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This paper is focused on the theoretical development and the hardware implementation of low-complexity piecewise-affine
direct virtual sensors for the estimation of unmeasured variables of interest of nonlinear systems. The direct virtual sensor is
designed directly from measured inputs and outputs of the system and does not require a dynamical model. The proposed
approach allows one to design estimators which mitigate the effect of the so-called ‘curse of dimensionality’ of simplicial
piecewise-affine functions, and can be therefore applied to relatively high-order systems, enjoying convergence and optimality
properties. An automatic toolchain is also presented to generate the VHDL code describing the digital circuit implementing
the virtual sensor, starting from the set of measured input and output data. The proposed methodology is applied to generate
an FPGA implementation of the virtual sensor for the estimation of vehicle lateral velocity, using a hardware-in-the-loop
setting.
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1. Introduction

The estimation of unmeasurable variables of a nonlinear
dynamical system is a widely studied problem in con-
trol theory. Whenever possible, a model of the system is
employed to obtain a model-based observer, e.g. extended
Kalman filters, unscented Kalman filters, ensemble Kalman
filters, particle filters, sliding-mode observers and moving
horizon estimators. In many practical applications, how-
ever, a reliable model of the system is not available, and
one usually follows a two-step procedure, obtaining first a
black-box model by system identification techniques, and
then designing a model-based observer. In this way, the
overall performance is usually far from optimal, which sug-
gests the adoption of the so-called filter design from data,
where the observer is directly designed as a function of
past inputs and outputs of the system from a training set of
measured data. In this case, we call the observer a direct
virtual sensor (DVS). This approach has been proposed
in Milanese, Novara, Hsu, and Poolla (2006), and then
further developed and applied in Milanese, Novara, Hsu,
and Poolla (2009), Ruiz, Taragna, and Milanese (2009),
Novara, Fagiano, and Milanese (2013), Novara, Ruiz, and
Milanese (2011), Canale, Fagiano, Ruiz, and Signorile
(2008), Poggi, Rubagotti, Bemporad, and Storace (2012)
and Novara, Ruiz, and Milanese (2013).
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This paper proposes a new DVS setting in which the
estimate of the current unmeasured variable of interest is
obtained as the sum of piecewise-affine simplicial (PWAS)
functions of past inputs, measurable outputs and past es-
timates in a given time window. The main reason for
using PWAS functions is that they can be implemented
very efficiently in digital circuits (e.g. field-programmable
gate arrays, FPGAs (Storace & Poggi, 2011) or applica-
tion specific integrated circuits (ASICs; Di Federico, Poggi,
Julián, & Storace, 2010)). Then, whenever size, power con-
sumption and speed are concerns, this kind of function
becomes more competitive with respect to other classes
of functions, which are more suitable for modelling pur-
poses, but require richer hardware resources (PCs, DSP
boards, etc.) to be implemented. Among the others (see e.g.
Castro, Agamennoni, & Álvarez, 2010), we refer to the ap-
proach of Poggi et al. (2012), in which a single PWAS
function is used for DVS design, as Standard DVS (S-
DVS), whose main drawback is that the complexity of
the filter increases exponentially with the number of in-
puts, measurable outputs, and past data used. This effect,
known as ‘curse of dimensionality’ (Bellman, 1957), pre-
vents the use of the S-DVS for medium-size or large-size
problems.

C⃝ 2013 Taylor & Francis
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In this paper, we present a new formulation, according
to which the estimate is obtained as the sum of lower-
dimensional PWAS functions, which allows the circuit
designer to strongly reduce the effect of the curse of dimen-
sionality with respect to the standard approach. Therefore,
we refer to the new approach as reduced-complexity DVS
(RC-DVS). Also, we allow the use of past values of the
estimated output as further inputs for the DVS, which was
not considered in Poggi et al. (2012). We will show that
the proposed approach leads to theoretical results on min-
imum variance and will outperform an estimator based on
the two-step procedure. The actual digital implementation
of the PWAS DVS is presented and discussed, together with
an automated toolchain – included in the MOBY-DIC Tool-
box for MATLAB1 – implementing the described method,
which allows one to create the VHDL2 description of the
digital circuit directly from the data sets, after tuning the
required parameters. Note that the same toolbox also pro-
vides a toolchain for design, simulation and circuit im-
plementation of embedded control systems, as shown in
Oliveri et al. (2012). Finally, the proposed methodology is
applied to a simulation example (Lorenz system) and to a
case study concerned with the estimation of lateral veloc-
ity in road vehicles. In the latter case, a circuit architec-
ture implementing the DVS is generated with the toolbox
and programmed on an FPGA. Hardware-in-the-loop (HIL)
simulations are performed in Simulink by connecting the
FPGA to a personal computer in order to validate the per-
formance of the RC-DVS under fixed-point representation
of data. A preliminary description of the theoretical de-
velopment proposed in this paper, focusing on the conver-
gence properties of the RC-DVS, is presented in Rubagotti,
Poggi, Bemporad, and Storace (2012).

