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SUMMARY

This paper proposes a method to design robust model predictive control (MPC) laws for discrete-time linear
systems with hard mixed constraints on states and inputs, in case of only an inexact solution of the associ-
ated quadratic program is available, because of real-time requirements. By using a recently proposed dual
gradient-projection algorithm, it is proved that the discrepancy of the optimal control law as compared with
the obtained one is bounded even if the solver is implemented in fixed-point arithmetic. By defining an alter-
native MPC problem with tightened constraints, a feasible solution is obtained for the original MPC problem,
which guarantees recursive feasibility and asymptotic stability of the closed-loop system with respect to a
set including the origin, also considering the presence of external disturbances. The proposed MPC law is
implemented on a field-programmable gate array in order to show the practical applicability of the method.
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1. INTRODUCTION

Model predictive control (MPC) allows the design of optimal feedback control laws for dynamical
systems that take into account constraints on inputs and states [1]. Thanks to the accomplish-
ments of the last years in increasing both the computation capabilities of microcontrollers and the
efficiency of fast algorithms for online optimization, the use of MPC is being extended from the tra-
ditional process control applications to fields like automotive, aerospace, and mechatronics, where
relatively fast sampling times are required. In order to implement embedded MPC controllers for
this kind of systems, the worst-case execution time at each sampling time must be known, that is,
real-time guarantees are needed. To this aim, real-time MPC laws have been recently proposed,
studying optimization algorithms that generate an acceptable solution in an a priori bounded number
of iterations.

When a linear model of the system is employed, together with a quadratic cost function and linear
constraints, the optimization problem to be solved online can be formulated as a quadratic program
(QP). In order to provide a solution of the QP in a prescribed time, two different strategies have
been considered. The first consists of using the so-called explicit MPC approach introduced in [2],
in which the optimal control law is explicitly obtained during the design phase as a piecewise affine
function of the state vector by means of parametric optimization. For small-size problems, such

*Correspondence to: Matteo Rubagotti, Department of Engineering, University of Leicester, University Rd, Leicester
LE1 7RH, UK.

†E-mail: mr298@le.ac.uk

Copyright © 2016 John Wiley & Sons, Ltd.



REAL-TIME MPC BASED ON GPD: THEORY AND FIXED-POINT FPGA IMPLEMENTATION 3293

a function can be easily implemented in embedded control systems, giving a precise estimate of
the worst-case execution time. Conversely, if the problem is of medium or large size, then online
optimization has to be employed. Using standard solvers, based on interior-point or active-set meth-
ods, the estimate of the worst-case execution time is usually extremely loose (see, for instance, the
discussion in [3, Section IA]). For this reason, algorithms based on variants of the fast gradient
methods [4, 5] have been recently applied to MPC in [3, 6–8], providing tighter bounds. In [9], a
dual gradient-projection method based on [4] was proposed both in its basic (GPD) and accelerated
(GPAD) forms (see also [10]). Despite introducing a dual method, [9] provides bounds on the maxi-
mum number of iterations in order to achieve given levels of primal suboptimality and infeasibility.
In [11], the use of GPD was analyzed for embedded MPC in hardware platforms with fixed-point
arithmetic.

In case a primal method is used, the obtained suboptimal solution does not violate the inequality
constraints of the finite-horizon optimal control problem, and closed-loop stability can be proved
using, for instance, the method described in [12]. However, the use of primal methods is lim-
ited to problems with simple input constraints, such as box constraints and no state constraints
(e.g., [3]). Dual methods (e.g., [9, 13–16]) have been successfully applied to more general problem
formulations (with polytopic mixed constraints on input and state variables), but they present the
drawback of providing inexact solutions for the associated primal problem because the inequality
constraints can be violated. Possible solutions to this drawback were recently proposed in [17–19].
The approaches of [14, 17] do not provide a priori bounds on the maximum number of iterations
valid for the entire region of attraction, which are instead provided in [19]. In particular, in [19],
starting from the MPC problem to be solved online, and given the maximum constraint violation
and suboptimality of the solution provided by the solver (e.g., GPAD), an alternative problem is
formulated with tightened constraints. By showing that the obtained inexact solution is feasible for
the actual MPC problem, asymptotic stability is guaranteed for the closed-loop system. The main
drawback of [19] is that the tightening of the constraints increases of a constant amount at each step
along the prediction horizon, which can lead to infeasibility of the alternative MPC problem for long
prediction horizons.

The paper is structured as follows. After introducing the main notation in Section 2, it is assumed
that there exists a bound on the discrepancy w between the control variable originated from the
exact optimal solution of the MPC problem and the one originated from the inexact solution. By
extending the approach of [20] to systems with mixed control and state constraints, a robust MPC
problem is defined in Section 3, based on tightened constraints, by treating w as a disturbance term.
The amount of tightening of the constraints does not increase linearly along the prediction horizon,
instead it is shown to converge to a constant value. The scheme is also proved to be robust with
respect to bounded external disturbances showing that recursive feasibility is guaranteed in a given
domain of attraction, and that the closed-loop system is asymptotically stable with respect to a set
including the origin, the size of such set depending on the external disturbance term. In Section 4, we
show how to obtain the bounds onw by using the GPD algorithm [9], also analyzing the effect of the
number of bits used to represent numbers in embedded fixed-point implementations of the solver. In
Section 5, a comparison with [19] is carried out, showing that, as the prediction horizon increases,
the proposed method can be preferable to [19]. The last contribution of the paper is described in
Section 6, where the implementation of the proposed MPC law on a field-programmable gate array
(FPGA) is detailed, and the related results on hardware-in-the-loop experiments are discussed. In
Section 7, conclusions are drawn and the contributions of the paper are discussed in detail.

2. BASIC NOTATION

Let R>0, R>0, N>0 and N>0 denote the sets of positive reals, non-negative reals, positive integers,
and non-negative integers, respectively. Given two integers a 6 b, let NŒa;b� , ¹a; a C 1; :::; bº,
while Nb , ¹0; 1; :::; bº. Given a vector v 2 Rn, let kvk denote its Euclidean norm, while B� ,
¹a 2 Rn W kak 6 �º, for any � 2 R>0. Given two vectors u; v 2 Rn, the notation u 6 v refers to
component-wise inequalities. Given a matrix M 2 Rn�n, M 0 is its transpose, �.M/ is its spectral
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radius, and its positive definiteness and semi-definiteness are indicated as M � 0 and M � 0,
respectively. Given a set X � Rn, its interior is denoted by int.X /. The Hausdorff distance of point
p 2 Rn from the set X is ıh.p;X /. Given a 2 R>0, we define aX , ¹y 2 Rn W y D ax; x 2 X º.
Given two sets A1;A2 2 Rn, their Minkowski sum is A1 ˚A2 , ¹x C y W x 2 A1; y 2 A2º, and
their Pontryagin difference is A1�A2 , ¹x 2 Rn W xC y 2 A1; 8y 2 A2º. We define a polytope
as a bounded and closed polyhedron obtainable as the convex hull of its vertices.

