulate
an over-parametrized least-squares problem with a LASSO-like regularization term penalizing the number of switches,
and mixed-integer programming method.14 The computation complexity of the latter algorithm increases with the
number of affine submodels (or “modes”) defining the PWA models and with the size of the training dataset, as the
number of integer optimization variables proportionally increases with both these parameters. Hence, this approach
is limited to small/medium-size identification problems. However, although computationally expensive, this approach
gives a global optimal solution. A trade-off between optimality and complexity can be made using the two-stage
cluster-based heuristics,15-20 which work as follows. In the first stage, the training samples are clustered and the affine
submodel parameters are estimated. Specifically, clusters are formed by assigning each regressor to a specific submodel
according to a given criterion. At a second stage, linear classification techniques (eg, multicategory support vector
machines with linear kernels) are used to separate the clusters, thus partitioning the input domain into polyhedral
regions.

In this article, we present a two-stage regularized moving-horizon algorithm for PWA regression which com-
bines the advantages of the cluster-based method19 and the integer programming approach.14 In the first stage, the
training input-output pairs are processed iteratively. At this stage, the parameters of the local models are estimated
recursively along with the sequence of active modes. More specifically, at each index k, a moving-horizon window of
length Np containing past training samples from index k−Np + 1 to index k is considered. A small-size mixed-integer
quadratic-programming (MIQP) problem is formulated to find both the optimal sequence of active modes within
the considered window and the parameters of the local affine submodels. According to a moving-horizon strategy,
once the solution of the formulated MIQP problem is computed, only the optimal active mode at index k is kept
(namely, the last active mode within the considered horizon). Then, the window is shifted forward to process the
next input-output pair. The length Np of the window balances the trade-off between computation complexity (namely,
number of binary optimization variables) against estimation accuracy (namely, number of training data points con-
tained in the window). Thus, the length Np of the horizon acts as a knob to combine the advantages of the two-stage
algorithm19 (computational efficiency and iterative processing of the training samples) and the advantages of the
mixed-integer programming approach14 (nondecoupled optimization over the active modes and the submodel param-
eters). In order to overcome the limitation of short horizon length, past data outside of the window is also taken
into account in estimating the model parameters by adding a regularization term in the formulated MIQP problem.
At the second stage, the regressor space is partitioned into polyhedral regions based on the optimal sequence of
active modes estimated in the first stage. The partitions are computed using linear multicategory discrimination
techniques.

The proposed PWA regression algorithm is properly adapted for the identification of PWA autoRegressive with
eXogenous inputs (PWARX) models and linear parameter-varying (LPV) models. The latter class represents a nat-
ural extension of linear time-invariant (LTI) models, where the dynamic relation between input and output sig-
nals is linear and can vary over time according to a measurable signal, the so-called scheduling variable denoted
by p.21 For the identification of LPV models, the proposed PWA regression algorithm is used to approximate the
time-varying coefficients of the LPV model as a PWA function of the scheduling variable p. We remark that in
conventional parametric LPV identification approaches,22-24 the underlying p-dependence of the model coefficients
are parameterized as a linear combination of known nonlinear basis functions (eg, polynomial) of the schedul-
ing variable p. The selection of appropriate basis functions is still an open issue, which has been partly solved by
nonparametric methods,25-27 where “kernel functions” are employed to capture the underlying scheduling-variable
dependencies. However, major challenges still lie in tuning the hyper-parameters defining the kernels, as well as in
the computational complexity of the algorithms. In the proposed PWA approach, the underlying scheduling depen-
dencies of the model coefficients are reconstructed via PWA maps, without the need of tuning any critical kernel
hyper-parameters.

The effectiveness of the presented PWA regression algorithm is demonstrated via an academic example
using synthetic data and two benchmark case studies using experimental data. Specifically, the first bench-
mark case study concerns the identification of a PWARX model describing the dynamic behavior of a place-
ment process in a pick-and-place machine.28 In the second case study, experimental data are used to estimate
an LPV model describing the input-output behavior of an electronic bandpass filter with time-varying resonant
frequency.29
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We remark that a preliminary version of the material presented in this manuscript appeared in a conference
paper by the authors.30 This article discusses the extension to the identification of PWARX and LPV models,
besides providing a richer case study analysis. The rest of this article is organized as follows. The PWA regres-
sion problem is formulated in Section 2. First, a general PWA regression problem is presented, while more spe-
cific problems of identification of PWARX and LPV models are discussed in Sections 2.2 and 2.3, respectively.
Section 3 presents the developed moving-horizon identification approach, with a description of the strategy used to
simultaneously cluster the training observations and update the model parameters (Section 3.1), and the multicat-
egory discrimination algorithm for partitioning the input space (Section 3.2). The three case studies are discussed
in Section 4.

2 PROBLEM FORMULATION

In this section, we first provide an introduction to the general problem of PWA regression. Then, we discuss its application
to the identification of (i) dynamical models in a PWARX form and (ii) LPV models whose dependence of the model
coefficients on the scheduling signal is approximated by a PWA map.

2.1 PWA regression

Consider a vector-valued PWA function f ∶  → R
ny defined as

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A1

[
1
x

]
if x ∈ 1,

⋮

As

[
1
x

]
if x ∈ s,

, (1a)

where x ∈  ⊆ Rnx , s ∈ N is the number of modes (ie, the number of affine functions defining f ), Ai ∈ R
ny×(nx+1) are

parameter matrices, and the sets i ⊆ Rnx (with i= 1, … , s) are polyhedra defined by linear inequality constraints,
namely:

i
.
= {x ∈ R

nx ∶ ix ≤ i}, (1b)

with i and i being real-valued matrices that form a complete polyhedral partition1 of the space  . Note that f is not
assumed to be continuous over the boundaries of the polyhedra {i}s

i=1. Therefore, f might take multiple values at the
boundaries of {i}s

i=1. In order to avoid ambiguities when evaluating f on overlapping boundaries, some inequalities
in (1b) can be replaced by strict inequalities.

We want to address the following problem of PWA regression.

Problem 1 (PWA regression). Consider the data-generating system:

y(k) = fo(x(k)) + eo(k), (2)

where eo(k) ∈ R
ny is a zero-mean additive random noise independent of the input x(k), and fo ∶  → R

ny is an unknown
function, possibly discontinuous, and not necessarily PWA. The PWA regression problem aims at finding a PWA
approximation f of the unknown function f o based on a set of N input-output pairs {x(k), y(k)}N

k=1.

