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SUMMARY

Hybrid Petri nets represent a powerful modeling formalism that offers the possibility of integrating, in a
natural way, continuous and discrete dynamics in a single net model. Usual control approaches for hybrid
nets can be divided into discrete-time and continuous-time approaches. Continuous-time approaches are
usually more precise, but can be computationally prohibitive. Discrete-time approaches are less complex,
but can entail mode-mismatch errors due to fixed time discretization. This work proposes an optimization-
based event-driven control approach that applies on continuous time models and where the control actions
change when discrete events occur. Such an approach is computationally feasible for systems of interest in
practice and avoids mode-mismatch errors. In order to handle modelling errors and exogenous disturbances,
the proposed approach is implemented in a closed-loop strategy based on event-driven model predictive
control. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Petri nets (PNs) represent a widely spread formalism for modeling discrete event systems [1, 2].
Similarly to other formalisms for discrete systems, PNs suffer from the well-known state explosion
problem, that is, the number of states increase exponentially with respect to the size of the system.

An effective approach to avoid the state explosion problem is to approximate the discrete
variables that reach large values by continuous variables. Such variables typically correspond to
raw parts, produced items, capacity of buffers and so on. On the other hand, other variables, such
as shared resources or processing machines, might maintain small values for any potential system
evolution. Hence, they should be kept as discrete. These considerations lead to hybrid PNs [3],
a modeling formalism in which the Petri net structure is the same as in a classical Petri net. In
hybrid nets, the amount of tokens in the subset of continuous places and the firings of the subset of
continuous transitions are real numbers, whereas the amount of tokens in the subset of discrete
places and the firings of the subset of discrete transitions are integer numbers as in classical PNs.

As in timed discrete PNs, several semantics can be associated to the firing of continuous tran-
sitions in timed hybrid PNs. In this paper, we will consider finite-server semantics. Under this
semantics, the firing rate of a continuous transition remains constant as long as no place becomes
empty [4]. When a place becomes empty, the firing rate changes and remains constant again until
another place becomes empty. In this way, the continuous-time evolution of the marking of a
continuous Petri net is piecewise-linear.
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The autonomous behavior of a hybrid Petri net (HPN) can be modified by introducing control
actions on the net transitions. By using a common interpretation where a continuous transition
is seen as a valve through which a liquid flows, the control action on the transition determines
how much such valve is open. On the other hand, control actions on discrete transitions can delay
their firing instant. The introduction of control actions allows one to define control problems in the
framework of HPNs.

In this paper, we propose a framework for optimization-based control of timed HPNs based
on their piecewise linear trajectories. The task of solving control problems for continuous-time
piecewise-linear systems is, in general, a challenging problem [5, 6]. A common approach to
overcome this difficulty is to consider a discrete-time representation of the system [7]. However,
time discretization leads to mode-mismatch errors [8], mode changes that occur during the inter-
sampling, and hence are lost or delayed in the discrete-time representation, leading to possibly large
differences between the discrete-time and continuous-time trajectories. Clearly, the smaller the time
step, the smaller the effects of the mode mismatch are. Unfortunately, in the case of finite horizon
optimal control, reducing the sampling period usually increases the complexity of the problem to
solve [8, 9].

The framework proposed in this paper is event-driven, and hence, by considering mode switches
as included in the events, mode-mismatch is avoided. In such an approach, the control input is
parametrized by a piecewise constant function, where the time-duration of the different step is not
assumed constant. As a consequence, the control signal is given by tuples .v.k/, q.k/, �.k// defin-
ing the integral of the control signal during the application period for continuous transitions, the
application period, and the discrete transitions to be fired at the beginning of period, respectively.
A tuple is produced when an event occurs, that is, for a HPN, when a place becomes empty, when
a discrete transition fires or when a discrete transition becomes enabled or disabled. Given that
the marking evolution is piecewise-linear, the full system trajectory is defined by the sequence of
tuples. Preliminary results of this method for optimal control of continuous PNs were proposed in
[10]. This paper improves such preliminary results by considering hybrid PNs, and further extend-
ing the optimal control framework to a model predictive one, to provide a closed-loop strategy that
corrects external disturbances.

Model predictive control (MPC) [11, 12] is an optimization based receding horizon closed-loop
control strategy, where at each control cycle, a (constrained) finite horizon optimal control problem
is solved, and only the first part of the computed optimal input profile is applied to the system.
However, differently from open-loop optimal control, when fresh information on the system state
becomes available, by measurements or estimation, the optimal sequence is recomputed. In this way,
feedback is taken into account and MPC results to be a closed-loop control strategy.

Because of the improved performance achieved by using optimization algorithms to the capability
of handling multiple inputs, and to the possibility of enforcing constraints, MPC has found several
applications, for instance, in process industry [13], automotive (e.g., [14,15]), aerospace (e.g., [16]),
and supply chains (e.g., [17]). A previous application of MPC to a particular class of discrete-event
systems is found in [18].

Several approaches to control continuous PNs exist in the literature. In [19], an algorithm to
track control of PNs without joins is suggested. The work in [4] develops a method based on a
linear programming problem to obtain optimal modes of operation for hybrid PNs and also pro-
poses efficient techniques for sensitivity analysis on this kind of nets. Classical discrete-time MPC
has been applied to continuous PNs under infinite server semantics in [20, 21]. Here, the focus is
on finite server semantics for which classical MPC requires time discretization that may lead to
mode mismatch errors when places of the net become empty during the intersampling. As such, the
sampling period must be kept small enough to minimize the problems due to such errors, which
however increases the computational complexity of the MPC controller. With respect to previous
approaches, the present paper provides improvements in the class of models considered—hybrid
PNs instead of continuous PNs—and on the controller properties, because the event-driven MPC
does not require time-discretization nor oversampling to avoid mode mismatch problems. In
particular, our approach extends the work in [4] by embedding both continuous and discrete tran-
sitions in the same set of equations using an event-driven formulation, and by proposing an MPC

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
DOI: 10.1002/rnc



EVENT-DRIVEN MODEL PREDICTIVE CONTROL OF TIMED HYBRID PETRI NETS

framework based on this formulation, which allows for closed-loop control capable of compensating
for external disturbances and modeling errors [22].