3. FORMULATION OF THE ROBUST MODEL PREDICTIVE CONTROL CONTROL LAW

3.1. Overview of the model predictive control problem with mixed constraints

Consider the uncertain discrete-time linear time-invariant (LTI) system

x.t C 1/ D Ax.t/C Bu.t/C d.t/; (1)

where t 2 N>0, x 2 Rnx is the state vector (which is available for feedback for all t 2 N>0),
u 2 Rnu is a controlled input, and d 2 Rnx is a disturbance input. It is assumed that the pair .A;B/
is stabilizable, and that the disturbance term is bounded as

d.t/ 2 D;8t 2 N>0; (2)

where D is a non-empty polytope in Rnx with 0 2 D. The state and input vectors are represented
using a single vector

´ ,
�
x

u

�
2 Rn´ ; n´ , nx C nu: (3)

The considered problem consists of regulating x.t/ to a set including the origin, while satisfying

´.t/ 2 Z;8t 2 N>0; (4)

where Z is a polytope with 0 2 Z . First of all, the auxiliary control law �.x/ , Kx is defined,
where K 2 Rnu�nx is a gain matrix defined such that the resulting nominal closed-loop system

x.t C 1/ D A�x.t/; (5)

where A� , A C BK is asymptotically stable. Because the pair .A;B/ is stabilizable, then it is
always possible to synthesize K to obtain asymptotic stability, that is, �.A�/ < 1.

Let the MPC control law be

u.x/ , Kx C c.x/; (6)

which has the same structure of the MPC law proposed in [20], with the difference that [20] did
not consider the presence of mixed constraints. These require considering the dynamics of ´.t/ as
a whole, which leads to a more complex formulation with respect to [20]. Also, the application of
an inexact control law will be considered in the following as a further disturbance term added to
d.t/, which was not considered in [20]. The cost function that will be minimized over a prediction
horizon N 2 N>0 is given by

VN .c/ ,
N�1X
kD0

c0k‰ck; (7)

where ‰ 2 Rnu�nu , ‰ D ‰0 � 0. Also, c in (7) is defined as

c ,
�
c00 : : : c

0
N�1

�0
2 Rn; n , Nnu; (8)

together with

z ,
�
´00 � � � ´

0
N�1 x

0
N

�0
; ´k ,

�
xk

Kxk C ck

�
:
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In order to compute the evolution of the system dynamics along the prediction horizon, and therefore
define the vectors c and z, the nominal closed-loop dynamics is used by applying the control law (6)
to system (1), assuming d.t/ D 0 for all t 2 N>0. Therefore, we will require that z 2 A.x/, with

A.x/ , ¹z W x0 D x; xkC1 D A�xk C Bck; k 2 NN�1º: (9)

Because the disturbance term is neglected, a particular set of tightened constraints will be defined
in the following, so as to satisfy constraint (4) in the presence of disturbances. After the given
optimization problem is solved, and a suitable (not necessarily optimal) solution is determined,
according to the receding horizon principle, only the first control move u.x/ D �.x/ C c0.x/ is
applied to the system at time t , while the optimization process with the same prediction horizon N
is repeated at time t C 1.

Remark 1
Consider the case whenK is defined using infinite-horizon linear quadratic regulation theory, given
the weight matrices Q 2 Rnx�nx and R 2 Rnu�nu , with Q D Q0 � 0, R D R0 � 0,
and .A;Q

1
2 / detectable. In this case, we can define the stage cost `.x; u/ , 1

2
.x0Qx C u0Ru/

and the terminal cost `N .x/ , 1
2
x0Px, where P D P 0 � 0 is the solution of the associ-

ated algebraic Riccati equation. Then, if ‰ D R C B 0PB , the optimal control sequence obtained
by minimizing (7) subjected to a given set of constraints can be also obtained by minimizing
OVN .z/ ,

PN�1
kD0 `.xk; uk/C `N .xN /, for the same set of constraints. For a detailed discussion on

this equivalence result, the reader is referred to [20] and the references therein.

3.2. Definition of the tightened constraints

In addition to the uncertainty given by the external disturbance d , it is necessary to take into account
the fact that the optimal value of c is not achieved. The sequence of values of the control variable
c.x/, generated by the given numerical solver along the prediction horizon, is referred to as

Nc.x/ ,
�
Nc0.x/ : : : NcN�1.x/

�
; (10)

while the optimal control sequence of the same problem is referred to as

c?.x/ ,
�
c?0 .x/ : : : c

?
N�1.x/

�
: (11)

Assumption 1
For all x for which c?.x/ is defined, 9 � 2 R>0 s.t. Nci .x/ 2 c?i .x/˚B� 8 i D 1; : : : ; N � 1.

The information given by Assumption 1 is of paramount importance for proving the stability
results in this paper, and it will be shown that such an assumption will be automatically satisfied by
the use of the specific solver. The meaning of parameter � is related to the number of iterations of the
solver, and on the numerical precision of the actual implementation (e.g., the effect of fixed-point
arithmetic can be taken into account) as will be clarified in Section 4. By means of Assumption 1,
each term of the control sequence applied to system (1) can be expressed as c?i .x/C ei .x/, where
ei .x/ 2 B�, i D 1; : : : ; N �1. In order to deal with the new artificial disturbance term, recalling the
expression of c.x/ in (6), the expression of control law (6) is made explicit in system (1), as follows

x.t C 1/ D A�x.t/C Bc.t/C Be.t/C d.t/; (12)

where c.t/ , c?0 .x.t//, and e.t/ , e0.x.t//. Because no information is available on the control
law Nc0.x/ apart from that given by Assumption 1, we study the effect of applying Nc0.x/ as if we
applied the optimal control law c?0 .x/, plus the uncertain term e.t/. For the sake of compactness,
we use a single variable to refer to all uncertain inputs, as w.t/ , Be.t/C d.t/.