Computing a PWA estimate f of the true function f o thus requires: (i) choosing the number of modes s, (ii) computing
the parameter matrices {Ai}s

i=1 defining the local affine functions, and (iii) finding the polyhedral partition {i}s
i=1 of the

input space  .

1A collection {i}s
i=1 is a complete partition of the set  if ∪s

i=1i =  and
◦i ∩

◦j = ∅, ∀i≠ j, with
◦i denoting the interior of i.
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Note that the polyhedra {i}s
i=1 should be estimated directly from the available data {x(k), y(k)}N

k=1, along with the
parameter matrices {Ai}s

i . In the simpler case when the partition {i}s
i=1 is given or a-priori chosen by the user, Problem 1

reduces to independently estimating s affine models through simple linear regression.

Remark 1. When choosing the number of modes s, one must take into account the tradeoff between complexity of
the overall PWA model and data fitting. Indeed, for small values of s, the PWA map f may not be able to capture the
shape of the nonlinear function f o. On the other hand, increasing the number of modes also increases the degrees
of freedom in the description of the PWA map f , which may cause overfitting and poor generalization to unseen
data (ie, the final estimate is sensitive to the noise corrupting the observations), besides increasing the complexity of
the estimation procedure and of the resulting PWA model. In this work, we assume that s is fixed by the user. The
value of s can be chosen via cross validation, with an upper-bound dictated by the maximum tolerable complexity of
the model.

The PWA regression Problem 1 is quite general and, as described in the following paragraphs, covers a more spe-
cific case of identification of dynamical systems with a PWARX structure. Furthermore, as discussed in Section 2.3, the
problem can be extended to the identification of LPV models, where the unknown model coefficients are described by
PWA functions of the scheduling signal.

2.2 Identification of PWARX models

Model (1a) represents a multi-input multi-output (MIMO) PWARX discrete-time dynamical system if the regressor vector
x(k) at the sampling step k is a collection of past input and output observations of a dynamical system, that is,

x(k) = [y′(k − 1) y′(k − 2) … y′(k − na) u′(k − 1) u′(k − 2) · · · u′(k − nb)]′, (3)

where u(k) ∈ Rnu and y(k) ∈ R
ny denote the observed input and output signals at time k, respectively, and nb and na are

the input and output lags defining the dynamical order of the model.

2.3 Identification of LPV models

LPV systems extend the concept of LTI systems, with a linear dynamic relation between input and output signals. How-
ever, unlike LTI systems, such a linear relation can change over time according to a measurable time-varying signal
p(k) ∈ R

np , the so-called scheduling variable. This can be an endogenous signal of the process or a collection of external
variables, such as space coordinates, measurable disturbances that change the dynamics of the system, or parameters
used to describe changing operating conditions.

The identification problem of MIMO LPV systems can be formulated as the PWA regression Problem 1 by adopting
the following MIMO LPV-ARX form

y(k) = a0(p(k)) +
na∑
j=1

aj(p(k))y(k − j) +
nb∑

j=1
aj+na(p(k))u(k − j) + e(k), (4)

where aj(p(k)), j= 0, … , na +nb, are PWA functions of p(k) defined as:

aj(p(k)) =
⎧⎪⎨⎪⎩

Aj
1(p(k)) if p(k) ∈ 1,

⋮

Aj
s(p(k)) if p(k) ∈ s,

(5)

and p(k) ∈  ⊆ R
np is the value of the scheduling variable at time k. By imposing that each entry of the matrix Aj

i(p(k))
depends affinely on the scheduling variable p(k), the LPV identification problem reduces to the construction of a PWA
mapping of the p-dependent coefficient functions {aj(p(k))}

na+nb
j=0 over a polyhedral partition {i}s

i=1 of the scheduling vari-
able set . In this case, the model is estimated from an N-length sequence of regressor/output observations {x(k), y(k)}N

k=1,
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where the regressor is defined as x(k) = [y′(k − 1) … y′(k − na) u′(k − 1) … u′(k − nb)]′ ⊗ [1 p′(k)]′, with ⊗ denoting
the Kronecker product.

Remark 2. In case the submodel matrices Aj
i(p(k)) in (5) (with i= 1, … , s and j= 0, … , na +nb) do not depend on

the scheduling signal p(k) (ie, the p-dependent functions aj(p(k)) are piecewise constant), the LPV model (4)-(5)
becomes a switched linear model, where each subsystem is LTI and the scheduling signal p(k) governs the
switches.

Remark 3. Since the polyhedral partition {i}s
i=1 is not fixed a priori, the underlying dependencies of

the functions aj(p(k)) on the scheduling variable p(k) are directly reconstructed from data. This repre-
sents one of the main advantages w.r.t. to widely used parametric LPV identification approaches,21,22 which
would require to parametrize aj(p(k)) as a linear combination of some a-priori specified basis functions,
like polynomial or trigonometric functions. Indeed, the choice of the number and of the type of basis
functions is a critical issue to be addressed to guarantee both flexibility of the model and generalization
properties.

3 PWA REGRESSION ALGORITHM

In this section, we describe the algorithm for PWA regression, which consists of two stages:

S1. Recursive estimation of the submodel parameters {Ai}s
i=1 (Equation (1a)) and simultaneous clustering of the regressor

{x(k)}N
k=1 (for PWARX models) or scheduling variables {p(k)}N

k=1 (for LPV models).
S2. Computation of a polyhedral partition of the regressor space  (for PWARX models) or of the scheduling variable

space  (for LPV models) using multicategory linear separation methods.

In the following sections, stages S1 and S2 are described in detail.