The rest of the paper is organized as follows. Section 2 introduces hybrid PNs. A technique to
express the behavior of hybrid PNs in an event-driven fashion is discussed in Section 3. Section 4
presents two methods for the event-driven control of continuous PNs. A finite horizon open-loop
optimal control problem is introduced first, then used to implement an MPC strategy. Two case
studies are shown in Section 5. The conclusions are summarized in Section 6.

Notation: R, .R0C, RC/ is the set of (nonnegative, positive) real numbers and N is the set of
natural numbers. For a set S , jSj denotes the cardinality of S . Inequalities between vectors are
intended componentwise, and when a number c is used in the place of a vector, it indicates a vector
where all the components have value c. The transpose of a matrix A is denoted as A0. For a time-
dependent vector x, xŒi �.k/ denotes the value of component i at step k, and x.k/ denotes the whole
vector at step k. The step .k/ will be omitted if clear from the context. For a vector � 2 Rn,
�.hj�/ is the h-steps ahead predicted value starting from time � . Because this paper discusses
event-driven control, the steps start at the occurrence of events, and time duration of the steps is
not constant.

2. HYBRID PETRI NETS

This section introduces the basic concepts related to hybrid PNs. In the following, we assume the
reader is familiar with the basic concepts of Petri nets (PNs), see [1, 2] for an extensive overview.

2.1. Untimed hybrid Petri nets

In contrast to conventional (i.e., discrete) PNs, the arc weights of hybrid PNs are real-valued.

Definition 1 (HPN)
A hybrid Petri net (HPN) is a tuple N D hP ,T , Pre, Posti where

� P is a set of jP j places, and T is a set of jT j transitions.
� Pre W P � T ! R0C and Post W P � T ! R0C are the pre-incidence and post-incidence

functions that specify the arc weights.
� P D Pc [Pd , Pc \Pd D ;, and T D Tc [ Td , Tc \ Td D ;.

The set of places P is partitioned into a set of discrete places, Pd , and a set of continuous places,
Pc . Similarly, the set of transitions T is partitioned into a set of discrete transitions, Td , and a
set of continuous transitions, Tc . Discrete places are graphically represented as circles and contin-
uous places as double circles, and similarly discrete transitions are represented as rectangles and
continuous transitions as double rectangles, see, for instance, the network in Figure 3.

The main difference between HPNs and discrete PNs is in the way the transitions are fired. In
discrete PNs, the transitions are fired a natural number of times. In HPNs, the discrete transitions
are also fired a natural number of times, but the continuous transitions can be fired a real number of
times, which leads to real markings in continuous places.

To ensure the integrality of the marking of discrete places, two conditions are required:

(i) PreŒp, t � 2N and PostŒp, t � 2N for every p 2 Pd and every t 2 Td ;
(ii) PreŒp, t �D PostŒp, t � for every p 2 Pd and every t 2 Tc .

The incidence matrix of the net is C D Post � Pre, C 2 RjP j�jT j and the state of the net is the
marking m 2R0C

jPc j �N jPd j, which evolves dynamically. The marking can be partitioned into its
real and natural components, m D

�
m0c m

0
d

�0
, mc 2 R0C

jPc j, md 2 N jPd j, the marking of continu-
ous places and discrete places, respectively. The preset and postset of a node � 2 P [T are denoted
as �� and ��.
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Definition 2 (HPN system)
An HPN system is a tuple hN ,m0i where

� N is a HPN.
� m0 W P ! R0C assigns to each place p, an initial marking m0Œp�. For every p 2 Pd , it is

required that m0Œp� 2N.

Definition 3 (Enable degree)
Let hN ,m0i be an HPN system. At marking m, the enabling degree of a transition t 2 Td is

enab.t ,m/ D min
p2�t

�
mŒp�

PreŒp, t �

�
, and the enabling degree of a transition t 2 Tc is enab.t ,m/ D

min
p2�t

mŒp�

PreŒp, t �
.

Definition 4 (Firing)
Let hN ,m0i be an HPN system. A transition t 2 T can be fired in any amount ˛ such that
0 6 ˛ 6 enab.t ,m/, where ˛ 2 N if t 2 Td , ˛ 2 R if t 2 Tc . The firing of t in a certain amount ˛
leads to a new marking m0 DmC ˛ �CŒP , t �, where CŒP , t � is the column of the incidence matrix
corresponding to transition t .

Hence, as in discrete PN systems, the state (or fundamental) equation m D m0 C C � � sum-
marizes the marking evolution where � is the firing count vector. Similarly to continuous PNs, in
HPNs, the marking of a continuous place can be seen as an amount of fluid being stored, and the
firing of a continuous transition can be considered as a flow of this fluid going from a set of places
(input places) to another set of places (output places).

As in classical PNs, vectors Y > 0, Y � C D 0 .X > 0, C � X D 0/ represent P-semiflows
or conservative components (T-semiflows or consistent components). A net N is conservative
(consistent) if there exists Y > 0 such that Y � C D 0 (X > 0 such that C � X D 0). A net N
is structurally bounded if there exists Y > 0 such that Y �C 6 0 (notice that this condition can be
checked in polynomial time).

2.2. Timed hybrid Petri nets

For the timing interpretation of continuous transitions, a first order (or deterministic) approximation
of the discrete case [23] is used, hence assuming that the delays associated to the firing of the tran-
sitions are approximated by their mean values. As a result, the marking evolution with respect to
time � is

m.�/Dm.0/CC � �.�/. (1)

where �.�/ is the firing count vector at time � . The instantaneous flow f 2 R0C of a continuous
transition t 2 Tc is defined as the derivative of its firing count vector with respect to time, that is,
f D P� .

Different semantics have been defined for the firing of continuous transitions, the most com-
monly used being infinite server (also called variable speed) [23] and finite server (also called
constant speed) [3] semantics. In this paper, finite server semantics is considered. Under finite server
semantics, every continuous transition, t 2 Tc , of the timed system is associated with a real
parameter �Œt � > 0 that is the maximum flow allowed by t , i.e., f Œt �6 �Œt �.