Given the assumptions on e.t/ and d.t/, w.t/ belongs to the set BB� ˚ D � Rnx . For compu-
tational reasons, it is preferable to consider an over-approximation of this set as a polytope. To this
aim, a polytope E0 � Rnu is defined s.t. E0 	 B1, and E , �E0 	 B�. At this point, it is possible
to state that w.t/ 2W , BE˚D � Rnx , t 2 N>0, where W is a polytope that includes the origin.
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Applying the auxiliary control law �.x/ to system (12) (i.e., setting c.t/ D 0), one obtains the
closed-loop system

x.t C 1/ D A�x.t/C w.t/ (13)

for which the set of states x reachable from the origin in j steps for any admissible disturbance
sequence wj 2 W 
 : : : 
W is given by Rj ,

Lj�1
iD0

�
Ai�W

�
, which implies that the minimal

robust positively invariant (RPI) ([21, Definition 1]) set for the same system is R1 , limj!1Rj

(e.g., [20]). Even if, for the sake of simplicity, we will assume to be able to obtain R1 exactly, in
practice, an over-approximation OR1 	 R1 can be employed. For the description of an efficient
iterative method to obtain OR1, the reader is referred to [21]. The dynamics of ´ in (3) for system
(13) are

´.t C 1/ D QA�´.t/C QB�w.t/; (14)

where

QA� ,
�
A� 0

KA� 0

�
; QB� ,

�
I

K

�
:

The set of extended states ´ reachable from the origin in j steps for any admissible disturbance
sequence wj 2 W 
 : : : 
W is QRj ,

Lj�1
iD0

�
QAi�
QB�W

�
, implying that the minimal RPI set for

system (14) is given by QR1 , limj!1
QRj .

Remark 2
By definition of dynamics (13) and (14), x 2 Rj if and only if ´ 2 QRj , for all j 2 N>0.

Assumption 2
The matrices A, B , and K and the sets E and D are defined such that QR1 � Z .

Remark 3
In Assumption 2, two different kinds of parameters are considered. On the one hand,A,B , and D are
given as characteristics of the system. On the other hand, K and E can be modified by the designer.
Given the presence of both input and state constraints, the influence of K on QR1 is strongly case-
dependent. Instead, E is shrinked as more iterations of the numerical solver are run: in the ideal case
of infinite numerical precision, the obtained control law approaches the optimal one as the number
of iterations tends to infinity. In this limit case, as �! 0, we would obtain R1 equal to

RD , lim
j!1

1M
iD0

�
Ai�D

�
; (15)

which is included in R1 for all � 2 R>0. Also, as � ! 0, the set QR1 would become equal to
QRD , limj!1

Lj�1
iD0

�
QAi�
QB�D

�
. In case the optimal solution is achieved, a necessary condition

needed for the satisfaction of Assumption 2 is QRD � Z . Assuming a finite value � > 0, then the
same necessary condition will require that the polytope QRD be included in the relative interior of Z .
Smaller sets QRD would lead to the possibility of using larger values of � and still satisfy Assumption
2. Instead, if Z � QRD is very small, only a very small value of � can be acceptable.

By definition of Rj and QRj , it is immediate to see that, given j 2 Z>0, Rj D Rj�1 ˚A
j�1
� W ,

QRj D QRj�1 ˚ QA
j�1
�
QB�W . Also, for j 2 R>0, we define the tightened sets

Zj D Z � QRj : (16)

The terminal set Xf is defined as the maximal RPI set in

XK ,
²
x 2 Rnx W

�
x

Kx

�
2 Z

³
; (17)
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for the closed-loop system (13), that is,

x 2 Xf ) ´ D

�
x

Kx

�
2 Z; A�x C Bw 2 Xf ;8w 2W: (18)

Recalling Remark 2, x 2 R1 implies ´ 2 QR1 � Z , and then, by definition of Xf , R1 � Xf .
Therefore, Assumption 2 also implies the existence of Xf .

Assumption 3
A condition slightly stronger than R1 � Xf (implied by Assumption 2) is assumed to be satisfied,
that is R1 � int.Xf /:

3.3. Definition of the finite-horizon optimal control problem

The finite-horizon optimal control problem leading to the definition of Nc0.x/ is defined as

V ?N .x/ , min¹VN .c/ W z 2 SN .x/º; (19)

where

SN .x/ ,
²

z 2 A.x/ W
�

xk
Kxk C ck

�
2 Zk; k 2 NN�1; xN 2 Xf �RN

³
;

where VN .c/ and A.x/ are defined in (7) and (9), respectively. The set DN is defined as the set
of states x for which there exists a feasible solution for (19), given the prediction horizon N . For
every x 2 DN , the unique optimal solution of (19) is denoted by z? ,

�
´?00 � � � ´

?0
N�1 x

?0
N

�0
, where

´?
k
,
�
x?0
k
.Kx?

k
/0 C c?0

k

�0
. Also, we recall that the associated optimal control sequence is denoted

by c?.x/ [11]. Even though the optimal solution Nz?.x/ will not be achieved, for every state vector
x 2 DN , we assume that a vector Nz.x/ D

�
Ń 00 � � � Ń

0
N�1 Nx

0
N

�0
2 RNn´Cnx can be computed for

which, in addition to Assumption 1, the following holds:

Assumption 4
For all x 2 DN , vector Nz.x/ (which is not necessarily a feasible solution of problem [19]) satisfies

Nz.x/ 2 A.x/; (20)

x 2 Xf ) Nz.x/ D z?.x/: (21)

Assumption 4 implies that Nc.x/ D c?.x/ D
�
0 : : : 0

�
for all x 2 Xf , Because this choice leads

to a feasible solution of problem (19) with VN .z/ D 0. For each x 2 DN , let Z.x/ denote the set of
all vectors Nz.x/ 2 RNn´Cnx , which can be associated to a feasible solution z.x/ of (19), satisfying
Assumption 1. Also, let C.x/ be the set of all Nc0.x/ corresponding to vectors Nz.x/ 2 Z.x/. Notice
that Z.x/ (and consequently C.x/) is non-empty for all x 2 DN , because it contains z?.x/.