3.1 Stage 1: Recursive estimation and simultaneous clustering

Stage S1 is carried out through a regularized moving-horizon identification algorithm. The training regressor/output
pairs {x(k), y(k)} are processed iteratively. At each time sample k, a moving-horizon window of length Np containing
regressor/output pairs from time k−Np + 1 to time k is considered. The model parameters Ai and the active mode 𝜎(k)
at time k are estimated simultaneously by solving the mixed-integer programming problem:

min
{Ai}s

i=1

{𝛿i(k − t)}s,Np−1
i=1,t=0

s∑
i=1

Np−1∑
t=0

‖‖‖‖‖‖
(

y(k − t) − Ai

[
1

x(k − t)

])
𝛿i(k − t)

‖‖‖‖‖‖
2

(6a)

+𝛾1

k−Np∑
t=1

‖‖‖‖‖‖y(t) − A𝜎(t)

[
1

x(t)

]‖‖‖‖‖‖
2

(6b)

+𝛾2

s∑
i=1

Np−1∑
t=0
||(x(k − t) − ci)𝛿i(k − t)||2 (6c)

s.t. 𝛿i(k − t) ∈ {0, 1},
s∑

i=1
𝛿i(k − t) = 1, t = 0, … ,Np − 1, (6d)

where 𝛾1, 𝛾2 ≥ 0 are regularization parameters which can be tuned by the user via cross-validation, and ci denotes the cen-
troid of cluster i defined as ci = 1|i|∑x(k)∈i

x(k) with |i| denoting the cardinality of i. The active mode 𝜎(k) ∈ {1, … , s}
represents the cluster 𝜎(k) which the regressor x(k) is assigned to, and it is extracted from the optimizer of problem (6),
that is,

𝜎(k − t) = i∗, with i∗ ∶ 𝛿i∗ (k − t) = 1, t = 0, … ,Np − 1. (7)
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According to a moving-horizon strategy, once the solution of the mixed-integer programming problem (6)
is obtained, only the active mode 𝜎(k) at time k is kept (namely, the last active mode within the con-
sidered horizon) among the computed sequence (𝜎(k − Np + 1), … , 𝜎(k)). Then, the Np-length window
is shifted forward to process the next pair {x(k+ 1), y(k+ 1)}. In processing last Np measurements, the
active modes 𝜎(N − Np + 1), … 𝜎(N) are simply the integer solution of the MIQP problem (6) solved
at k=N.

Problem (6) computes the model parameters Ai and the sequence of active modes within the considered hori-
zon that best match the data up to time k. Note that the term (6a) involves only the observations within the Np-step
time window, and both the model parameters and the sequence of active modes {𝜎(t)}k

t=k−Np+1 are optimized. The
term (6b) takes into account the history of the observations outside the considered time window and it basically
acts as a regularization term on the parameters Ai. Indeed, the sequence of active modes from time 1 up to k−Np

is not optimized in (6b), but it is fixed to the values {𝜎(t)}k−Np
t=1 obtained from the solutions computed at the pre-

vious sampling instances of the moving horizon algorithm. Instead, as previously remarked, the sequence of active
modes is optimized only within the considered time horizon in (6a) and in (6c). The term (6c) penalizes the distance
of the regressor vector x(k) from the centroid ci of the cluster i. This regularization term is added to improve the
clustering performance, as it takes into account the assumption that regressors “close” to each other belong to the
same clusters.

Note that decreasing Np reduces the number of binary decision variables 𝛿i in problem (6), thus reducing its com-
putational complexity. However, this introduces suboptimality as it limits the information used to cluster the regressor
x(k). In fact, the active modes are optimized only within a limited time window, while the other modes are fixed in (6b)
to the previous optimized values. The length Np of the horizon thus acts as a knob to control the tradeoff between com-
plexity of the optimization problem (6) versus accuracy in estimating the model parameters Ai and in clustering the
regressor x(k).

3.1.1 Recursive update of the objective function

Note that, at a first glance, the regularization cost (6b) requires to use, and thus to store, the whole time-history of observa-
tions up to time k−Np (ie, the sequence of regressor/output pairs {x(t), y(t)}k−Np

t=1 ). Nevertheless, once a new observation
is available at time k, the term (6b) can be recursively updated, as described in the following paragraph. This allows us to
avoid storing the whole time history and to reduce the number of operations required to construct the term (6b) at every
sampling instance k.

To this end, the regularization term (6b) is rewritten as

k−Np∑
t=1

tr
⎛⎜⎜⎝
(

y(t) − A𝜎(t)

[
1

x(t)

])(
y(t) − A𝜎(t)

[
1

x(t)

])′⎞⎟⎟⎠ (8a)

= tr
⎛⎜⎜⎝

k−Np∑
t=1

(
y(t) − A𝜎(t)

[
1

x(t)

])(
y(t) − A𝜎(t)

[
1

x(t)

])′⎞⎟⎟⎠
= tr
⎛⎜⎜⎝

k−Np∑
t=1

A𝜎(t)

[
1

x(t)

][
1

x(t)

]′
A′
𝜎(t)

⎞⎟⎟⎠ − 2tr
⎛⎜⎜⎝

k−Np∑
t=1

A𝜎(t)

[
1

x(t)

]
y(t)′
⎞⎟⎟⎠ + tr

⎛⎜⎜⎝
k−Np∑
t=1

y(t)y(t)′
⎞⎟⎟⎠ , (8b)

with tr(⋅) denoting the matrix trace.
We then introduce the following matrices

Hi(k − Np) =
k−Np∑
t=1

[
1

x(t)

][
1

x(t)

]′
𝛿i(t), (9a)

Fi(k − Np) =
k−Np∑
t=1

[
1

x(t)

]
y(t)′𝛿i(t), (9b)



5808 MEJARI et al.

with

𝛿i(t) =

{
1 if 𝜎(t) = i,
0 otherwise.

(9c)

Substituting (9) into the cost (8b), (6b) can be rewritten as

k−Np∑
t=1

‖‖‖‖‖‖y(t) − A𝜎(t)

[
1

x(t)

]‖‖‖‖‖‖
2

= tr
⎛⎜⎜⎝

k−Np∑
t=1

A𝜎(t)

[
1

x(t)

][
1

x(t)

]′
A′
𝜎(t)

⎞⎟⎟⎠ − 2tr
⎛⎜⎜⎝

k−Np∑
t=1

A𝜎(t)

[
1

x(t)

]
y(t)′
⎞⎟⎟⎠ + tr

⎛⎜⎜⎝
k−Np∑
t=1

y(t)y(t)′
⎞⎟⎟⎠ ,

= tr

( s∑
i=1

AiHi(k − Np)A′
i

)
− 2tr

( s∑
i=1

AiFi(k − Np)

)
+ tr
⎛⎜⎜⎝

k−Np∑
t=1

y(t)y(t)′
⎞⎟⎟⎠ .