As for continuous transitions, different time interpretations can be adopted for the firing of
discrete transitions. Here, single server semantics for discrete transitions is considered, and a deter-
ministic delay #Œt � 2 RC is associated to each transition t 2 Td . An enabled discrete transition t
can fire if it has been enabled for at least #Œt � time units. No resolution policy for the conflicting
transitions is specified, letting the exact firing time to be determined by the controller, which aims
to optimize a given objective function. Notice that the firing of a discrete transition might disable
other transitions in conflict.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
DOI: 10.1002/rnc



EVENT-DRIVEN MODEL PREDICTIVE CONTROL OF TIMED HYBRID PETRI NETS

Definition 5 (THPN system)
A timed hybrid Petri net system (THPN system) is a tuple hN ,m0,�,#i where:

� hN ,m0i is an HPN system.
� � W Tc!RC defines the maximum flow allowed by each continuous transition.
� # W Td !RC defines the time delay of each discrete transition.

Intuitively, if a continuous transition is seen as a valve through which a fluid passes, � can be seen
as the maximum flow admitted by the valve. In contrast to [4], we do not impose a lower bound for
the flow of the transitions, thus, 06 f Œt �6 �Œt �.

In THPN, two types of enabling for continuous transitions are considered [4].

Definition 6 (Enabling of continuous transitions)
Let hN ,m0,�i be a THPN system and t 2 Tc . Let m be a marking such that mŒp� > PreŒp, t � for
every p 2 �t \Pd .

� t is strongly enabled at m if mŒp� > 0 for every p 2 �t \Pc .
� t is weakly enabled at m if there exists p 2 �t \Pc such that mŒp�D 0.

A continuous transition is not enabled if there exists p 2 �t \ Pd such that mŒp� < PreŒp, t �.
Notice that in contrast to an untimed HPN, in a THPN, a continuous transition having an empty
input continuous place may be weakly enabled and can fire. This happens when such an input place
receives some input flow that is instantaneously consumed by the transition.

The flow of a transition depends on its enabling state.

Definition 7 (Flow)
Let hN ,m0,�i be a THPN system and t 2 Tc , then

� If t is strongly enabled, then it has maximum flow, that is, f Œt �D �Œt �.
� If t is not enabled, then it has no flow, that is, f Œt �D 0.
� The flow of the weakly enabled transitions must ensure that mŒp�> 0, for all p 2 Pc .

The computation of an admissible flow f is non-trivial when several empty places appear. In [24],
an iterative algorithm is suggested to compute one admissible flow f . In this paper, f is computed
similarly to [4] where the set of admissible flows is characterized by a set of linear inequalities.
Similarly to the firing of discrete transition, the flow of continuous transitions will be determined by
the controller.

Let us consider two of the events that can happen during the evolution of a THPN: (i) a discrete
transition is fired; and (ii) a continuous place becomes empty. Between two consecutive of such
events, no discrete transition is fired, and no continuous place becomes empty. Hence, according
to Definition 7, between such events, the flow of continuous transitions f is constant, and conse-
quently, the trajectory of the marking of the continuous places is linear. The occurrence of an event
can modify the value of f , which will be kept constant until a new event occurs. This way, the
overall trajectory of the marking of the continuous places is piecewise linear.

Example 1
Consider the system in Figure 1. The only input place of t1 is marked, hence t1 is strongly enabled
and f Œt1�D �Œt1�D 2. Given that t2 is always strongly enabled, the evolution of mŒp1� is given by
Pm D �Œt2� � �Œt1� D �1. At time 1, p1 becomes empty, that is, an event occurs, and t1 becomes

weakly enabled. Now, the maximum flow admitted by t1 is 1, because a greater flow would cause
mŒp1� to be negative. Being f Œt1�D 1, p1 remains empty. Now, p1 can be seen as a tube instead of
a deposit, and no more events occur. For arbitrary values of �Œt1� and �Œt2�, when p1 is empty, the
flow of t1 is defined as f Œt1�Dmin.�Œt1�,�Œt2�/.
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Figure 1. Transition t1 becomes weakly enabled at � D 1.

2.3. Control actions

Control actions can be introduced in THPNs to modify the autonomous evolution. In THPNs, the
control affects the transitions.

A discrete transition t 2 Td is controllable when its firing time is a decision variable that can
be selected by an appropriate control strategy. To ensure that the task modeled by the transition is
finished, the firing is not allowed to happen before #Œt � time units have elapsed from the enabling
of t .

A continuous transition t 2 Tc is controllable when its flow f is a decision variable uŒt � such that

06 uŒt �6 �Œt �, (2)

where u 2 Rm is the vector of controls. An action uŒt � on the transition t can be seen as if the
hypothetical valve associated to t was opened by the amount uŒt �. In this paper, it is assumed
that all transitions (discrete and continuous) are controllable. If t is strongly enabled, (2) is the
only constraint that uŒt � must satisfy. However, if t is weakly enabled, uŒt � must be such that the
nonnegativity of the marking is ensured.

Example 2
To show how input actions modify the evolution of a system, we apply the input actions uŒt1�D 1.5
and uŒt2� D 1 to the system in Figure 1. After two time units, p1 becomes empty. Hence, the max-
imum flow allowed by t1 is the input flow coming to p1, which is 1, that is, uŒt1� must satisfy
0 6 uŒt1� 6 1. Let uŒt1� D 0.5, and consequently, p1 will start to fill at a rate of 0.5 tokens per
time unit.

3. EVENT-DRIVEN REPRESENTATION

This section describes how THPNs can be expressed as a particular class of mixed logical dynamical
(MLD) systems, where each step represents the marking evolution between two events of the THPN.
Section 3.1 introduces the event-driven mixed logical dynamical (eMLD) systems, and Section 3.2
shows how the THPN is transformed into an eMLD.

3.1. Event-driven mixed logical dynamical systems

Mixed logical dynamical systems [25] are computationally oriented representations of discrete-time
hybrid systems. MLDs consist of a set of linear equalities and inequalities involving both real and
Boolean .¹0, 1º/ variables. An MLD system is described by the relations
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x.kC 1/D Ax.k/CB1u.k/CB2ı.k/CB3´.k/CB4 (3a)

y.k/D Cx.k/CD1u.k/CD2ı.k/CD3´.k/CD4 (3b)

E1u.k/CE5x.k/6E2ı.k/CE3´.k/CE4, (3c)

where x D
�
x0c x

0
d

�0
2 Rnr � ¹0, 1ºnb is a vector of continuous and binary states, u D

�
u0c u

0
d

�0
2

Rmr � ¹0, 1ºmb are the inputs, y D
�
y0c y

0
d

�0
2Rpr � ¹0, 1ºpb are the outputs, ı 2 ¹0, 1ºrb , ´ 2Rrr

represent auxiliary binary and continuous variables, respectively, and A, C , Bi , Di , i D 1, : : : , 4,
Ei , i D 1, : : : , 5 are matrices of suitable dimensions. Given the current state x.k/ and input u.k/, the
evolution of (3a)–(3c) is determined by solving (3c) for ı.k/ and ´.k/, then updating x.kC 1/ and
y.k/ from (3a) and (3b). It is assumed that the system (3a)–(3c) is well-posed [25], which means
that for any value of x.k/, u.k/ within the range of interest, ı.k/, ´.k/ are uniquely determined
by (3c).