Theorem 1
Let Assumptions 1–4 be satisfied and consider the closed-loop system

x.t C 1/ D '.x.t// , Ax.t/C Bu.t/C d.t/; (22)

where u.t/ D Kx.t/C �.x.t//, �.x.t// 2 C.x.t//. Then,

(i) Recursive feasibility for (19) is ensured, that is, DN is an RPI set for the closed-loop system;
(ii) .x.t/; �.x.t/// 2 Z , t 2 N>0;

(iii) The set RD in (15) is asymptotically stable for system (22), according to Definition 3 in the
Appendix, with domain of attraction DN .
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Proof
To improve readability, the proof is reported in the Appendix. �

4. ANALYSIS OF THE OPTIMIZATION ALGORITHM

The whole theoretical development so far has been based on the assumption that a solver is available
for problem (19), such that Assumptions 1 and 4 are satisfied. In this section, we briefly summarize
GPD [11], a gradient projection algorithm applied to a modified version of the dual problem of (19),
specifically tailored for implementation in fixed point hardware. We prove that the required assump-
tions are satisfied, and that the value of � defined in Assumption 1 will depend on the number of
iterations of GPD, and on the numerical precision of the fixed-point arithmetic with which GPD is
running. By eliminating the equality constraints corresponding to the state equations, problem (19)
can be expressed as the following strongly convex QP

V ?N .x/ D min
c2Rn
¹.1=2/c0Mc C q.x/0c j F c 6 s.x/º; (23)

where q W Rnx ! RNnu , s W Rnx ! Rm are affine mappings (m being the number of inequality
constraints and c being defined in (8)). This leads to the satisfaction of (20) in Assumption 4. The
dual function is

ˆ.x; y/ , min
c
.1=2/c0M cC q.x/0cC y0.F c � s.x//; (24)

and the dual problem is

ˆ?.x/ D max
y>0

ˆ.x; y/: (25)

Let Y?.x/ denote the set of dual optimal solutions for given state x 2 Rnx and

�y , max

²
max
x2DN

min
y?.x/2Y?.x/

ky?.x/k1; 1

³
; (26)

and consider the problem

ˆ?.x/ D max
06y6�y

ˆ.x; y/: (27)

It is easy to see that problems (25) and (27) are completely equivalent, cf. [11]. However, the
boundedness of the feasible set for (27) greatly facilitates the round-off error analysis because of
fixed-point arithmetic. For a given y 2 Rm, the value of the dual cost can be calculated by computing
the argument that achieves the minimum in (24). This is given by

c?y D Ey C e.x/; (28)

where E D �M�1F 0, e.x/ D �M�1q.x/. The gradient of the dual function is simply

ryˆ.x; y/ D F c?y � s.x/:

Therefore, the gradient projection algorithm applied to the dual problem (27) is

c.�/ D Ey.�/ C e.x/ (29a)

g.�/ D F c.�/ � s.x/ (29b)

y.�C1/ D min
®
max

®
y.�/ C

1
L
g.�/; 0

¯
; 2�y1

¯
(29c)

where L D kF k2=� and � D �min.M/. For simplicity, we assume that y.0/ D 0, which in turn
implies (21). Assumption 4 is therefore entirely satisfied.
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Theorem 2
Let x 2 DN and

Nc.�/ ,
1

� C 1

�X
iD0

c.i/; (30)

where ¹c.�/º is the sequence generated by iteration (29) running on a fixed-point architecture with
p fractional bits. Then, we have

Nci .x/ 2 c
?
i .x/˚B� (31)

after at most

�?� D

�
D2

�2 � ı

	
� 1 (32)

iterations, where

D ,
kF k2�2y.4�y C 1/

�
; ı , 2

�
.1C�y/



kF k2

�
	2´ C 4

p
m�y	�

�
;

	´ , 2�.pC1/m
p
n; 	� , 2�.pC1/n

p
m:

Proof
Let L.c; y/ D .1=2/c0M cCq.x/0cCy0.F c�s.x// denote the Lagrangian of (23) (we have omitted
the dependence on x for sake of clarity). By the assumptions of the statement, c? and y? satisfy
(see, e.g., [22])

rcL.c?; y?/ D 0: (33a)

The function L.�; y?/ W Rn ! R is strongly convex on Z , with convexity parameter � as the
positive weighted sum of the strongly convex function V with the convex functions c 7! y0.F c�s/,
i 2 NŒ1;m� [5, Lemma 2.1.4]. This leads to

L.Nc.�/; y?/ > L.c?; y?/C 1
2
�kNc.�/ � c?k2: (34)

Therefore,

kNc.�/ � c?k2 6 2

�
.L.Nc.�/; y?/ � L.c?; y?// 6 2

�
.V.Nc.�// � V

? C y?0.F Nc.�/ � s.x///; (35)

where the second inequality follows from complementarity, that is, .F Nc? � c/0y? D 0. From
[11, Theorems 2, 3, Section VI], we have

��ŒF Nc.�/ � s.x/
C��1 6 2L�2y
�C1

C ı; (36a)

V.Nc.�// � V
? 6 L�2y

2.�C1/
C ı; (36b)

where ı , L	2´ C 2�y	� , and for ´ 2 Rm, .´C/i D max¹´i ; 0º. Plugging (36a), (36b) in (35), we
arrive at

kNc.�/ � c?k 6

s
D2

� C 1
C ı: (37)

Therefore, if D2

�C1
C ı 6 �2, then (31) holds. Rearranging the last inequality, we arrive at (32). �
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Figure 1. Theoretical bound �?
�

on the maximum number of iterations to achieve a target solution accuracy
�, according to (32), for three sample problems of increasing size.

Theorem 2 has shown that Assumption 1 is satisfied as well by the GPD algorithm, and how the
values of �, �?

�
and p are related.

Remark 4
The estimate on the number of iterations (32) depends on �y given by (26). This entails computing
an upper bound on the norm of a dual optimal solution, which is valid for any x 2 DN . Tight uniform
bounds (valid for every x 2 DN ) can be computed using techniques described in [9]. Specifically,
this requires the solution of a linear program with complementarity constraints [9, Theorem 21].
Although linear program with complementarity constraint problems are non-convex, tailored algo-
rithms exist for solving them to global optimality. In embedded MPC, �y can be computed offline,
therefore computational time is not a major issue.

Remark 5
So far, we have assumed that (19) is given, which means that the desired value for � is fixed a priori.
Then, by using Theorem 2, the smallest number of iterations �?

�
is found so that � is smaller or equal

than its desired value, for a fixed p which depends on the available hardware. However, in many
cases, both p and �?