(10)

Note that the matrices Hi(k−Np) and Fi(k−Np) can be computed recursively as

Hi(k − Np) = Hi(k − Np − 1) +

[
1

x(k − Np)

][
1

x(k − Np)

]′
𝛿i(k − Np), (11a)

Fi(k − Np) = Fi(k − Np − 1) +

[
1

x(k − Np)

]
y(k − Np)′𝛿i(k − Np). (11b)

Thus, at each sampling instance, the matrices Hi(k−Np) and Fi(k−Np) can be recursively updated through (11),
without the need to store the whole time history {x(t), y(t)}k−Np−1

t=1 .

3.1.2 MIQP formulation

We cast (6) as an MIQP problem by defining the vector zi(k) ∈ R
ny such that

zi(k) =
⎧⎪⎨⎪⎩

y(k) − Ai

[
1

x(k)

]
if 𝛿i(k) = 1

0 if 𝛿i(k) = 0

, (12a)

which can be represented as

zi(k) =

(
y(k) − Ai

[
1

x(k)

])
𝛿i(k), (12b)

where 𝛿i(k) ∈ {0, 1}. Let the elements of the vector y(k) − Ai

[
1

x(k)

]
be bounded by an upper bound M and a lower bound

m, such that

m1ny ≤ y(k) − Ai

[
1

x(k)

]
≤ M1ny , (12c)

where 1ny is an ny-dimensional vector of ones.
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By utilizing (12a) along with recursive update terms (10), problem (6) can be equivalently written as the following
MIQP problem

min
{Ai}s

i=1

{𝛿i(k − t)}s,Np−1
i=1,t=0

{zi(k − t)}s,Np−1
i=1,t=0

Np−1∑
t=0

s∑
i=1

(zi(k − t))′zi(k − t) + 𝛾1tr

( s∑
i=1

AiHi(k − Np)A′
i

)
− 𝛾12tr

( s∑
i=1

AiFi(k − Np)

)
(13a)

+𝛾2

s∑
i=1

Np−1∑
t=0
||(x(k − t) − ci)𝛿i(k − t)||2, (13b)

s.t. zi(k − t) ≤ M1ny𝛿i(k − t), (13c)

zi(k − t) ≥ m1ny𝛿i(k − t), (13d)

zi(k − t) ≤ y(k − t) − Ai

[
1

x(k − t)

]
− m1ny(1 − 𝛿i(k − t)), (13e)

zi(k − t) ≥ y(k − t) − Ai

[
1

x(k − t)

]
− M1ny(1 − 𝛿i(k − t)), (13f)

s∑
i=1
𝛿i(k − t) = 1, t = 0, … ,Np − 1, (13g)

𝛿i(k − t) ∈ {0, 1}, i = 1, … , s. (13h)

In order to solve small-scale MIQP problems (13h), we can use, for example, the accelerated dual gra-
dient projection (GPAD)31 coupled with Branch and Bound (B&B) method, denoted as miqpGPAD.32 The
B&B algorithm provides a structured methodology to possibly avoid exploring all integer combinations.
This algorithm in a basic form relies on sequentially partitioning the integer feasible solution space into
small subsets or subregions, and to search the space of all feasible solutions. An optimization problem is
required to be solved corresponding to each subregion. Employing a B&B algorithm for MIQP problems
relies on efficient solution of the quadratic programming (QP) problems obtained from relaxation of integer
constraints.

The GPAD algorithm involves only basic arithmetic operations, which makes it very simple to code and particularly
suitable for implementation on embedded platforms. These features make the GPAD-based MIQP solver particularly
suitable for online applications, where a model needs to be updated once new data becomes available. The details
on the efficient implementation of miqpGPAD algorithm are provided in Section 3 of the accompanying technical
report.33

In addition, a generic framework to warm-start the binary variables can be utilized for efficient solution
of MIQP problems (13h),34 as described in the following. The shifted binary values optimized at the previ-
ous step k can be used as the binary warm start for subsequent MIQP at time step k+ 1. Specifically, let
{𝛿∗(k − Np + 1|k) … 𝛿∗(k|k)} be the sequence of optimal solution computed for the binary variables at time k,
then we set 𝛿(k − Np + 1|k + 1) = 𝛿∗(k − Np + 2|k), … , 𝛿(k − 1|k + 1) = 𝛿∗(k|k) as a binary warm-start. For example,
let Np = 3 and suppose the optimized binary sequence at time k is (1, 0, 0). Then, at time k+ 1, (0, 0, ⋆)
is set as a binary warm start. This further increases efficiency for the recursive solution of the formulated
MIQP problems.

3.1.3 Summary and iterative refinement

The steps of Stage S1 described so far for the estimation of submodel parameters {Ai}s
i=1 and for simultaneous clustering

of the regressor {x(k)}N
k=1 are summarized in Algorithm 1.
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Algorithm 1. Recursive estimation of model parameters and simultaneous clustering of the regressors

Input: Observations sequence {x(k), y(k)}N
k=1; number of modes s; horizon Np; initial clusters i and centroids ci.

1. let Hi(0) ← 0, Fi(0) ← 0, i ← ∅, i = 1,… , s;
2. let k ← Np;
3. solve the MIQP problem (13);
4. let {𝛿∗i (t)}

s,Np

i=1,t=1 be the optimal parameters minimizing (13);
5. for t = 1,… ,Np do

5.1. let i∗(t) be the index such that 𝛿∗i∗ (t) = 1;
5.2. let 𝜎(t) ← i∗(t);
5.3. let 𝜎(t) ← 𝜎(t) ∪ {x(t)};

6. end for
7. for k = Np + 1,… ,N do

7.1. update the matrices Hi(k − Np) and Fi(k − Np) through (11);
7.2. solve the MIQP problem (13);
7.3. let A∗

i (k) be the optimal parameters minimizing (13), i = 1,… , s;
7.4. let {𝛿∗i (k − t)}Np−1

t=0 be the optimal parameters minimizing (13), i = 1,… , s;
7.5. let i∗ be the index such that 𝛿∗i∗ (k) = 1;
7.6. let 𝜎(k) ← i∗;
7.7. let 𝜎(k) ← 𝜎(k) ∪ x(k);
7.8. let 𝛿c𝜎(k) ← 1|𝜎(k)| (x(k) − c𝜎(k));
7.9. update the centroid c𝜎(k) of cluster 𝜎(k) as c𝜎(k) ← c𝜎(k) + 𝛿c𝜎(k);

8. end for;

Output: Estimated parameters A∗
1(N),… ,A∗

s (N); clusters 1,… ,s; sequence of active modes {𝜎(k)}N
k=1.