The paper is organised as follows. Section 2 describes
the design and circuit implementation of the proposed DVS.
Section 3 deals with convergence properties, whereas Sec-
tion 4 introduces the main functionalities of MOBY-DIC
toolbox, related to the virtual sensor design. The simula-
tion example is presented in Section 5, in order to compare
the proposed method with previous approaches, and Sec-
tion 6 describes the automotive case study. Conclusions are
drawn in Section 7.

2. Description of the RC-DVS

2.1 System description

In the following, we provide a concise description of the
main system characteristics, as stated by Milanese et al.
(2009). Consider the nonlinear discrete-time dynamical
system S

S :

⎧
⎨

⎩

x(t + 1) = g(x(t), u(t))
y(t) = hy(x(t))
z(t) = hz(x(t))

, (1)

where the state vector is x ∈ Rnx , the input vector is u ∈
Rnu , the vector of measurable outputs is y ∈ Rny , and t
represents the discrete-time instant. Vector z ∈ Rnz collects
a set of variables to be estimated. We assume that only
during preliminary experiments z(t) can be measured by a
real sensor at time instants t = 0, . . . , T − 1. A portion of
these measurements, from t = 0 to t = Tt − 1, is referred
to as training set and is used to design the virtual sensor,
which will operate without measuring z(t); the remaining
data, from t = Tt to t = T − 1, constitute the validation
set and are used to validate the estimation capabilities of
the DVS. The functions g(·, ·) : Rnx × Rnu → Rnx , hy(·) :
Rnx → Rny and hz(·) : Rnx → Rnz are not known. Without
loss of generality we set nz = 1 (the case nz > 1 can be
managed component-wise by solving nz scalar problems).

The possibility of estimating z(t) is related to the con-
cept of observability. Indeed, as stated in Milanese et al.
(2009), the observability of the system implies that z can
be uniquely determined using a finite number 0 ≤ Mu ≤ nx

of samples of u, a finite number 1 ≤ My ≤ nx of samples
of y, and a finite number 0 ≤ Mz ≤ nx of samples of z. In
particular, if S is observable, there exists a function fz such
that z(t) = fz(U(t), Y(t), Z(t)), with

U (t) ! [ u(t − Mu + 1)′ u(t − Mu + 2)′ · · · u(t)′ ]′

Y (t) ! [ y(t − My + 1)′ y(t − My + 2)′ · · · y(t)′ ]′

Z(t) ! [ z(t − Mz + 1)′ z(t − Mz + 2)′ · · · z(t − 1)′ ]′,

where ′ denotes transposition. Two cases can be distin-
guished:

• if S is fully observable, the function fz can be defined
such that z(t) = fz(U(t), Y(t)), i.e. the past values
of z are not needed, since the whole state x can be
reconstructed from Y(t) and U(t), and z is a static
function of x; this was the case considered in Poggi
et al. (2012);

• if S is partially observable, it is not possible to recon-
struct the whole state vector x, and then past values
of z are needed to reconstruct z(t).

Vector U(t) is empty when the system is autonomous, while
Z(t) is empty when the system is fully observable. In this
paper, it is assumed that (1) is partially observable, i.e. it
is possible to reconstruct the value of z(t) as a function of
a finite number of past values of y, u and z (of course, all
the results of this paper will also hold for fully observable
systems as a particular case).

2.2 General formulation of the RC-DVS

Assuming that systemS is partially observable, the DVS is a
function providing the estimate ẑ(t) of z at time t. We assume
that noisy measurements of y, u and z at past time instants
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are available, ũ(t) = u(t) + ηu(t), ỹ(t) = y(t) + ηy(t) and
z̃(t) = z(t) + ηz(t), where ηu, ηy and ηz are unknown
stochastic variables. For given values Mu, My, Mz ≥ 0, the
inputs of the DVS will be noisy sequences of measurements
of y and u, and a vector of past values of ẑ, namely

Ũ (t) !
[
ũ(t − Mu + 1)′ ũ(t − Mu + 2)′ · · · ũ(t)′

]′

Ỹ (t) !
[
ỹ(t − My + 1)′ ỹ(t − My + 2)′ · · · ỹ(t)′

]′

Ẑ(t) !
[
ẑ(t − Mz)′ ẑ(t − Mz + 1)′ · · · ẑ(t − 1)′

]′

Remark 1: If a model of the system were available, it
would be possible to check the observability, and to an-
alytically determine suitable values for Mu, My and Mz.
However, in practice, a model is not available, and then
observability is simply assumed a priori, and the values of
Mu, My and Mz become tuning parameters.