�
could be fixed a priori, and one might want to find the smallest achievable � in

order to define a control action as close as possible to the optimal one. In this case, one would need
to run an iterative procedure as follows. Problem (19) is formulated with � D �0 D 0. Then, by
Theorem 2, the corresponding value of � D �1 is found. It is obvious that �1 > �0, which means
that the constraints imposed in (19) would be violated. Therefore, problem (19) is formulated with
� D �1, and the whole procedure is repeated iteratively. If �iC1 6 �i , then � D �i is the required
value. We would like to remark that extensive simulations have shown that the algorithm terminates
at the second iterate (i.e., �2 6 �1) for most problems.

Figure 1 depicts the computed theoretical bound �?
�

, given by (32), on the maximum number of
iterations required such that a convergence to a varying desired solution accuracy � (considered
between values of 0.3 and 1) is guaranteed. The plots refer to the solutions of three sample prob-
lems of increasing size, with 20, 50, and 80 primal variables and 40, 100, and 160 dual variables,
respectively. The fixed-point parameter p is set to 16.

5. COMPARISON WITH A PREVIOUS APPROACH

As already mentioned in the introduction, the approach proposed in this paper can give advantages
with respect to that proposed in [19] as the prediction horizon N increases. This is because the
shrinked constraint set Zk D Z � QRk , as k increases, tends to Z � QR1, which is non-empty if
Assumption 2 is satisfied. In [19], instead, the shrinking of the constraint set Z at the k-th prediction
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step is defined as

Z	k , .1 � k	/Z D
®
´ 2 Rn´ jF´´ 6 .1 � k	/ 1s´

¯
� Z; (38)

where 	 is the maximal constraint violation, given the obtained MPC control law. By using the tight-
ened constraints (38), the actual constraints given by Z are never violated, and theoretical properties
analogous to those proved in this paper (i.e., recursive feasibility and stability) hold for [19]. Notice,
however, that the size of set Z	

k
decreases linearly as k increases. Therefore, even if the quality of

the solution is rather high (e.g., because the numerical solver can run a large number of iterations),
there exists a finite value of the prediction horizonN for which Z	NC1 D ;, and this is the maximum
prediction horizon that can be employed. Even if the approach of [19] can be less conservative than
the proposed one for relatively small values of N , we can intuitively see that the approach proposed
in this paper can be less conservative for relatively high values of N .

Even though the comparison of the performance of the two methods strongly depends on the
considered process model, in the remainder of this section, we show numerical results in support of
our considerations based on the same system employed in [19], that is,

x.t C 1/ D

�
1:09 0:22

0:49 0:02

�
x.t/C

�
1:22 0:88

�0:78 �0:34

�
u.t/;

and the constraint set Z is given by the following sets of inequalities

2
6664
�0:1969 0:3132

0:1531 �0:3209
�0:1006 �0:1008
0:2089 �0:3352
0:1032 0:0345

3
7775 x 6

2
6664
1

1

1

1

1

3
7775 ;

2
66666664

0:2068 �0:1087
�0:2054 0:1128

0:0329 �0:1573
�0:2014 0:0739

0:2553 �0:2243
0:0145 0:1016

0:1569 �0:0195

3
77777775
u 6

2
66666664

1

1

1

1

1

1

1

3
77777775

Given the state weights, input weights, and terminal weights matrices equal to

QD

�
5:44 5:80

5:80 7:01

�
; RD

�
1:14 0:68

0:68 0:62

�
; P D

�
9:46 6:38

6:38 7:10

�
;

respectively, the resulting linear quadratic (LQR) control action becomes

�.x/ D

�
1:50 0:17

�3:39 �0:48

�
x:

The GPD algorithm runs for �?
�
D 100 iterations, assuming infinite numerical precision (p !

C1/. The latter condition is needed for the comparison, because the approach in [19] did not
take into account the effect of finite numerical precision. According to these parameters, we build
the tightened constraint sets that guarantee recursive feasibility and closed-loop stability, according
to (38) (old approach, for which we obtain 	 D 2:5 � 10�3) and to (16) (new approach, where
� D 2:78 � 10�2 is obtained as described in Remark 5).

Figure 2(a) shows the evolution of the state constraint set for k D 10; 20; 30; 40; 50 prediction
steps. It is clear how, with the old approach, the set shrinks linearly with k. On the other hand, with
the new approach, we observe a rapid convergence to a fixed shrinking (in fact, the sets are almost
indistinguishable from one another). In this particular case, with a fairly good QP solution quality
given by the 100 iterations, the ‘old’ sets are entirely contained in the ‘new’ ones only for N > 40.
For smaller values of N , it can therefore be more convenient to use the approach of [19].

Figure 2(b) shows what happens when the quality of the QP solution is lowered (performing only
�?
�
D 30 iterations). In this case, we obtain � D 8:71�10�2 for the new approach, and 	 D 1:56�10�2

for the old approach: the benefits of switching to the new approach become more evident, because
the ‘old’ sets are entirely contained in the ‘new’ ones already for N > 18. Moreover, using the
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Figure 2. Shrinking of the state constraint set over k D 10; 20; 30; 40; 50 prediction steps for (a) good
solution quality (100 algorithm iterations) and (b) bad solution quality (30 iterations).

old approach, N > 62 makes the feasible set vanish entirely, which makes problem (19) infeasible
by definition.

Remark 6
The new approach bases the constraint set reduction on the set B�, which in turn is proportional
to the component-wise maximal QP solution error (cf. [31]). One might argue that this reduction
can become more and more conservative as the prediction horizon increases, therefore making the
approach unfit for long prediction horizons. It has been observed that this is not the case, because
the solution components with larger errors are generally located in the first prediction steps, where
input and state constraints are more likely to be active.

6. FIELD-PROGRAMMABLE GATE ARRAY IMPLEMENTATION

As a last contribution of this work, we detail an implementation of the fixed-point GPD algorithm
described in [11] on a FPGA device. The theoretical results of the paper at hand are used to guarantee
robustness with respect to finite-precision computations. The possible refinement of the employed
architectures to achieve higher performance in terms of sampling rates is out of the scope of this
paper. However, the reader should be aware that several research groups are currently focused on
these implementation aspects. For instance, in [8, 23], high-performance FPGA implementations are
proposed for MPC controllers, based on the fast gradient method (for input-constrained problems)
and on the alternating direction method of multipliers (for problems with constraints on both inputs
and states). Employing a set of design rules leading to efficient implementation of the mentioned
algorithms, in [8, 23], sampling rates higher than 1 MHz have been achieved, which allows the use
of MPC for processes with very fast dynamics.