In [26], the authors have proposed an event-driven MLD model (eMLD),

�.kC 1/D �.k/CB1�.k/CB2ı.k/CB3´.k/CB4 (4a)

y.k/D C�.k/CD1u.k/CD2ı.k/CD3´.k/CD4 (4b)

E1�.k/CE5x.k/6E2ı.k/CE3´.k/CE4, (4c)

where �.k/ D Œx.k/0 �.k/�0, q 2 R0C, �.k/ D Œv.k/0 ud .k/0 q.k/�0. In the eMLD (4), the counter
k represents the number of events, the additional state variable �.k/ is the total time elapsed when
the kth event occurs, q.k/ is the time between the kth and the .kC1/th events, and v.k/ is the inte-
gral of the continuous control input between the kth and the .k C 1/th events, where it is assumed
piecewise constant, that is, v.k/ D q.k/uc.t.k/C/. As discussed in [26], in the eMLD system, an
event occurs either when the value of ı changes, because of (4c), or when the input � is changed.

In what follows, we show how to transform THPNs in eMLD form.

3.2. Transforming THPNs to event-driven MLDs

3.2.1. Statements as linear inequalities. Consider the THPN in Figure 1. According to the defined
semantics, the continuous-time marking evolution is described by

if mŒp1� > 0 then PmŒp1�D�1

else PmŒp1�D 0
(5)

Clearly, if the initial marking of p1 is m0Œp1� D 1, after 1 time unit, p1 becomes empty. Such
an evolution can be described appropriately by a discrete-time model, only if the duration of the
sampling period h 2 R satisfies h � k D 1, for some k 2 N. If this is not the case, the marking of
p1 will become at some point negative, and the evolution will block. This phenomenon is named
mode-mismatch error, where the exact instant of the mode switch is lost, because it occurs in the
intersampling. Mode-mismatch is present in most discrete-time models of hybrid systems [9], and
it can be alleviated by imposing a very small sampling period h (oversampling), which however
results in unnecessary computations in the control algorithm.

Indeed, mode mismatch is not present if a continuous time model of the system is used. How-
ever, for continuous time models, the input is an infinite-dimensional decision variable, hence
computational tools, which require finite dimensional decision variables, such as mathematical pro-
gramming, cannot be used. To overcome the mode-mismatch while retaining finite dimensionality of
the input, an event-driven approach, instead of a discrete-time one, shall be used. In an event-driven
approach, the system evolves at events, and the time separation of the events is not constant, but
modelled as a variable, for example, component q.k/ of �.k/ in (4). By including mode switches
in the set of events, the mode-mismatch error is removed.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
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For the marking evolution of the system in Figure 1, we obtain

if mŒp1�.k/ > 0 then mŒp1�.kC 1/DmŒp1�.k/� 1 � q.k/

else mŒp1�.kC 1/D 0.
(6)

Such a conditional statement can be easily included in an eMLD system (4). To construct the
eMLD representation of a THPN, we write the evolution of the system between events k and kC 1.
Recall that the time between these two events (denoted by q.k/) is not constant. The possible events
at kC 1 are as follows:

1. A marked continuous place p 2 Pc at k becomes empty at k C 1. In this case, it is necessary
to recompute the firing flow of continuous transitions to ensure the positiveness of mŒp�;

2. A discrete transition t 2 Td that has been enabled during a time period greater than or equal
to #Œt � is fired;

3. A discrete transition changes its enabling status, that is, it becomes enabled or disabled. In this
case, its associated clock should be started or disabled.

After q.k/ time units, at least one of the previous events must happen. Now, we define the set
of constraints of the eMLD representation of a THPN. The first constraint is the state equation
corresponding to the continuous places

mc.kC 1/Dmc.k/CC � v.k/> 0. (7)

Notice that we used a variable v.k/D q.k/�u.k/ in order to linearize the state equation. Knowing
q.k/ and v.k/, the control action of continuous transitions is immediately obtained. The constraints
on the control action (2) are also translated to the new parametrization of the control actions
by including

06 v.k/6 q.k/ � �, (8)

in the set of constraints. The constraint that all markings must be nonnegative is included in (7).
Obviously, the flow of discrete transition is null, and this can be carried out by adding the following
constraints

vj .k/D 0,8tj 2 Td . (9)

Finally, if a continuous transition tj has a discrete input place pi and mi .k/ is lower than the
weight of the arc .pi , tj /, the flow of tj must be null.

if mi .k/ < PreŒpi , tj � then vj .k/D 0 .8tj 2 Tc , and 8pi 2
�tj ,pi 2 Pd /. (10)

Next we model the three possible events of the THPN.

3.2.2. A continuous place becomes empty. To identify the fact that a continuous place pi 2 Pc that
was marked at k and becomes empty at kC 1, we use a Boolean variable ˇi defined as

mi .k/ > 0 and mi .kC 1/D 0 ” ˇi .k/D 1. (11)

Later, we will make use of this Boolean variables to force the occurrence of at least one event at
the end of each time period.

3.2.3. Firing of a discrete transition. To manage the firing of discrete transitions, we will use a

vector d.k/ 2 RjT
d j
>0 to keep track of the time elapsed from the enabling of discrete transitions.