For the sake of compactness, henceforth the input of the
DVS is referred to as

"(t) ! [ Ũ ′(t) Ỹ ′(t) Ẑ′(t) ]′ ∈ Rnξ ,

where nξ ! Munu + Myny + Mz, and ′ denotes the trans-
position operator.

Assume to split vector " into ν ∈ N subsets "1, "2, . . . ,
"ν , such that all elements of " are included in one and only
one of these subsets. Each subset "j (j = 1, ···, ν) has
dimension equal to nj, such that 1 ≤ nj ≤ nξ and n1 +
n2 + ··· + nν = nξ . The nj elements of each "j are de-
noted as ξj,1, ξj,2, . . . , ξj,nj

. The proposed DVS is referred
to as Vα(w) and is defined through a sum of PWAS func-
tions f

j
α , j = 1, . . . , ν, each being the weighted sum of

Nj PWAS basis functions (the choice of the basis functions
will be discussed in Section 2.3):

ẑ(t) = fα("(t); w) =
ν∑

j=1

f j
α ("j (t); w)

=
ν∑

j=1

Nj∑

k=1

wj,kαj,k("j (t)), (2)

where fα : Rnξ → R (for fixed w), {αj, k} is a basis of
PWAS functions and Nj is the number of basis functions in
each domain "j (see Section 2.3). Also,

w ! [ w1,1 · · · w1,N1 w2,1 · · · w2,N2 · · · wν,1 · · · wν,Nν
]′

with w ∈ Dw ⊂ RNξ , Dw being a compact set and Nξ =∑ν
j=1 Nj . The vector of parameters w (which determines

the shape of fα) is obtained by solving the least-squares

problem

w∗ = arg min
w

{
Tt−1∑

t=M

[z̃(t) − fα("(t); w)]2

}

, (3)

where Tt is the number of measurements in the training set
and M = max (Mu, My, Mz), M ≪ Tt.

Remark 2: As observed above, the past values of ẑ

were not considered in Poggi et al. (2012), where "(t) !
[ Ũ ′(t) Ỹ ′(t) ]′, so the approach was only applicable to fully
observable systems. Also, in Poggi et al. (2012) there was no
partitioning of ", and then the PWAS S-DVS was directly
defined over a single domain of dimension nξ . This might
cause serious implementation problems, since the number
of coefficients in (2) increases exponentially with nξ . Split-
ting the domain into subspaces can lead to huge practical
advantages, as shown in Section 5. At the moment, there
exists no systematic way to determine how to split the vec-
tor " into its different subsets, in order to maximise the
performance. A possibility that has shown good practical
results has consisted in merging in a single subset "j all the
variables that refer to a specific time instant. However, the
results can be strongly system-dependent, and the search
for a systematic procedure to determine the subsets will be
object of future research.

Remark 3: If the DVS starts receiving measurements at
time t = 0, the needed past values of ũ and ỹ will be available
at time tuy ! max (Mu, My). Therefore, if Mz = 0, the DVS
will start providing its output at time tuy. In case Mz > 0,
past values of ẑ would be needed, and then the DVS will be
able to generate its output at time t = M − 1, using an initial
guess for the past values of ẑ. In practical applications, the
initial guess can be related to an a priori knowledge of the
initial condition. For example, when estimating the lateral
velocity of a vehicle (see Section 6), since the DVS starts
working when the engine is turned on, it is reasonable to
assume that the vehicle is not moving, which implies that
the lateral velocity is equal to zero.

2.3 Digital implementation of the RC-DVS

To efficiently implement the RC-DVS (2) on a digital cir-
cuit, we consider a class of continuous and regular PWAS
functions, defined over hyper-rectangular domains

Sj =
{
"j ∈Rnj :ξ

j,i
≤ξj,i≤ ξ̄j,i , j =1, . . . , ν, i=1, . . . , nj

}
.