6.1. Introduction to field-programmable gate array-based model predictive control

Field-programmable gate arrays are integrated circuits programmable up to the single interconnec-
tions between the logic blocks, and are very popular for embedded digital signal processing (DSP)
applications because of their speed, scalability, and power efficiency. As previously mentioned,
much interest has recently arisen for MPC-on-a-chip architectures based on FPGAs. In addition to
the previously mentioned solvers based on gradient projection or alternating direction method of
multipliers [8, 23], other algorithms have been proposed based on interior points solvers [24] and
active-set solvers [25]. The proposed implementation is supported by the GPD solver running in
fixed-point arithmetic. This number representation approach guarantees fast computation times, low
delays, and limited chip occupancy as demonstrated in detail in [26]. However, one has to pay the
price of reduced numerical precision with the occurrence of round-off errors.
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The main contribution of the proposed implementation is the guarantee of recursive feasibility
and closed-loop stability despite numerical errors due to fixed-point number representation. This is
achieved as follows: (i) the numbers are represented with a 32-bit fixed-point arithmetic with 16 bits
for the fractional part; (ii) for a given number of iterations �?

�
, the results of Theorem 2 are used to

define the corresponding MPC problem (19), such that the QP solution is guaranteed to fall within
the corresponding target solution accuracy; and (iii) the QP problem is implemented in the FPGA,
as described in Section 3, obtaining the aforementioned theoretical results thanks to the results of
Theorem 1.

6.2. GPD algorithm implementation

The FPGA circuit design was performed according to the graphical approach proposed by Xilinx
System Generator for DSP, part of the Xilinx ISE Design Suite v14.7. With these tools, the single-
circuit blocks as multipliers, accumulators, and memories can be placed and connected to each
other in the Simulink environment. The compiler will then automatically generate the corresponding
VHDL or Verilog code for the FPGA platform of choice. In the proposed implementation, the tests
were performed targeting a Xilinx Kintex 7-xc7k480t. This is part of the latest 28-nm Kintex gener-
ation, and comes with 478K logic cells and 1920 DSP slices. We choose to target this device for its
fair balance between low cost, low power consumption, and appropriate performance.

Figure 3 shows the top-level view of the QP solver for a sample problem with 2 primal variables
and 4 dual variables. The two subsystems are the Matrix-Vector Multiplication (MVM) units per-
forming algorithm steps (29a)–(29b). The output of the first MVM are the primal variables. The
accumulator units (blue) multiply the gradient obtained as output of the second MVM by the inverse
of the Lipschitz constant and accumulates the result, obtaining the dual variables vector prior to
the projection step. Finally, the green units composed by the array of project. functions on the
left performs the projection, completing step (29c) of the algorithm. Clock signals are pictured in
dashed lines, and their behavior will be detailed shortly.

Figure 4 shows the inside of one of the MVM units in Figure 3 (the same structure is used for all
MVM blocks). To maximize device compatibility, this block is designed up to the single multipli-
ers/adders/accumulators units, instead of using higher level DSP blocks. This approach requires to
individually place blocks for each variable; to automate this process, we developed scripts to build
MVM units with arbitrarily large number of variables. For the sake of clarity, Figure 4 shows a small
MVM unit that computes c D Ey C e, where E 2 R2�4, y 2 R4, and e, c 2 R2. Computations
are performed in row-wise parallel fashion.

The path of the computed variables is depicted in green and develops as follows: (i) the left
switch selects consecutively the input vector y values; (ii) the current y is split into multiple parallel
paths, and each of them is multiplied by the corresponding value of the E matrix rows, stored in the

Figure 3. Top-level overview. MVM, Matrix-Vector Multiplication.
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Figure 4. Detail of the Matrix-Vector Multiplication unit.

memory blocks (blue); and (iii) the result is then accumulated obtaining the inner products between
the input vector and the matrix rows and added to the corresponding entry of the e vector. The
rows of the E matrix are stored in distributed RAM blocks, meaning that they can be placed by the
compiler anywhere on the chipset. This is a trade-off that minimizes latency at the cost of increased
chip occupancy.

The control logic is depicted in gray. The key element is a counter that directly pilots the input
selection of the input switch. Whenever the counter reaches the input size, another switch is trig-
gered, and the multiplier units start to receive the 0 signal, thus stopping the accumulation on the
output. Moreover, the output of the nand block becomes FALSE, disabling the counter itself.

The MVM clock signal is depicted in black dashed lines and its negate in red dashed lines. While
TRUE, it keeps the adders working. Then, as soon as it turns FALSE: (i) the counter resets to 0 and
is disabled; (ii) the done switch is set to feed 0 to the downstream units; and (iii) the accumulators
reset. As a result, the MVM blackbox behavior works as follows. While the MVM clock is FALSE,
the unit outputs 0. As soon as a FALSE!TRUE event is detected, the unit starts reading input
variables and computing partial results on the output signals. AftermC 5 master FPGA clock ticks,
where m is the length of the input vector y, the matrix–vector products are ready, and the outputs
are kept stable with the final result as long as the MVM clock remains TRUE.

Figure 5 shows the evolution of the two MVM clock signals and the accumulator unit clock signal.
A single-algorithm iteration is completed in a period T of length equal to .n C m C 11/ master
FPGA clock cycles (where n and m are the number of primal and dual variables, respectively) and
evolves as follows: (i) a FALSE!TRUE event is triggered on the first MVM unit, which starts it
computations starting from the y signals of the previous iteration; (ii) after .m C 5/ master clock
cycles (green area), the computation is ready, and a FALSE!TRUE event is triggered on the second
MVM unit (in the meanwhile, the first MVM is kept enabled to feed the correct solution to the
downstream units); and (iii) after .m C 5/ master clock cycles (blue area), all the matrix–vector
computations are executed, and a single TRUE clock tick is fed to the accumulator unit completing
the algorithm iteration.

Remark 7
A key issue when implementing iterative algorithms on a fixed-point architecture is dealing with the
occurrence of overflow errors, which happens when a variable becomes larger than the maximum
representable value. This value is determined by the number of bits for the integer part.
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Figure 5. Clock signals for the Matrix-Vector Multiplication units (CK1, CK2) and for the accumulator unit
(CKa). Shaded sectors mean that computations are in progress.