At the beginning of Algorithm 1, MIQP problem (13) is solved (step 3), without considering the second and third
terms in the cost (13b) by initializing Hi(0)= 0 and Fi = 0 (step 1). Thus, from step 2 to step 6, a mini-batch identification
problem is solved to estimate the sequence of active modes 𝜎(t) from time 1 up to time Np and to assign the regressor
{x(t)}Np

t=1 to the cluster {𝜎(t)}Np
t=1.

Then, the observations {x(k), y(k)} are processed iteratively. At each time k, the model parameters Ai are updated
(step 7.3), the active mode 𝜎(k) is estimated (steps 7.4-7.6), and the regressor x(k) is consequently assigned to clus-
ter 𝜎(k) (step 7.7) and the cluster’s centroid c𝜎(k) is computed (steps 7.8-7.9). Note that, in steps 7.8 and 7.9, the
centroids are recursively updated. The expression for the recursive update can be easily derived from the definition
of centroids.

We remark that, at the initial iterations of Algorithm 1 (ie, for k ≪ N), the estimate of mode sequence {𝜎(t)}k
t=1

may not be accurate since the learning phase is based on a “small” set of observations {x(t), y(t)}k
t=1. Such inaccu-

rate estimate of the mode sequence {𝜎(t)}k
t=1 (namely, poor classification of the pairs {x(t), y(t)}k

t=1) also influences the
estimate of the active modes and of the model parameters Ai at the next time samples k > k, as the regularization
cost (6b) depends on the estimated mode sequence {𝜎(t)}k

t=1. In order to reduce the effect of initial classification error,
Algorithm 1 can be run multiple times. More specifically, at the nqth run of Algorithm 1, the following cost is considered
instead of (6a)-(6b):

s∑
i=1

Np−1∑
t=0

‖‖‖‖‖‖
(

y(k − t) − Ai

[
1

x(k − t)

])
𝛿i(k − t)

‖‖‖‖‖‖
2

+ (14a)

𝛾1

k−Np∑
t=1

‖‖‖‖‖‖y(t) − A𝜎(t,nq)

[
1

x(t)

]‖‖‖‖‖‖
2

+ (14b)
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𝛾2

nq−1∑
q=1

𝜆nq−q−1
N−Np∑

t=1

‖‖‖‖‖‖y(t) − A𝜎(t,q)

[
1

x(t)

]‖‖‖‖‖‖
2

, (14c)

𝛾3

s∑
i=1

Np−1∑
t=0
||(x(k − t) − ci)𝛿i(k − t)||2, (14d)

where 𝜎(t, q) (q= 1, … , nq) denotes the estimate of the active mode at time t obtained at the qth run of Algorithm 1.
Note that (14c) is a regularization term based on the past runs of Algorithm 1, while (14b) plays the same role of (6b),
which regularizes the parameters Ai based on the estimate {𝜎(t,nq)}

k−Np
t=1 obtained at the current run nq of Algorithm 1.

A forgetting factor 𝜆 ∈ R ∶ 0 < 𝜆 ≤ 1 is also included in (14c) to exponentially downweight the estimates {𝜎(t, q)}N
t=1

obtained at past runs of Algorithm 1.
Using the same ideas presented in Section 3.1.1, the cost (14) can be recursively updated for each new sample

{x(k), y(k)}. This avoids the need to store the whole time history of estimates {𝜎(k, q)}N,nq−1
k=1,q=1 obtained at the previous runs

of Algorithm 1. Thus, the cost (14) can be written as

s∑
i=1

Np−1∑
t=0

‖‖‖‖‖‖
(

y(k − t) − Ai

[
1

x(k − t)

])
𝛿i(k − t)

‖‖‖‖‖‖
2

+ (15a)

𝛾1

{
tr

( s∑
i=1

AiHi(k − Np,nq)A′
i

)
− 2tr

( s∑
i=1

AiFi(k − Np,nq)

)
+ tr
⎛⎜⎜⎝

k−Np∑
t=1

y(t)y(t)′
⎞⎟⎟⎠
⎫⎪⎬⎪⎭+ (15b)

𝛾2

⎧⎪⎨⎪⎩
nq−1∑
q=1

tr

( s∑
i=1

Ai𝜆
nq−q−1Hi(N − Np, q)A′

i

)
− 2

nq−1∑
q=1

tr

( s∑
i=1

Ai𝜆
nq−q−1Fi(N − Np, q)

)
+

nq−1∑
q=1

tr
⎛⎜⎜⎝𝜆nq−q−1

N−Np∑
t=1

y(t)y(t)′
⎞⎟⎟⎠
⎫⎪⎬⎪⎭ ,
(15c)

𝛾3

s∑
i=1

Np−1∑
t=0
||(x(k − t) − ci)𝛿i(k − t)||2, (15d)

where Hi(N −Np, q) and Fi(N −Np, q) (q= 1, … , nq) in (15c) are defined similarly to (9), and are computed based on the
estimates 𝜎(t, q) calculated at the q-th previous run of Algorithm 1. Specifically,

Hi(N − Np, q) =
N−Np∑

t=1

[
1

x(t)

][
1

x(t)

]′
𝛿i(t, q), (16a)

Fi(N − Np, q) =
N−Np∑

t=1

[
1

x(t)

]
y(t)′𝛿i(t, q), (16b)

with

𝛿i(t, q) =

{
1 if 𝜎(t, q) = i,
0 otherwise.

(16c)

When a new input/output pair {x(k), y(k)} at time k is processed, the matrices Hi(k−Np, nq) and Fi(k−Np, nq) in (15b)
can be recursively updated through (11) while only the matrices Hi(N −Np, q) and Fi(N −Np, q) (with q= 1, … , nq − 1)
are needed to construct the terms (15c).

3.2 Stage 2: Computing the input partition

Once the model parameters {Ai}s
i=1 and the sequence of active modes {𝜎(k)}N

k=1 are estimated, the partition {i}s
i=1 of

the regressor space  is computed. This is done by separating the computed clusters {i}s
i=1 using linear multicategory

discrimination.
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In the following paragraphs, we briefly describe the linear multicategory discrimination algorithm recently proposed
by some of the authors19 and used to compute the partition of the regressor space.