(4)
Each domain is partitioned into a set of regular simplices
by taking pj, i (i = 1, . . . , nj) uniformly distributed points
along each ξ j, i axis; therefore Nj =

∏nj

i=1 pj,i vertices vj, k,
k = 1, . . . , Nj are obtained. Any PWAS function f

j
α of

this kind can be expressed as a weighted sum of Nj PWAS
basis functions as in (2); different types of continuous basis

D
ow

nl
oa

de
d 

by
 [I

M
T 

In
sti

tu
te

 fo
r A

dv
an

ce
d 

St
ud

ie
s]

, [
A

lb
er

to
 B

em
po

ra
d]

 a
t 0

7:
48

 1
4 

Ju
ne

 2
01

4 



International Journal of Control 625

functions can be defined; we use here the so-called α-basis
(Julián, Desages, & D’Amico, 2000). For the use of other
bases to represent PWAS functions the reader is referred to
Storace, Repetto, and Parodi (2003) and Repetto, Storace,
and Parodi (2003). Each function αj, k("j) in (2) is a PWAS
hyper-pyramid, which takes the value 1 at the vertex vj, k

(i.e. the kth vertex of the j th domain) and 0 at all the other
vertices vj, q, q ̸= k. For details on simplices and PWAS
functions in general, the reader is referred to Poggi et al.
(2012) and the references therein.

Digital architectures implementing PWAS functions
were proposed in Storace and Poggi (2011) and are used
here for the implementation of the PWAS virtual sensor (2).
Essentially, they calculate the value of a PWAS function at
a given point ξ j by interpolating the values of the function
itself at the vertices of the simplex containing ξ j. Other ar-
chitectures were proposed for the implementation of PWAS
functions in Echevarria, Martı́nez, Echanobe, del Campo,
and Tarela (2007) and Rovatti, Fantuzzi, and Simani (2000).

A high-level block scheme of the circuit implementing
the RC-DVS is shown in Figure 1.

At each sampling time t, the values of the system inputs
u(t) and measurable outputs y(t) are loaded into First-In-
First-Out (FIFO) blocks which behave as buffers, storing
the data at current and past time instants (i.e. Ũ (t) and Ỹ (t)).
Once the FIFO blocks are full, the computation of the es-
timated output is performed by the PWAS_i (i = 1, . . . ,
ν) blocks, which are responsible for the evaluation of the ν

PWAS functions. A detailed description of these blocks is

available in Storace and Poggi (2011). Each PWAS_i block
communicates the end of its computation with a ready_i
signal; as soon as all ready_i signals are active, the results
of each function evaluation (fpwas_i) are added up by an
adder block, which provides the estimation of the unmea-
surable output z(t), and a global ready signal is set to logic
value ‘1’ indicating that the result is available. If Mz > 0,
the estimation is brought back to the FIFO_z block and is
used as input for next estimations. An affine scaling of z(t)
(performed by block SCALE_z) is necessary to bring the
value to the correct range needed by circuit inputs.

Two kinds of architectures (serial and parallel) are avail-
able for blocks PWAS_i. If the serial architectures are used,
the overall latency of the virtual sensor circuit is equal to
max {ni} + 7 (i = 1, . . . , ν) clock cycles; otherwise, if the
parallel architectures are chosen, the latency is reduced to
six clock cycles, at the cost of employing

∑ν
i=1 ni + ν + 1

multipliers instead of only ν + 1 for the serial circuit.3

3. Convergence properties of the estimation error

This section presents the main theoretical properties of the
proposed RC-DVS. Consider a standard two-step proce-
dure to obtain a minimum-variance filter K(θ ), estimating
a state-space model of (1) from a set of available measure-
ments, and then designing K(θ ) based on this model. The
filter K(θ ) will be based on the set of parameters θ ∈ Dθ

(Dθ being a compact set), and designed relying on a class of
models M(θ ) of (1). In particular, we consider the model

Figure 1. Block scheme of the circuit implementing the RC-DVS. The inputs of block PWASν are generic since they depend on the
values of Mu, My and Mz. The vertical dotted line masks all connections, which are easily understandable looking at the signal names.
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626 M. Rubagotti et al.

M(θ∗), obtained using a prediction error method from a set
of measured data, and the corresponding filter realisation
K(θ∗), which is assumed to have fading memory. It is pos-
sible to represent the estimate given by K(θ∗) in regression
form as

ẑK(t + 1) = fK("(t); θ∗). (5)

The following theorem describes the properties of the
proposed RC-DVS (2) in comparison with (5).

Theorem 3.1: Let system (1) be partially observable. Con-
sider a minimum-variance filterK(θ∗) in (5), and the virtual
sensor Vα(w∗) in (2), whose parameter vector w∗ is ob-
tained from (3). Let ẑV be the value of the estimate obtained
with a RC-DVS Vα(w∗) in (2). Then, denoting expected val-
ues by E[·], the following results hold with probability 1 as
Tt → ∞:

(i) The vector of parameters defined in (3) guarantees
the minimisation of the variance of the estimation
error among all the virtual sensors with the same
structure, i.e. Vα(w∗) = arg minVα (w) E[(z(t) −
ẑV )2].