Table I. Field-programmable gate array simulations.

Size Latency Clock TPI Slice Power
Œvars=const r
 [ns] [MHz] [�s] occupation [W ]

4=8 5.773 173 0.13 1:81% 0.648
˙0:035

8=16 5.773 173 0.2 3:59% 1.102
˙0:035

16=32 5.773 173 0.34 4:77% 8.571
˙0:035

The GPD algorithm chosen for the FPGA simulation is specifically tailored for fixed-point imple-
mentation with precise guidelines to avoid overflow errors detailed in [11, Section VI]. The proposed
implementation follows those guidelines to ensure an algorithm execution without overflows.

6.3. Field-programmable gate array performance

Table I reports the results of timing and power analysis performed for a Xilinx Kintex 7-xc7k480t
chipset. The tests are performed starting from randomly generated QP problems of increasing size.
Table columns report: (i) the number of primal and dual variables for the QP; (ii) the maximum
path latency; (iii) the maximum master clock frequency; (iv) the time needed to complete a single-
algorithm iteration; (v) the percentage of occupied slices; and (vi) the power consumption. Because
of parallelization and pipelining, the maximum path latency is not affected by the problem size,
and the computation time grows only linearly with size in spite of the quadratic complexity of the
matrix–vector operations.

Figure 6 shows the state evolution of a simulated physical system when connected in closed-
loop to the GPD-based predictive controller. The system is composed of three masses connected
by springs and dampers to two actuators placed between them (cf. [27]). The system dynamics
(discretized with sampling time Ts D 0:5 s) evolve as follows:

x.t C 1/ D

2
666664

0:6826 0:1163 0:0229 0:2815 0:0823 0:0147

0:1163 0:7055 0:1163 0:0823 0:2962 0:0823

0:0229 0:1163 0:6826 0:0147 0:0823 0:2815

�0:9614 0:2634 0:1056 0:2019 0:2480 0:0757

0:2634 �0:8558 0:2634 0:2480 0:2776 0:2480

0:1056 0:2634 �0:9614 0:0757 0:2480 0:2019

3
777775 x.t/C

C

2
666664

0:0716 0:0135

�0:0736 0:0736

�0:0135 �0:0716
0:1992 0:0675

�0:2140 0:2140

�0:0675 �0:1992

3
777775u.t/:
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Figure 6. Closed-loop evolutions driven by optimal controller based on CPLEX solver and by the proposed
GPD-based controller.

The states are constrained as jxi .t/j 6 4; i D 1; ::; 6, and the inputs as jui .t/j 6 1; i D 1; 2. By
settingN D 10, the resulting QP problem has 20 and 208 primal and dual variables, respectively. We
compare the closed-loop trajectories for mass displacement when driven by a reference controller
based on the CPLEX solver, with the trajectories driven by two GPD-based controllers, first with
high solution accuracy (letting the algorithm run for 100 iterations) then with low solution accuracy
(algorithm running for 30 iterations). The initial condition is x.0/ D

�
3:5 �1 1 �3 3 0

�0
, where the

first three states are the initial positions and the last three states are the initial velocities. Setting the
FPGA clock to 100 MHz, the solution computation times are 239 �s (high accuracy) and 72 �s (low
accuracy). Results show how the system evolutions with the sub-optimal controllers are remarkably
close to the evolutions with the reference CPLEX controller, even for the 30 iterations case.

7. CONCLUSIONS

The paper has introduced an MPC law for linear systems with polytopic mixed constraints. The
main contributions of the paper are the following:

� The formulation of an alternative problem using a robust MPC approach to take into account
the combined action of external disturbances, of numerical inaccuracies, and of an a priori fixed
number of iterations of the numerical solver has never been proposed in the literature, at least
to the best of the authors’ knowledge. The alternative problem is formulated by extending the
contribution of [20] to systems with mixed constraints.
� The formulation of the bound in (32) is also a novel contribution, allowing one to connect the

approximation error resulting from a specific solver with the degree of uncertainty that it brings
into the system.
� The comparison with [19] shows the improvement that the proposed method can bring with

respect to a state-of-the-art approach in case of long prediction horizons.
� As a last contribution, we demonstrate that a stabilizing MPC based on the GPD algorithm

can be easily implemented on an FPGA and provide detailed guidelines regarding the actual
implementation.
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APPENDIX

A.1. Definitions regarding the asymptotic stability of a set

The following definitions are introduced in order to precisely describe the properties of the closed-
loop system that are proved in Theorem 1. Consider a discrete-time autonomous nonlinear system

x.t C 1/ D '.x.t/; w.t//; (39)

where x 2 Rnx is the state vector, w 2 Rnw is the input vector, defined such that w.t/ 2 W (W
being a compact set including the origin), and '.�/ is a nonlinear function. The following definitions,
adapted from [28], are recalled for the reader’s convenience. Consider two closed RPI sets OX and
X , X � OX � Rnx . Then,

Definition 1 (attractivity)
The set X is attractive for system (39), with domain of attraction OX , if, for all x.0/ 2 OX ,
limt!1 ıh.x.t/;X / D 0.

Definition 2 (local stability)
The set X is locally stable for system (39) if, for all 	 2 R>0, there exists ı 2 R>0 such that, for
each x.0/ satisfying x.0/ 2 X ˚Bı , one has x.t/ 2 X ˚B	 , for all t 2 N>0.

Definition 3 (asymptotic stability)
The set X is asymptotically stable for system (39), with domain of attraction OX , if it is locally stable
and attractive with domain of attraction OX .