3.2.1 Linear multicategory discrimination: problem formulation

According to the formulation introduced by Bennet and Mangasarian,35 the following piecewise-affine separator function
𝜙 ∶ Rnx → R is used to separate the clusters 1, … ,s:

𝜙(x) = max
i=1,… ,s

([
x′ −1

][𝜔i

𝛾 i

])
, (17)

where 𝜔i ∈ Rnx and 𝛾 i ∈ R are unknown parameters to be computed.
For i= 1, … , s, let mi denote the cardinality of the clusteri and let Mi ∈ Rmi×nx denote the matrix obtained by stacking

the regressors x(k)′ belonging to i in its rows.
If the clusters {i}s

i=1 are linearly separable, then the separator function 𝜙 in (17) satisfies the following conditions:

[
Mi −1mi

][𝜔i

𝛾 i

]
>

[
Mi −1mi

][𝜔j

𝛾 j

]
, i, j = 1, … , s, i ≠ j, (18)

or equivalently, [
Mi −1mi

][ 𝜔i

𝛾 i

]
≥ [ Mi −1mi

][ 𝜔j

𝛾 j

]
+ 𝝐, i, j = 1, … , s, i ≠ j,

where 𝝐 ∈ Rmi with 𝝐k > 0, k = 1, … mi and 1mi is an mi-dimensional vector of ones. Multiplying both sides of the above
inequality element-wise with 1∕𝝐k, we can obtain the following equivalent inequality with normalized coefficients 𝜔i

and 𝛾 i, [
Mi −1mi

][ 𝜔i

𝛾 i

]
≥ [ Mi −1mi

][ 𝜔j

𝛾 j

]
+ 1mi , i, j = 1, … , s, i ≠ j. (19)

From (19), the piecewise-affine separator 𝜙 thus satisfies the conditions:

⎧⎪⎪⎨⎪⎪⎩
𝜙(x) = [x′ − 1]

[
𝜔i

𝛾 i

]
, ∀x ∈ i, i = 1, … , s,

𝜙(x)≥ [x′ − 1]

[
𝜔j

𝛾 j

]
+ 1, ∀x ∈ i, i ≠ j.

(20)

Thus, based on (20), each polyhedron {i}s
i=1 is defined as

i =

{
x ∈ R

nx ∶ [x′ − 1]

[
𝜔i − 𝜔j

𝛾 i − 𝛾 j

]
≥ 1, j = 1, … , s, j ≠ i

}
.

In order to compute the parameters {𝜔i, 𝛾 i}s
i=1, the following convex optimization problem is solved

min
𝜉

𝜅

2

s∑
i=1

(||𝜔i||22 + (𝛾 i)2) +
s∑

i=1

s∑
j=1
j≠i

1
mi

‖‖‖‖‖‖
([

Mi − 1mi

][𝜔j − 𝜔i

𝛾 j − 𝛾 i

]
+ 1mi

)
+

‖‖‖‖‖‖
2

2

,
(21)
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where 𝜉 is the set of optimization variables, that is, 𝜉 =
[
(𝜔1)′ · · · (𝜔s)′ 𝛾1 · · · 𝛾 s]′, and (⋅)+ denotes a nonnegative

vector, that is, (x)+ denotes a vector whose ith element is xi =max{xi, 0}. Problem (21) minimizes the averaged squared
2-norm of the violation of the inequalities in (19). The regularization parameter 𝜅 > 0 makes sure that the optimization
problem (21) is strongly convex and has a unique global minimizer.

3.2.2 Recursive multicategory discrimination

As an alternative to the batch approach for multicategory discrimination discussed in the previous paragraph, or in addi-
tion to it, for refining the partition function 𝜙 on-line based on streaming data, a recursive approach using on-line convex
programming can be used to solve (21).

Let us treat the data-points x ∈ Rnx as random vectors and let us assume that there exists an oracle function i⋆ ∶
Rnx ∶→ {1, … , s} that assigns the corresponding mode i⋆(x) to a given input x ∈ Rnx . By definition, the function i⋆
describes the clusters in the data-point space Rnx . Let us also assume that the following probabilities

𝜋i = Prob[i⋆(x) = i] = ∫
Rnx

𝛿(i, i⋆(x))p(x)dx,

are known for all i= 1, … , s, where 𝛿(i, j) = 1 if i= j, zero otherwise.
By denoting with Ex[⋅] the expected value w.r.t. the random variable x, problem (21) can be then generalized as the

following convex regularized stochastic optimization problem

𝜉∗ = min
𝜉

Ex∈Rnx [𝓁(x, 𝜉)] +
𝜅

2
||𝜉||22, (22)

with

𝓁(x, 𝜉) =
s∑

j = 1
j ≠ i⋆(x)

1
𝜋i⋆(x)

(x′(𝜔j − 𝜔i⋆(x)) − 𝛾 j + 𝛾 i⋆(x) + 1)2
+.

The objective function in (22) penalizes the expected violation of the condition in (19) when i= i⋆(x). The weights
𝜋i can be estimated offline from a data subset, specifically 𝜋i =

mi
N

, and can be then updated iteratively. Nevertheless,
numerical experiments have shown that uniform weights 𝜋i = 1

s
work equally well. Problem (22) can be solved using

online convex optimization algorithms, such as the adapted version of the averaged stochastic gradient descent (ASGD)
method.19

4 CASE STUDIES

The performance of the presented PWA regression algorithm is demonstrated through three case studies, two of which
use experimental data. All computations are carried out on an i5 1.8-GHz Intel core processor with 8 GB of RAM running
MATLAB R2018a.