(ii) If there exists w such that K(θ∗) = Vα(w) (i.e. it
is possible to express the two-step observer in re-
gression form as a particular realisation of the vir-
tual sensor), one obtains that E[(z(t) − ẑK(t))2] ≥
E[(z(t) − ẑV (t))2], i.e. the performance of the RC-
DVS is better than or equal to that of (5).

(iii) If there exists θo ∈ Dθ such that S = M(θo) (i.e.
there exists a set of parameters of the two-step ob-
server that describes exactly the system), and there
exists a vector w such that K(θo) = Vα(w), then
Vα(w∗) is a minimum-variance filter.

Proof: Analogously to Milanese et al. (2006) and Poggi
et al. (2012), one needs to show that three specific condi-
tions listed in Ljung (1978) hold, which leads to the fulfil-
ment of (i), (ii) and (iii). The first condition (referred to as
‘S3’ in Ljung, 1978) refers to the data set and is satisfied
if we assume that system (1) is partially observable. The
second condition (‘C1’) refers to the choice of vector w

and is fulfilled if the quadratic criterion in (3) is adopted.
The third condition (‘M1’) requires to check if the proposed
DVS retains the following property: there exist two scalars
C > 0 and λ, 0 < λ < 1, such that

(1) the estimate is bounded at the origin, namely

|fα("0(t); w)| ≤ C (6)

for "0(t) ! [ Ũ ′
0(t) Ỹ ′

0(t) Ẑ′
0(t) ] = 0 ∈ Rnξ ;

(2) the virtual sensor (2) has exponential fading
memory

|fα("1(t); w) − fα("2(t); w)|

≤ C

t∑

s=0

λt−s
[
∥ũ1(s) − ũ2(s)∥1

+ ∥ỹ1(s) − ỹ2(s)∥1 + ∥ẑ1(s) − ẑ2(s)∥1
]

(7)

for any "1(t), "2(t);
(3) function fα is differentiable with respect to w for

all w ∈ Dw and the following exponential fading
property is satisfied:

∥∇wfα("1(t); w) − ∇wfα("2(t); w)∥1

≤ C

t∑

s=0

λt−s
[
∥ũ1(s) − ũ2(s)∥1

+ ∥ỹ1(s) − ỹ2(s)∥1 + ∥ẑ1(s) − ẑ2(s)∥1
]

(8)

for any "1(t), "2(t).

In the remainder of the proof we will prove that all three
properties hold. Recalling that 0 ≤ αk(·) ≤ 1 holds for all
k, it yields

|fα("0(t); w)| =

∣∣∣∣∣∣

ν∑

j=1

Nj∑

k=1

wj,kαj,k("j
0(t))

∣∣∣∣∣∣

≤
ν∑

j=1

Nj∑

k=1

|wj,k| ! C1 > 0

which implies the fulfilment of (6).
Consider the left-hand side of (7):

|fα("1(t); w) − fα("2(t); w)|

≤

∣∣∣∣∣∣

ν∑

j=1

Nj∑

k=1

wj,k

(
αj,k

(
"

j
1(t)

)
− αj,k

(
"

j
2(t)

))
∣∣∣∣∣∣

≤
ν∑

j=1

Nj∑

k=1

∣∣∣wj,k

[
αj,k

(
"

j
1(t)

)
− αj,k

(
"

j
2(t)

)]∣∣∣

=
ν∑

j=1

Nj∑

k=1

|wj,k|
∣∣αj,k

(
"

j
1(t)

)
− αj,k

(
"

j
2(t)

)∣∣.

The structure of the α-basis chosen for the design of the vir-
tual sensor implies that each basis function αj, k is Lipschitz
continuous with respect to the input "(t). More precisely,
there exists β > 0 such that

|αj,k("j
1(t)) − αj,k("j

2(t))| ≤ β
∥∥"

j
1(t) − "

j
2(t)

∥∥
1 (9)
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for all (j, k) ∈ (1, . . . , ν × 1, . . . , Nj). Then,

ν∑

j=1

Nj∑

k=1

|wj,k|
∣∣∣αj,k

(
"

j
1(t)

)
− αj,k

(
"

j
2(t)

)∣∣∣

≤ β

ν∑

j=1

Nj∑

k=1

|wj,k|
∥∥"

j
1(t) − "

j
2(t)

∥∥
1

≤ βC1

ν∑

j=1

Nj∑

k=1

∥∥"
j
1(t) − "

j
2(t)

∥∥
1

= βC1

ν∑

j=1

Nj

∥∥"
j
1(t) − "

j
2(t)