Obviously, d.0/ D 0. If a transition ti 2 Td becomes enabled at � , it cannot fire before � C #Œti �.
We define a Boolean variable 	i such that 	i .k/D 0 if di .k/ < #Œti �

if di .k/ < #i then 	Œti �.k/D 0. (12)
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Therefore, if 	i D 0, then ti 2 Td will not fire. On the other hand, if di .k/ > #Œti �, we do
not assign any value to 	i , being a decision variable. In this last case, if 	i is assigned to 1, the
corresponding discrete transition will fire. The firing of discrete transitions is described by

m.kC 1/Dm.k/CC � 	.k/> 0, (13)

where 	.k/ is the vector having as elements the values of 	i .k/ for discrete transition and zero com-
ponents for continuous ones. Because the firing of a discrete transition should occur instantaneously,
that is, this firing does not consume time, we introduce the constraint

if 	 0 � 1> 1 then q.k/D 0. (14)

3.2.4. Updating the clocks of discrete transitions. To capture the enabling status of a discrete tran-
sition ti , let us define ˛i .k/ such that ˛i .k/ D 1 if ti .k/ 2 Td is enabled and ˛i .k/ D 0 otherwise.
This can be easily achieved by

m.k/> PreŒ�, ti � ” ˛i .k/D 1. (15)

If a transition is enabled during the time interval from k to k C 1, then its clock is increased by
q.k/. Otherwise, it is set to zero. This is modeled by

if ˛i .k/D 1 and ˛i .kC 1/D 1 then di .kC 1/D di .k/C q.k/

else di .kC 1/D 0.
(16)

Let us define a Boolean variable �i such that �i .k/D 1 if ti .k/ 2 Td changes its enabling status
from k to kC 1

..˛i .k/D 0 and ˛i .kC 1/D 1/ or .˛i .k/D 1 and ˛i .kC 1/D 0//

” �i .k/D 1
(17)

Consequently, to ensure that at least one of these three events occurs at k, the following constraint
is introduced

X
i

ˇi .k/C
X
i

	i .k/C
X
i

�i .k/> 1. (18)

4. EVENT-DRIVEN CONTROL OF TIMED HYBRID PETRI NET SYSTEMS

In this section, we show how optimization-based control can be applied to THPNs via their eMLDs
formulation, and how feedback can be accounted for by an MPC strategy. We first propose a set of
cost functions and constraints that can be used to formulate open-loop finite horizon optimal con-
trol problems for the THPN, which can be solved by standard mixed integer linear programming
(MILP) algorithms. Similarly to formulations of optimal control problems of discrete-time systems
that explicitly specify the final time instant of the period over which the optimization is carried
out, we will explicitly specify the number of events, N , over which the optimization is performed.
Notice that in the proposed event-driven framework, the actual time period elapsed till the i th event
takes place depends on the duration of each time interval, which is not constant. Given that such
durations are variables of the optimization problem, many different constraints can be set on them.
Moreover, as it is shown next, the event-driven approach allows to formulate minimum-time control
problems. At the end of the section, we show how the optimal control problem can be used as the
base for a receding horizon control strategy hence implementing an event-driven MPC algorithm
for the THPN.
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4.1. Event-driven optimal control

The advantages of formulating the THPN as an eMLD system (4) is that the dynamics are expressed
by mixed-integer equalities and inequalities. As a consequence, the dynamics equations can be
included into the mixed integer optimization problem

min
N�.t/

J . N�.t/, N�.t// (19a)

s.t. �.kC 1jt /D A�.kj�/CB1v.k/CB2ı.kj�/CB3´.kj�/CB5 (19b)

E2ı.kj�/CE3´.kj�/6E1�.kj�/CE4�.kj�/CE5 (19c)

H2ı.kj�/CH3´.kj�/6H1�.kj�/CH4�.kj�/CH5 (19d)

�.0jt /D �.t/, k D 1, : : : ,N (19e)

where J in (19a) is the cost function, N�.t/ D ¹�.kj�/ºN
kD0

are the decision variables, N� D

¹ N�.kj�/ºNkD0 is the eMLD state trajectory, (19b) and (19c) define the dynamics, (19d) models addi-
tional constraints, and (19e) defines the initial state used for prediction. Note that once the initial
state is fixed by (19e), the trajectory N�.t/ and the value of the auxiliary variables are assigned
because of the wellposedness of the eMLD.

The decision vector N�.t/ contains the continuous command integral, the corresponding duration,
and the discrete command. From the first and the second ones, the flow commands can be easily
obtained as u.hjt /D v.hjt /=q.hjt /, with application interval .�.hjt /, �.hjt /C q.hjt //.

Because the constraints in (19) are linear with integer and real variables, by choosing the cost
function (19a) to be linear, the resulting problem is a mixed integer linear programming (MILP)
problem. Thus, the complexity of solving an MILP is exponential in the number of Boolean vari-
ables. However, efficient algorithms and software exist [27–30] that allow the application of MILP
even to large scale real industrial systems modeled by PNs [31]. Modern MILP softwares are
capable of solving problems with thousands of variables in few tens or hundreds of seconds. Thus,
although not suitable for systems with fast dynamics (millisecond range), MILP seems suitable for
systems with dynamics in the medium to slow range (seconds, minutes). In particular, in the pro-
posed approach, at each step, there exists the following: (i) one Boolean variable per continuous
place (variables ˇ in (11) to identify that a continuous place becomes empty); (ii) three Boolean
variables per discrete transition (variables 	 in (12) that determine if the transition fires; variables ˛
in (15) to capture the enabling status; and variables � in (17) showing that the enabling status has
changed). Therefore, the number of Boolean variables is N � .jPc j C 3 � jTd j/. Notice that in order
to store the marking of discrete places, it is not necessary to restrict the variables to integer values
in the MILP, because integer values will be automatically forced by the integer firings. Finally, the
computational complexity can be reduced by introducing specific cuts in the optimization problem,
which may reduce the overall performance in favor of faster calculation.

Figure 2 sketches the steps that have been followed to obtain an MILP problem from the initial
THPN. If (19a) is chosen to be a quadratic function, the resulting problem will be a mixed-integer
quadratic problem, which is still solvable, even though computationally more complex [26].

The cost function (19a) and the additional constraints (19d) are used to define the objectives of
the optimization problem, as shown next.

Mixed Integer

Petri net

Mixed Logical

Dynamical model

MODEL
OPTIMAL CONTROL

PROBLEM

Control actions

Horizon

Cost function

Linear Programming

problem

Timed Hybrid

Figure 2. Obtaining an MILP problem from a THPN system.
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4.1.1. Final target marking. To enforce the marking to reach a desired target marking Qm after N
events, a terminal constraint can be added

m.N/D Qm. (20)

The terminal constraint (20) can be softened to preserve feasibility of the optimization problem (19),
hence adding to J in (19a) the term

F.m.N/, �.N //D 
 km.N/� Qmk1 , (21)

where 
 is a large weight. A more general case is to consider a desired marking range, for instance,
a polyhedral set expressed by the constraints MNm.n/6MN , MN 2Rq�jP j, MN 2Rq .