A.2. Proof of Theorem 1

Part (1): We will first prove positive invariance of DN for (22), that is, if x 2 DN , then '.x/ 2 DN ,
or, equivalently, SN .'.x// ¤ ; for every x 2 DN and every �.x/ 2 C.x/. Therefore, it is enough
to find a vector Qz 2 SN .'.x// for any x 2 DN , with Nz.x/ 2 Z.x/. Because x 2 DN , then the
optimal solution z? is such that

´?k D

�
x?
k

Kx?
k
C c?

k

�
2 Zk; k 2 NN�1 (40)

and x?N 2 Xf �RN . Instead, for x 2 DN , we will be able to apply Nu0.x/ D Kx C �.x/ 2 C.x/,
which will move the state to '.x/ D A�xCB�.x/ D A�xCBc?0 .x/Cw0, with w0 2W . In order
to determine a feasible solution Qz 2 SN .'.x//, we define the ‘shifted’ control vector

Qc.x/ D
�
Qc0.x/ : : : QcN�2.x/ QcN�1.x/

�
D
�
c?1 .x/ : : : c

?
N�1.x/ 0

�
which defines Qz D

�
Q́ 00 � � � Q́

0
N�1 Qx

0
N

�0
, with Q́k D

�
Qx0
k
K 0 Qx0

k
C Qc0

k

�0
, k 2 NŒ0;N�1�. We prove now

that Qz is a feasible solution for an initial state equal to '.x/. Applying the shifted control vector
Qc.x/, we obtain

Q́k D

�
Qxk

K Qxk C Qck

�
D ´?kC1 C

�
I

K

�
Ak�w0 (41)

From (40) and (41), one has, for k D 0; : : : ; N � 2,

Q́k 2 ZkC1 ˚
�
I

K

�
Ak�W D

�
Z � QRkC1

�
˚

�
I

K

�
Ak�W

D

��
Z � QRk

�
�

�
I

K

�
Ak�W

�
˚

�
I

K

�
Ak�W D



Zk �

�
I

K

�
Ak�W

�
˚

�
I

K

�
Ak�W � Zk :
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Again, by definition of Qc.x/, we have that Q́N�1 D
�
Qx0N�1 .K QxN�1/

0
�0

, and by feasibil-
ity of z?.x/ we know that x?N 2 Xf � AN� W � XN . By recalling Remark 2, we obtain
´?N ,

�
x?0N

�
Kx?N

�0�0
2 ZN . Then, we can proceed as in (42), obtaining

Q́N�1 2 ZN ˚
�
I

K

�
AN�1� W � ZN�1:

Finally, to prove that QxN 2 Xf �RN , we start investigating the properties of QxN�1:

QxN�1 2
�
Xf �RN

�
˚ Ak�W D

h�
Xf �RN�1

�
� Ak�W

i
˚ Ak�W � Xf �RN�1: (42)

Being Xf an RPI set with respect to dynamics (13), we know that, given x 2 Xf , Aj�x˚Rj � Xf ,
or, equivalently, Aj�x 2 Xf � Rj , for all j 2 N>0 (remember that Xf � Rj ¤ ;, because
R1 � Xf ). Therefore, given x 2 Xf � Rj�1, then A�x 2 Xf � Rj , for all j 2 N>1. In
conclusion, QxN�1 2 Xf � RN�1 implies QxN D A� QxN�1 2 Xf � RN . Recursive feasibility is
therefore proved.

Part (ii): From the positive invariance of DN , being �.x.t// 2 C.x.t/// ¤ ;, one has
.x.t/; �.x.t// 2 Z , for all t 2 N>0.

Part (iii): As a first step, we prove that for any initial condition x.0/ 2 DN , x.t/ converges to
Xf in a finite time. In order to do that, we consider the optimal value of the cost function VN .c/,
evaluated at x.t/ and referred to as V ?N .t/ for the sake of readability. At time tC1, the existence of a
new optimal value V ?N .t C 1/ for any realization of w.t/ 2W is guaranteed by recursive feasibility,
but its explicit expression is not available. However, using the standard procedure used also in [20],
we consider the suboptimal value of the cost function, corresponding to the shifted control sequence
Qc.x.t//, that is,

QVN .t C 1/ D

N�1X
kD0

Qc0k‰ Qck D

N�1X
kD1

c?0k ‰c
?
k D V

?
N .t/ � �

0
t‰�t

where �t D c?0 .x.t//. We know that the optimal cost function at any x.tC1/ 2 A�x.t/CB�tCw.t/
will be such that V ?N .tC1/ 6 QVN .tC1/, which implies V ?N .t/�V

?
N .tC1/ > � 0t‰�t > 0. Therefore,®

V ?N .t/
¯

is a non-negative non-increasing sequence, which converges to a finite value V ?N .1/ as
t !1. If we consider the sum of the terms V ?N .t/ � V

?
N .t C 1/, for t D 0; : : : ;1, we obtain

1 > V ?N .0/ � V
?
N .1/ >

1X
tD0

� 0t‰�t > 0

which implies limt!1 �
0
t‰�t D 0, and, by positive definiteness of ‰, limt!1 �t D 0. Consider

now that, at any t 2 N>0, the uncertain term w.t/ is also applied to the system. Recalling that
�.A�/ < 1,

lim
t!1

x.t/ D lim
t!1

"
At�x.0/C

tX
kD1

Ak�1� .B�t�k C w.t� k//

#
D lim
t!1

"
tX

kD1

Ak�1� w.t� k/

#
2 R1:

Recalling Assumption 3, the asymptotic convergence of x.t/ to R1 implies that there exists Nt 2
R>0 such that x.Nt / 2 Xf . Because Xf is a RPI set, by (21), the applied control law coincides with
�.x/ (which in turn, coincides with the optimal control law) and then e.t/ D 0 for all t > Nt . From Nt
on, the system dynamics are therefore

x.t C 1/ D A�x.t/C d.t/ 2 Xf : (43)

As a consequence, the state converges asymptotically to the minimal RPI set for system (43), that
is RD in (15). Together with the finite-time convergence to Xf , this implies that the set RD is
attractive for system (22) with domain of attraction DN , according to Definition 1.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:3292–3310
DOI: 10.1002/rnc



REAL-TIME MPC BASED ON GPD: THEORY AND FIXED-POINT FPGA IMPLEMENTATION 3309

In order to prove local stability, we consider the closed-loop dynamics (43) in Xf and take any
initial condition x.0/ 2 RD ˚Bı . Being RD an RPI set for (43), we have that A�RD ˚D � RD ,
and therefore, iterating the system dynamics

x.t/ 2 RD ˚ A
t
�Bı : (44)

Being �.A�/ < 1, Definition 2 holds for the nominal system (5), the set X being the origin. As
a consequence, for all 	 > 0, there exists ı > 0, such that At�Bı � B	 . By substituting this
inside (44), we conclude that x.t/ 2 RD ˚B	 , meaning that RD is locally stable for system (43),
according to Definition 2, for any 	 such that RD ˚B	 � Xf

In conclusion, Definition 3 holds for system (22), which proves that RD is asymptotically stable
with domain of attraction DN .
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