∥∥
1

≤ βC1nξ

ν∑

j=1

∥∥"
j
1(t) − "

j
2(t)

∥∥
1

= βC1nξ

∥∥"1(t) − "2(t)
∥∥

1. (10)

Consider the right-hand side of (7), and take any λ, 0 < λ

< 1. Moreover, let C2 > 0 be a constant to be determined.
Recalling that M = max (Mu, My, Mz), it yields

C2

t∑

s=0

λt−s[∥ũ1(s) − ũ2(s)∥1

+∥ỹ1(s) − ỹ2(s)∥1 + ∥ẑ1(s) − ẑ2(s)∥1]

≥ C2

⎛

⎝
t∑

s=t−Mu+1

λt−s ∥ũ1(s) − ũ2(s)∥1

+
t∑

s=t−My+1

λt−s ∥ỹ1(s) − ỹ2(s)∥1

+
t∑

s=t−Mz+1

λt−s ∥ẑ1(s) − ẑ2(s)∥1

⎞

⎠

≥ C2λ
M−1

⎛

⎝
t∑

s=t−Mu+1

∥ũ1(s) − ũ2(s)∥1

+
t∑

s=t−My+1

∥ỹ1(s) − ỹ2(s)∥1 +
t∑

s=t−Mz+1

∥ẑ1(s) − ẑ2(s)∥1

⎞

⎠

= C2λ
M−1 ∥"1(t) − "2(t)∥1 .

If we define C2 ! λ1 − MC1βnξ , we obtain C1βnξ∥"1(t)
− "2(t)∥1 = C2λ

M − 1∥"1(t) − "2(t)∥1, which implies the
fulfilment of (7). Function fα is differentiable with respect

to w, and its gradient is

∇wfα("(t); w) = ∇w

( N1∑

k=1

w1,kα1,k("1(t))

+ · · · +
Nν∑

k=1

w1,kαν,k("ν(t))
)

= [ V ′
α1

("1(t)) V ′
α2

("2(t)) · · · V ′
αν

("ν(t)) ],

where Vαj
("j (t)) =

[
αj,1("j (t))αj,2("j (t)) · · ·αj,Nj

("j (t))
]′

, with j = 1, . . . , ν. Considering the left-hand side
of (8), from (9) we obtain

∥∇wfα("1(t); w) − ∇wfα("2(t); w)∥1

=
ν∑

j=1

Nj∑

k=1

∣∣∣αj,k

(
"

j
1(t)

)
− αj,k

(
"

j
2(t)

)∣∣∣

≤ βnξ ∥"1(t) − "2(t)∥1 = βnξ ∥"1(t) − "2(t)∥1 .

Noting that the right-hand side of (8) coincides with that
of (7), by setting C3 = λ1 − Mβnξ , we obtain βnξ∥"1(t) −
"2(t)∥1 ≤ C3λ

M − 1∥"1(t) − "2(t)∥1, which leads to the
fulfilment of (8). The existence of C1, C2 and C3 implies
that, for any choice of λ, 0 < λ < 1, by choosing C =
max (C1, C2, C3), conditions (6)–(8) are satisfied, which
completes the proof.

Remark 4: The proposed RC-DVS retains all the posi-
tive features of the general DVS framework of Milanese
et al. (2006, 2009). Even assuming of being able to com-
pute K(θ∗) based on a perfect model, the two-step proce-
dure would perform no better than the direct approach. In
the presence of modelling errors, the virtual sensor V(w∗)
would be the minimum-variance estimator among the se-
lected approximating class of filters (although it may be
suboptimal). The listed properties are analogous to those
proven in Poggi et al. (2012), but referred to a wider range
of implementations, since the S-DVS can be seen as a par-
ticular case of the RC-DVS.

4. A MATLAB toolbox for DVS design

We developed a software toolchain in MATLAB that is
able to automatically generate VHDL files for the imple-
mentation of S-DVS or RC-DVS, starting from training
and validation data sets. This tool has been included in the
MOBY-DIC Toolbox.4 The project flow of the toolbox is
shown in Figure 2. First of all, a virtualsensor object must
be created by specifying the number of measurable inputs
(nu) and outputs (ny) of the system:

vs = virtualsensor(nu,ny,vsOpts).

vsOpts is a structure in which sensor specifica-
tions can be set, such as the use of standard or reduced-
complexity approach. Second, the time windows Mu, My
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628 M. Rubagotti et al.