4.1.2. Cost function. For THPN control, the general form of the cost function is

J . N�.t/, N�.t//D F.m.N jt /, �.N jt //C
N�1X
kD0

L.m.kj�/, �.kj�/,�.kj�//. (22)

hence composed of a terminal cost F and a stage cost L, usually in the form

L.m, � ,�/, km� QmkQ1p Ck� � Q�k
Q2
p Ckv � Qvk

R1
p Ckq � Qqk

R2
p (23a)

F.m, �/, km� QmkQNp Ck� � Q�kQ�p , p 2 ¹1,1º. (23b)

where ‘ Q ’ denotes a given reference for the corresponding vector. The following subsections show
some of the possible control goals in an event-driven framework. The use of 1,1-norms allows to
formulate (22) as a linear function, through auxiliary variables and linear constraints [32].

A case of particular interest is minimum-time control, where the minimum time to reach a certain
marking is sought. Thus, together with terminal constraint (20), the stage cost and terminal cost are
respectively set to

L.m.k/, �.k/,�.k//D q.k/, F.m.N/, �.N //D 0. (24)

A different criterion to reach the desired marking Qm is minimum-effort, which minimizes the
intensity of the command input u.�/, hence letting the THPNs evolve as close as possible to
its autonomous behavior. By using the `1-norm of the input signal, we obtain J.m, � , q, v/ DR �N
0 ku.�/kdt D

PN�1
kD0

R �.kC1/
�.k/ ku.�/k1d� . Because u is constant in each period Œ�.k/, �.kC 1/�,

L.m.kj�/, �.kj�/,�.kj�//D kv.kj�/k1, F.m.N jt /, �.N jt //D 0. (25)

A slightly different cost function from (22) can be used to represent the minimum-displacement
criterion. This criterion looks for the trajectory that minimizes the largest deviation from a desired
continuous state trajectory Qm.�/, that we assume piecewise linear and continuous (a special case is
Qm.�/� Qm)

J . N�.t/, N�.t//D max
�2Œ�.0/,�.N/�

km.�/� Qm.�/k1 . (26)

Proposition 1
Let mc.�/, 8� 2 Œ�0, �N �, be the trajectory of continuous states of a THPN system, �0 < �1 <

: : : < �N be the event instants, assume that Qm.�/ is linear over each Œ�i , �iC1�, i D 0, : : : ,N � 1 and
continuous over Œ�0, �N �. Then

max
�2Œ�0,�N �

km.�/� Qm.�/k1 D max
kD0,:::,�N

¹km.kj�/� Qm.kj�/k1º . (27)

Proof
The marking trajectories of a THPN are continuous, so km.�/� Qm.�/k1 is continuous, being
the composition of continuous functions .k � k1, m.�/, Qm.�//, and therefore the maximum over
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Œt0, tN � is well defined. Moreover, function km.�/� Qm.�/k1 is a convex function of time � on
Œ�.k/, �.kC 1/�, being the composition of a convex function (the infinity norm) with linear func-
tions (the state trajectory of the THPN and Qm between two consecutive switches). Thus, it attains its
maximum either at �.k/ or at �.kC 1/. Hence,

max
�2Œ�.0/,�.N/�

km.�/� Qm.�/k1

D max
06k6N�1

²
max

�2Œ�.k/,�.kC1/�
km.t/� Qm.t/k1

³

D max
06k6N�1

¹max ¹km.�.k//� Qm.�.k//k1 , km.�.kC 1//� Qm.�.kC 1//k1ºº

D max
06k6N

¹km.�.k//� Qm.�.k//k1º D max
kD0,:::,�N

¹km.kj�/� Qm.kj�/k1º

�

Note that cost function (27) still leads to a mixed-integer linear formulation of problem (19).

Remark
The cost function (24) searches for the minimum time trajectory from the initial marking to the
desired marking using at most N events. Note in fact that the time to reach the desired marking is
not a multiple of a sampling period (as it is for discrete time control), and that ‘fake’ events, that is,
events with 0 time separation under which the state does not change, can be generated if less than
N are events needed. The search for the optimal N makes the problem nonlinear, but it can be dealt
with by iterative schemes similarly as in the discrete time case [33]. However, the possibility of
‘fake’ events simplifies the search, as for large N , the optimal solution is readily found.

4.2. Event-driven model predictive control

Problem (19) is a finite horizon open-loop optimal control problem, which computes the control
profile u.r/, r 2 Œ� , � C �.N j�/�, such that the constraints are satisfied and the cost is minimized.
However, the control profile proceeds only for a finite number of events, where more events can be
considered only at the price of an increased computational burden for solving (19). Furthermore,
disturbances that occur during the execution of the control profile and possible modelling errors are
not accounted for. Thus, a receding horizon feedback strategy is more advisable for cases where
disturbances are possible. For this reason, we incorporate the optimal control problem (19) in an
event-driven closed-loop strategy based on MPC [11, 12].

The event-driven model predictive control (eMPC) strategy operates as follows:

(1) Let N be the event horizon; at a generic time � , set �.�/D Œm.�/0  .�/0 � 0�0.
(2) Solve problem (19), to obtain the sequence of optimal controls ��.�.�// D Œ��.0j�/, : : : ,

��.N � 1j�/�.

(3) Compute the input levels profile Nu�c .�.�// D
�
u�c .0j�/, : : : ,u

�
c .N � 1j�/

�
D
h
v�.0j�/
q�.0j�/

, : : : ,

v�.N�1j�/
q�.N�1j�/

i
,

(4) Apply u.�/D
�
u�c .0j�/

0 u�
d
.0j�/0

�0
for � 2 Œ� , � C q�.0j�/�.

(5) Set � D � C q�.0j�/, measure the new value of �.�/ and go to Step 2.

The actual statem.�Cq.0j�// at the end of each control action may be different from the predicted
one m.1j�/ because of external disturbances and modelling errors. In fact, also the time instant at
which the optimization problem is repeated may be different from the scheduled instant �Cq.0j�/.
By the closed-loop nature of the eMPC approach, the current state (and time) are measured or
estimated again and a new updated optimal input sequence is computed.