4.1 Numerical example

In this example, we use synthetic data generated by the following single-input single-output PWARX dynamical system:

y(k) =

⎧⎪⎪⎨⎪⎪⎩
A1

[
1

x(k)

]
+ eo(k) if − 0.3x1(k) + 0.6x3(k) + 0.3 > 0,

A2

[
1

x(k)

]
+ eo(k) if − 0.3x1(k) + 0.6x3(k) + 0.3 < 0,

(23)
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SNR 21 dB 13 dB

BFR 87.59± 4.82% 82.24± 4.97%

MF 94.54± 1.45% 85.28± 10.17%

T A B L E 1 Example 1: mean ± standard deviation of BFR and MF index over 100
Monte-Carlo runs for SNR equal to 21 and 13 dB

True value mean ± std (SNR=21 dB) mean ± std (SNR=13 dB)

0.20 0.2137 ± 0.0116 0.2709±0.0916

0.50 0.4972 ± 0.0194 0.4997±0.0568

A1 -0.10 -0.0946 ± 0.0149 -0.0681±0.0480

1.00 0.9891 ± 0.0096 0.9431±0.0949

0.20 0.2041 ± 0.0147 0.2159±0.0412

-0.30 -0.2744 ± 0.0194 -0.1071±0.1745

0.80 0.7867 ± 0.0168 0.7331±0.0690

A2 0.10 0.1065 ± 0.0118 0.1108±0.0521

0.40 0.4125 ± 0.0106 0.4858±0.1153

0.05 0.0564 ± 0.0124 0.0779 ±0.0428

T A B L E 2 Example 1: mean and
standard deviation (std) of the estimated
PWARX model parameters over 100
Monte-Carlo runs for SNR equal to 21
and 13 dB

where A1 = [0.2 0.5 − 0.1 1 0.2], A2 = [−0.3 0.8 0.1 0.4 0.05]. The 4-dimensional regressor vector x(k) is defined
as x(k) = [y(k − 1) y(k − 2) u(k − 1) u(k − 2)]′ ∈ R4, where u(k) is the external input of the dynamical system at
time k, and it is randomly generated from a uniform distribution taking values between −2 and 2. Two exper-
iments are carried out with varying noise conditions where the noise eo corrupting the output signal is gener-
ated by a zero-mean white Gaussian process with variance 0.01 for the first experiment and 0.09 for the second
experiment.

In order to evaluate the statistical properties of the proposed identification approach, a Monte-Carlo study with 100
runs is performed (Table 1, 2). At each Monte-Carlo run, a different realization of input u(k) and noise eo(k) process is
generated. A training dataset of length N = 1000 and a noise-free validation dataset of length Nval = 300 are constructed.
The average values of the signal-to-noise ratio (SNR)

SNR = 10 log
∑N

k=1 (y(k) − eo(k))2∑N
k=1 e2

o(k)
,

over the 100 runs are 21 and 13 dB for the two set of Monte Carlo experiments. For the identification of PWARX model
(23), Algorithm 1 is run for nq = 3 iterations with s= 2 modes, model orders na =nb = 2, horizon length Np = 8, and
weights, 𝛾1 = 0.1, 𝛾2 = 0.01, 𝛾3 = 0, 𝜆 = 0.1 in (14). The formulated MIQP problem (with objective function (14)) contains
26 real and 16 binary variables, 64 inequality and 8 equality constraints, and solved using both the miqpGPAD algorithm
and the commercial solver GUROBI. The average CPU time to solve the resultant MIQP for processing a single train-
ing sample is 90 ms, while GUROBI takes 20 ms. It is worth remarking that miqpGPAD is a simple library-free solver,
providing comparable performance with respect to GUROBI for the given problem. These features make the miqpGPAD
solver particularly suitable for embedded online applications, where a model needs to be updated once new data becomes
available.

In the second stage, the linear multicategory discrimination problem (21) is solved in order to compute
polyhedral partitions of the regressor space. A small value of the regularization hyper-parameter 𝜅 is set
(𝜅 = 10−5) just to guarantee strong convexity of problem (21). On average, 25 ms are required to compute
the solution of problem (21) through the regularized piecewise-smooth Newton method36 with Armijo’s line
search.

The mean and standard deviation of the estimated model parameters A1 and A2 over the 100 Monte-Carlo runs are
reported in Table 2, which shows that the true parameters A1 and A2 are correctly identified.
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F I G U R E 1 Example 1: Top panel: Best fit
rate; Bottom panel: Average CPU time taken by
GUROBI to solve a single MIQP problem
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The quality of the estimated PWARX model is assessed on validation data and quantified by the best fit rate (BFR)
index defined as

BFR = max
⎧⎪⎨⎪⎩1 −

√√√√√∑Nval
k=1 (y(k) − ŷ(k))2∑Nval

k=1 (y(k) − y)2
, 0
⎫⎪⎬⎪⎭ × 100%, (24)

where ŷ(k) is the estimated model output and y is the sample mean of the output signal in the validation dataset. The
accuracy in reconstructing the active mode sequence is expressed by the mode-fit (MF) index

MF =

(
1

Nval

Nval∑
k=1

I(𝜎̂(k) = i⋆(k))

)
× 100%, (25)

where I(⋅) is the indicator function, and 𝜎̂(k) and i⋆(k) are the estimated and true mode at time k, respectively.
The mean of the BFR and MF index achieved over the 100 Monte-Carlo runs are reported in Table 1.
Furthermore, in order to asses the effect of the horizon length Np on accuracy and computational complexity of the

approach, Algorithm 1 is run with different values of Np. The dataset associated to a SNR equal to 21 dB is used. It
is observed in Figure 1 that increasing the value of Np increases the BFR, at the cost of a larger computational time.
Nevertheless, note that for values of Np larger than 15, no significant increase in the BFR is observed.

Finally, the effectiveness of the iterative refinement described in Section 3.1.3 is assessed by running Algorithm 1
for nq = 1, 2, 3, and 4 iterations, with Np = 8, weights 𝛾1 = 0.1, 𝛾2 = 0.01, 𝛾3 = 0, and forgetting factor 𝜆 = 0.1 in (14). The
achieved BFR, MF, and the norm of error between true and estimated model parameters ||A − Â|| are reported in Table 3,
which shows how iterative refinement improves the accuracy of the estimated model. This also shows that, using iterative
refinement, higher accuracy can be achieved with lower values of horizon length Np. Note that, after three iterations, no
improvement is observed.

4.2 Case study: Identification of a pick-and-place machine

As a second case study, we consider a data-driven identification problem of the electronic component placement process
in a pick-and-place machine. The experimental setup28 consists of an electronic component placed on a mounting head,
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runs(nq) BFR MF ||A1 − Â1|| ||A2 − Â2||

1 77.09 % 89.33 % 0.0954 0.4553

2 83.64 % 91.67 % 0.0550 0.2187

3 87.03 % 92.67 % 0.0443 0.0876

4 87.02 % 92.67 % 0.0443 0.0882

Note: BFR, MF, and ||A − Â|| reported by running Algorithm 1 with Np = 8.