Figure 2. Project flow of MOBY-DIC toolbox for the implementation of PWAS virtual sensors.

and Mz must be specified as well as the number of subdi-
visions per dimensions of the simplicial partitions (i.e. the
vector p containing the values pj, i defined in section 2.3):

vs = vs.setInputTimeWindow(Mu);
vs = vs.setOutputTimeWindow(My);
vs = vs.setAutoregressiveTimeWindow

(Mz);
vs = vs.setNumberOfPartitions(p).

The identification (training) of the sensor starting from a
training data set composed by Tt samples of noisy measure-
ments ũ, ỹ and z̃ (u, y and z in the code) is performed with
method identify:

vs = vs.identify(u,y,z,p).

The validation of the sensor on a validation data set
composed by Tv = T − Tt samples of ũ, ỹ and z̃ (uv, yv
and zv in the code) is carried out by method validate:

[zh err] = vs.validate(uv,yv,zv).

The output variablezh contains the estimated values (ẑ) and
err contains the value of the root mean square estimation
error (RMSEE), defined as

RMSEE(z, ẑ) =

√∑T −1
t=Tt

[z(t) − ẑ(t)]2

Tv

(11)

and the maximum error between real and estimated data. A
plot of these data is also automatically provided.

Once the validation has been performed, method syn-
thesize allows one to generate the VHDL files for the circuit
implementation of the virtual sensor:

vs = vs.synthesize(cirOpts).

cirOpts contains the circuit parameters such as
the chosen kind of architecture (serial or parallel), the
number of bits to code inputs (N_BIT) and coefficients
(N_BIT_COEFF), and the system sampling time. A log
file containing information about circuit latency, number of
multipliers and memory occupation is also generated.

5. Simulation results

Before introducing the case study, we test the performance
of the RC-DVS on a simulation example that permits a
direct comparison with the S-DVS proposed in Poggi et al.
(2012) and the approach of Milanese et al. (2006).

Consider the discrete-time Lorenz system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1(t + 1) = (1 − τ s)x1(t) + τ sx2(t)
x2(t + 1) = (1 − τ )x2(t) − τx1(t)x3(t) + τρx1(t)
x3(t + 1) = (1 − τβ)x3(t) + τx1(t)x2(t)
ỹ1(t) = x1(t)x2(t) + ηy1 (t)
ỹ2(t) = x2

2 (t) + ηy2 (t)
z̃(t) = sin(0.1x3(t)) + ηz(t),

(12)
where τ = 0.01 is the sampling time, s = 10, β = 8/3 and
ρ = 28 are fixed parameters, and ηy1 (t), ηy2 (t) and ηz(t) are
Gaussian processes with zero mean and standard deviations
equal to 0.02, 0.02 and 0.01, respectively. With this set
of parameters, system (12) exhibits a chaotic behaviour.
The S-DVS has already been tested on the same system
in Poggi et al. (2012), and compared with the approach of
Milanese et al. (2006). Simulations were carried out using
the RMSEE calculated over a test set. As a result, the values
of the RMSEE for the two approaches were very close to
each other.

In the following, a RC-DVS and a S-DVS are derived
from a set of Tt = 60,000 samples of z̃(t) and ỹ(t). The
parameters (My, Mz) of the two DVS have been varied in
order to show the differences between the two methods.
Note that the Lorenz system is autonomous (nu = 0), so
that Mu can be ignored.

In order to derive the RC-DVS, ν has been set to ν =
max {My, Mz}, i.e. "(t) is divided into a number of subsets
equal to the number of past samples used by the RC-DVS
itself. As a consequence, the estimate ẑ(t) is given by the
sum of ν PWAS functions. We select a uniform partition
with three subdivisions along each dimension. The remain-
ing parameters used for the virtual sensors are reported in
Table 1. Table 1 also shows the RMSEE, calculated over
Tv = 3000 samples, for RC-DVS and S-DVS.

Table 1. Parameters and simulation results for RC-DVS and S-
DVS applied to Lorenz’s system.

Simulation Method Nξ Mz My RMSEE

A S-DVS 256 0 2 0.201
RC-DVS 32 0 2 0.225

B S-DVS 4096 2 2 0.042
RC-DVS 64 2 2 0.060

C RC-DVS 4096 64 64 0.002
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Figure 3. Time evolution of true data (solid black), S-DVS esti-
mate (dashed grey) and RC-DVS estimate (dotted grey).

Simulation A shows that the RMSEE of S-DVS is lower
than for RC-DVS if the same value of My (i.e. past sam-
ples of the measurable output) is used. Nevertheless, the
complexity in terms of coefficients is higher in the case of
S-DVS (256 instead of 32).