For the nominal case, that is, the trajectory is not perturbed by external disturbances, the
reachability of a desired target marking can be proven.
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Proposition 2
Consider the event-driven MPC scheme applied to a THPN where the cost function is the minimum-
time criterion (24), and where the terminal constraint (20) is applied on the desired target marking
Qm. If the problem is feasible at time �0 with finite cost, then it is recursively feasible and the desired

marking is reached in finite time, that is, m.�/D Qm for � <1.

Proof
The result follows from the convergence of the eMLD scheme proved in [26]. Because at time
�0 problem (19) is feasible with finite cost, due to terminal constraint and minimum-time cri-
terion, the command sequence ��.�0/ brings the marking to the target in finite time J �.�0/.
A time �1 D �0 C q�.0j�0/, a new optimization problem is solved, where the sequence
Œ��.1j�0/, : : : ,�.N j�0/,�.N j�1/� where �.N j�1/ D Œ0 0 0�0 is feasible, and brings the marking
to the target in time J.�1/D J �.�0/� q�.0j�0/. Hence, J �.�1/6 J �.�0/� q�.0j�0/, and by recur-
sive application, J �.�k/C

Pk�1
iD0 q

�.0j�0/ 6 J �.�0/, which means that the time computed at the
first step is always a lower bound for the time to reach the marking. Because J �.�0/ <1, the time
to reach the marking is finite. �

Similar reachability results can be proved for the other criteria, where however the target may be
reached only asymptotically in time, because convergence time is not explicitly accounted for in the
cost function.

5. CASE STUDIES

This section presents two manufacturing systems modeled by hybrid PNs to which an event-driven
MPC approach has been applied. The first system is a multiclass machine, the second one is a
production network.

5.1. Multiclass machine

The HPN in Figure 3 models a production system consisting of two lines and a single machine that
processes the items in both lines. The first (second) line is modeled by transitions t1, t2 .t3, t4/, and
places p1, p3 .p2,p4/, and has a capacity of c1 .c2/ items. The input flows of the first and second
lines are given by the flows of t1 and t3, respectively. Places p1 and p2 are the buffers to store the
incoming parts from t1 and t3 before being processed. The output flow of the first (second) class
is represented by t2 .t4/. The processing machine is modeled by transitions t5, t6, t7, t8 and places
p5, p6, p7, p8. Because the number of items in the lines is expected to be high, the places and
transitions for the lines are continuous. On the other hand, because only one machine is available,
the subnet that models the machine is discrete.

Figure 3. Two production lines and a multiclass machine.
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Table I. Results of event-driven and standard model predictive control
for different prediction horizons.

Event-driven MPC Standard MPC
N vŒt2�C vŒt4� CPU time (s) vŒt2�C vŒt4� CPU time (s)

1 1.070 0.172 1.055 1.449
2 1.090 0.218 1.040 1.881
3 1.361 0.295 1.025 2.779
4 1.538 0.506 1.015 4.203
5 1.850 1.076 0.995 7.602
6 2.012 4.649 1.550 12.927
7 1.853 8.145 1.545 27.851
8 2.041 32.444 1.520 37.290
9 2.007 153.870 1.530 88.106
10 2.033 247.380 1.525 152.860

Let the capacity of the buffers be c1 D 30, c2 D 25, and �Œt1� D 1.5, �Œt2� D 2, �Œt3� D 1,
�Œt4� D 3. It is assumed that the processing machine needs 2 time units to change from one line to
the other. During such 2 time units, none of the lines is processed. This is modeled by a deterministic
delay of 2 units in transitions t6 and t8, that is, #Œt6� D #Œt8� D 2, and by immediate transitions t5
and t7, that is, #Œt5�D #Œt7�D 0. Let the initial marking of the system be m0Œp1�D 5, m0Œp2�D 15
and m0Œp7� D 1. The marking of the remaining places is uniquely defined by these, because the
invariants mŒp1�CmŒp3� D c1, mŒp2�CmŒp4� D c2 and mŒp5�CmŒp6�CmŒp7�CmŒp8� D 1

must hold.
It is required to compute a control law that maximizes the number of items produced over a given

time interval. This is equivalent to maximizing the sum of the integral flows, v, of transitions t2 and
t4. Hence, the cost function associated in (22) is defined by

F.m.N j�/, �.N j�//D 0, L.m.kj�/, t .kj�/,�.kj�//D�.vŒt2�.kj�/C vŒt4�.kj�//. (28)

Table I summarizes the obtained results for the described control problem for different prediction
horizons N . Recall that the prediction horizon refers here to number of events. The control actions
have been obtained by applying the event-driven MPC approach during a maximum time of 200
time units, that is, the constraint �.N j�0/ 6 200 has been added to (19d). To highlight the differ-
ent performances of event-driven and standard MPC approaches, the same Table I also reports the
control results obtained by standard MPC. The sampling time for standard MPC must guarantee
that the time duration of the deterministic transitions t6 and t8 is 2, that is, 2 must be a multiple
of the sampling period. Notice that the shorter the time period, the higher the performance that the
standard MPC can achieve. This is because during the sampling period, discrete transitions cannot
be fired. For the sake of efficiency, the sampling period has been set to 2.

In Table I, column N is the prediction horizon, column vŒt2�C vŒt4� is the average sum of flows,
that is, the sum of integral flows vŒt2� and vŒt4� per time unit, and CPU time is the computational cost
in seconds. All the experiments in this paper have been performed in MATLAB 7.6.0.324(R2008a)
environment running on a MacOS with 2.4 GHz Intel Core Duo and 4 GB of RAM. It can be
seen that for short prediction horizons, the event-driven performs better and its computational cost
is lower. This is due to the fact that the time elapsed between events is variable and events happen
only when necessary. On the other hand, although for very long prediction horizons, the event-driven
approach still performs better, but its computational cost is higher than that of the standard approach.
The reason for this is that the resulting MILP for the event-driven control contains more variables,
for example, the time elapsed between events, and therefore, it scales worse than the MILP for stan-
dard MPC control. However, Table I shows that there is basically no need to go beyond N D 6,
when eMPC still outperforms standard MPC also in terms of CPU time.

For the particular case ofN D 8, the time evolution of the system under event-driven MPC control
is shown in Figure 4. The state of the machine is shown by the line associated to machine: when the
value is 2, the machine is processing line 1, that is, mŒp5�D 1, when the value is 0, it is processing
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Figure 4. Time trajectory of the controlled system in Figure 3 without disturbances.