T A B L E 3 Example 1: Iterative refinement

s= 1 s= 2 s= 3

BFR 76.98% 88.25% 89.33%

T A B L E 4 Identification of pick-and-place machine: Best fit rates (BFR) for the
identified PWARX models with different number of discrete operating modes s
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F I G U R E 2 Validation results for pick-and-place machine using PWARX models with s= 1 (left), s= 2 (center), and s= 3 (right)
operating modes. Top: simulated versus true output. Bottom: estimated mode sequence [Colour figure can be viewed at
wileyonlinelibrary.com]

which is pushed down to an impact surface, and then released. The system consists of two operating modes: free mode
and impact mode. In the free mode, the movement of the electronic component is unconstrained, while in the impact
mode, the mounting head is in contact with the impacting surface. An input-output dataset over a time interval of 15
seconds with sampling frequency of 150 Hz is gathered.

Due to the switching between free and impact modes, a PWARX model is a good candidate to describe
the behavior of the process. Specifically, we consider the PWARX model structure in (1). The regressor is
defined as in (3), for dynamical orders na = 2 and nb = 2. Three different number of submodels s are con-
sidered (namely, s= 1, s= 2, and s= 3). Note that, for s= 1, the PWARX model is actually a simple linear
ARX model.

The model parameters are identified from a training dataset of N = 1000 samples, by using Algorithm 3
with horizon length Np = 15 and weights 𝛾1 = 0.1, 𝛾2 = 0, 𝛾3 = 1 in (14). The resultant MIQP is solved through
the GUROBI solver.37 The average execution time to solve a single MIQP problem is 46.1 ms. In the sec-
ond stage, the linear multicategory discrimination problem (21) is solved to compute a polyhedral parti-
tion of the regressor space. The parameter 𝜅 is set to 10−5. The execution time to solve this problem
is 63 ms.

The performance of the estimated models is assessed on a validation dataset of length Nval = 400, and
quantified in terms of BFR (24). The BFRs achieved by the three different identified models are reported
in Table 4. The estimated model output and the true output trajectories are shown in Figure 2, along with
the estimated sequence of discrete operating modes. It can be observed from Table 4 and Figure 2 that
both the PWARX models with s= 2 and s= 3 operating modes outperform the performance of the linear
ARX model.

http://wileyonlinelibrary.com
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F I G U R E 3 Electronic bandpass filter:
true versus simulated output [Colour figure
can be viewed at wileyonlinelibrary.com]
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4.3 Case study: Identification of an electronic bandpass filter

As a third case study, we consider the identification of an LPV model describing the behavior of an electronic bandpass
filter.29 The benchmark dataset used in this case study has been downloaded from the https://www.kth.se/social/group/
system-identificatio/page/17th-ifac-symposium-on-system-identifica/.38

The experimental setup consists of an electronic second-order bandpass filter, which is implemented using an
n-type JFET transistor in parallel with a variable resistor. The resonant frequency of the filter varies according to
the gate-source voltage of the transistor, which is chosen as a scheduling signal p(k) for the LPV model to be
identified.

The input signal u(k) applied to the system is the sum of cosines, that is, u(k) =
∑Nmax
𝜏=1 Ā𝜏 cos(𝜔𝜏k + 𝜓𝜏), where

Ā𝜏 is the amplitude of the 𝜏th cosine, 𝜓𝜏 is the phase angle randomly generated from a uniform distribution in the
interval (0, 2𝜋), and Nmax is selected such that 𝜔Nmax ≈ 2𝜋20 kHz. The scheduling variable p(k) is a harmonic signal
consisting of sum of sines with random amplitudes and 3 frequency bins, that is, p(k) = VDC +

∑3
𝜏=1 B𝜏 cos(𝜔𝜏k + 𝜙𝜏),

where V DC =−0.7V is the offset voltage, amplitudes B𝜏 are zero-mean, randomly generated from a normal distribu-
tion. The reader is referred to Lataire et al29 for a detailed description of the experimental setup and of the available
datasets.

For the identification of the electronic bandpass filter, we consider the LPV model (4)-(5) with model orders na = 2,
nb = 2 and with number of PWA submodels s= 6. The model is identified via the PWA regression Algorithm 1 with horizon
length Np = 10, 𝛾1 = 10−4, 𝛾2 = 0, 𝛾3 = 0.1 in (14) and using a training dataset with N = 30 000 samples. The values of na,
nb, Np, 𝛾1, 𝛾2, 𝛾3 are tuned via cross-validation. The average time to process one training sample solve (namely, to solve
the resulting MIQP (6) through the commercial solver GUROBI) is 51 ms. In the second stage, the linear multicategory
discrimination problem (21) is solved to compute a polyhedral partition of the scheduling space. The hyper-parameter 𝜅
is set equal to 10−5. The execution time to solve this problem is 57 ms.

The performance is evaluated on an independent validation dataset of size Nval = 10 000 samples. This validation set
was used neither for training nor for tuning all the hyper-parameters of the presented approach. The achieved BFR is
81.5%. For the sake of better visual representation, only few samples of the simulated output vs true output are depicted
in Figure 3. The obtained results show that the estimated PWA-LPV model with PWA approximations of LPV coefficients
is able to accurately reproduce the behavior of the electronic bandpass filter better.

5 CONCLUSIONS

In this article, a novel two-stage algorithm for PWA regression is presented and properly adapted for the identification of
PWARX and LPV models. The underlying idea of the approach is to iteratively process training data according to a reg-
ularized moving-horizon strategy and then solve, at each iteration, a small-scale MIQP problem. The proposed method
combines the advantages of the mixed-integer programming approach for PWA regression14 (namely, simultaneous esti-
mation of submodel parameters and operating modes) and recursive algorithm19 (namely, iterative processing of training
samples and computational efficiency).

Future research activities are devoted to the formulation of the problem in a Bayesian framework, in order to compute
(or approximate) the posterior probability distribution of the model parameters, with the final aim of providing confidence
uncertainty intervals on the estimated parameters and on the predicted output.

http://wileyonlinelibrary.com
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