Table II. Results of event-driven and standard model predictive control
with disturbances for different prediction horizons.

Event-driven MPC Standard MPC
N vŒt2�C vŒt4� CPU time vŒt2�C vŒt4� CPU time

1 1.0333 0.158 1.0312 1.434
2 1.0588 0.205 1.0168 1.905
3 1.3563 0.293 1.0013 2.595
4 1.5145 0.563 0.9909 4.289
5 1.8075 1.379 1.4456 7.620
6 1.8483 3.857 1.4462 13.035
7 1.8972 10.577 1.5467 23.138
8 1.9962 32.679 1.5516 39.037
9 2.0515 179.000 1.5360 69.932
10 2.0189 323.350 1.5325 142.720

line 2, that is,mŒp7�D 1, when the value is 1, it is swapping from one line to the other, that is, either
mŒp6� D 1 or mŒp8� D 1. It can be observed that the machine starts swapping as soon as one of
the buffers becomes empty, that is, for this particular set of parameters, the maximum production is
obtained when the production of both lines is alternated. Note that, as expected for an event-driven
formulation, a step only takes place when an event happens, and thus, in general, the duration of the
steps is variable.

Let us now assume that input flows are subject to external uncontrollable and unknown distur-
bances that can modify the flow up to 10%. More precisely, this means that once the control action
uŒt1�.uŒt3�/ is computed for a given interval, it is modified as uŒt1� C 	 � uŒt1�.uŒt3� C 	 � uŒt3�/,
where 	 is random variable with continuous uniform distribution in the interval Œ�0.1, .1�, before
being applied to the system. Obviously, if the resulting value would produce negative markings, it is
truncated appropriately. Table II shows the performances and CPU time for both eMPC and standard
MPC for several prediction horizons N . The same disturbances have been used in all cases. Simi-
larly to the previous example without disturbances, it can be seen that, in general, eMPC performs
better, but requires more CPU time as N becomes higher.

Figure 5 shows the resulting trajectory of the system under event-driven MPC control withN D 8.
The proposed eMPC strategy reacts to these perturbations by recomputing its control actions at each
step. At the first step (around time instant 12), the marking of place p1 is not as high as it would
be if no perturbation existed. This is why in order to maximize the items produced over the spec-
ified period of time, the controller decides not to swap the machine to line 1 to let buffer of line
1 fill completely. It can be seen that although the trajectory of the disturbed controlled system is
slightly different from the nominal one (Figure 4), the controller manages to fill and empty buffers
appropriately to maximize the performance.
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Figure 5. Time trajectory of the controlled system in Figure 3 with disturbances in flows of t1 and t3.

Figure 6. A production network modeled as a THPN.

5.2. Production network

In this section, we consider the production network system described in [4]. The model of the sys-
tem consists of continuous places and transitions representing buffers and flows of items, and two
discrete places and transitions modeling a single machine (Figure 6). In contrast to the model in
[4], and in order to model the system more realistically, the net in Figure 6 includes complementary
places for every buffer, so that the system is structurally bounded, and models the existing machine
with a discrete subnet. In this model, we assume that the time spent by the machine to swap from
one line to the other is negligible, that is, #Œt7�D #Œt8�D 0.

Let the capacity of the buffers be c1 D 8, c2 D 6, c3 D 4, c4 D 8, c5 D 6, the upper bound of
the transition flows be �Œt1� D 0.5, �Œt2� D 1.5, �Œt3� D 0.6, �Œt4� D 1, �Œt5� D 0.8, �Œt6� D 1.5,
and ˛ D 0.1, ˇ D 0.4. Assume that the initial marking of the system is m0Œp1� D 1, m0Œp2� D 3,
m0Œp3�D 5, m0Œp4�D 2, m0Œp5�D 4 and m0Œp6�D 1.

We first search for the minimum time control sequence to reach the target marking mŒp1� D 3,
mŒp2�D 6,mŒp3�D 4,mŒp4�D 5,mŒp5�D 5, while no target marking is specified for the machine.
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Figure 7. Time trajectory of the controlled system in Figure 6 (a) to reach a target marking; (b) to maximize
the number of items produced by t4.

After adding the constraint for the desired target marking (20), the objective function of the control
problem is set to minimum time criterion

F.m.N j�/, �.N j�//D 0, L.m.kj�/, t .kj�/,�.kj�//D q.kj�/, (29)

where we have set N D 3.
Figure 7(a) shows the time evolution of the system under the obtained control actions. The value

associated to the label ‘machine’ indicates in which place the machine is located: if the value is 1
then the token is in p6, if the value is 0 then the token is in p7. The target marking is reached at the
second step. During the first interval of time, which lasts 8.1 time units, the machine is processing
the items in buffer p1, and in the second time interval, it is processing the items in buffer p4. The
CPU time to compute the control actions was 0.045 s.

We want to maximize the number of items produced during the first 250 time units. The objective
function associated to such control problem is L.m.kj�/, t .kj�/,�.kj�// D �vŒt4�.k/. The trajec-
tory of the system under the computed control actions for a prediction horizon of 3 steps is shown
in Figure 7(b). It can be observed that after the first step, a repetitive pattern develops to minimize
the objective function. In this case, the computation time was 0.621 s.

6. CONCLUSIONS

In this paper, we have introduced an event-driven scheme for controlling THPNs with the
aim of maintaining the performance of continuous-time approaches and the computability of
discrete-time ones. Although the control action is finitely parametrized as in discrete-time models,
hence allowing the application of optimization-based control algorithms by selecting the events
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to include mode switches and constraints activation, the event-driven strategy enforces constraints
and mode switches continuously in time, hence avoiding intersampling constraint violation and
mode-mismatch errors.

By representing the THPN in the proposed event-driven formalism, we have proposed a finite
horizon open-loop optimal control problem that, using different control objectives, optimizes the
dynamic behavior of the net. The problem has been used as the base of an event-driven MPC strategy
that is a closed-loop control strategy and hence able to counteract the effect of external disturbances.

We have evaluated the behavior of the proposed algorithms on two examples obtained from the
literature. One of the main issues to be investigated in the future is the consideration of other firing
semantics, for example, infinite server, both in discrete and continuous transitions.
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