In Simulation B we allowed the RC-DVS and the S-DVS
to use past estimates ẑ(t), i.e. we set Mz = 2. Figure 3 shows
the evolution of the estimation error before converging to
a neighbourhood of the origin, for both the S-DVS and the
RC-DVS virtual sensors. From Table 1, it is apparent that
the performance in case B is better than in case A, at the
cost of a higher complexity for both virtual sensors.

Finally, Simulation C shows the results obtained by in-
creasing the value of My and Mz for the RC-DVS until the
same number of coefficients of the S-DVS of Simulation B
is reached. In this case, the estimation error of the RC-DVS
is much lower than the error obtained with the S-DVS of
Simulation B. Note that in this case it is not possible to
derive a practical realisation of the S-DVS with My = Mz =
64, since the resulting PWAS function would be defined by
more than 10115 coefficients.

This example shows that, in case a high number of
past values is required, the S-DVS becomes impossible to
implement, due to the curse of dimensionality (which is not
the case for the RC-DVS).

6. Case study: estimation of lateral velocity
in road vehicles

6.1 Problem formulation

In order to test the developed algorithm on a significant case
study, we consider the problem of estimating the lateral ve-
locity in road vehicles, a classical problem in the automotive
industry (see e.g. Farrelly & Wellstead, 1996). Our objec-
tive is to estimate the lateral velocity z = vy with input
vector u = [ay r]′ (i.e. lateral acceleration and yaw rate),
and output y = vx (i.e. longitudinal velocity). In Farrelly
and Wellstead (1996), it is shown that, using a simplified
kinematic model of the car, the system is fully observable
when r(t) ̸= 0. Without making use of simplified models,
we use the above-mentioned input and output variables of
the system to design a RC-DVS from data, which will pro-

vide an estimate of the lateral velocity vy as a sum of PWAS
functions of ay, r and vx in a given window of past values.
We use a sampling frequency of 10 Hz for data acquisition,
which is fast enough to describe all the relevant dynamic
behaviours of the vehicle in the given maneuvers (the actual
signals are provided at a frequency of 100 Hz, and subsam-
pled with a factor equal to 10). As shown in Section 6.3,
the latency of the circuit implementing the virtual sensor
is much lower than the used sampling time. Nevertheless,
note that the DVS will be just a component of a more com-
plex system. Thus, such a low estimation latency allows
for an easier design of other components (e.g. controllers
or other signal processing algorithms) whose computation
time would stack together.

In the considered case study, the data set de-
scribes different kinds of maneuvers, provided by Ford
Forschungszentrum Aachen and generated by using an in-
ternally developed high-precision simulator, whose param-
eters are tuned upon a real car. The data set is mainly com-
posed of three types of maneuvers: step steer, sine steer and
lane change, for a total of more than 200 maneuvers. Each
maneuver is characterised by different values of the lateral
acceleration ay, the longitudinal velocity vx, and the yaw
rate r. Over the whole data set, the lateral acceleration ay

ranges from −10 to 10 m/s2, the longitudinal velocity vx

spans the interval from 3 to 41 m/s, and finally the yaw rate
r is in the range from −1.54 to 1.25 rad/s. The lateral ve-
locity vy is ranges from −20 to 20 m/s, while the so-called
sideslip angle αs ! tan −1(vx/vy) ranges from −π /4 to π /4
rad. Note that, if the sideslip angle were always too close
to zero, the nonlinearity in the vehicle dynamics would be
negligible. 143 maneuvers (72%) are used for training the
RC-DVS, and the remaining 57 (28%) are used for valida-
tion purposes.

While designing the RC-DVS, we have nu = 2 (ay and
r) and ny = 1 (vx). After trying different values for Mu, My

and Mz, we decided to set Mu = My = 5, Mz = 1, which
led to a good trade off between performance and memory
occupation. The vectors "j, j = 1, . . . , ν are

"j =
[

ũ(t − j + 1)
ỹ(t − j + 1)

]
, j = 1, 3, 4, 5; "2=

⎡

⎣
ũ(t − 1)
ỹ(t − 1)
ẑ(t − 1)

⎤

⎦ .

Note that the number of elements of each vector "j is nj =
3 for j = 1, 3, 4, 5, and n2 = 4. Finally, we subdivide each
component of each "j into eight segments of equal length
(pj, i = 9, j = 1, . . . , ν, i = 1, . . . , Nj).

Using the described tuning parameters, we obtain a total
of Nv = 8748 vertices. Note that using the S-DVS (i.e.
setting ν = 1 and keeping all the other parameters as they
are) would lead to a number of vertices equal to Nv =
2 × 1015, which would be clearly impossible to implement.

The value of the RMSEE between the estimation ẑ per-
formed with MATLAB in floating point precision and the
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data z in the validation set is equal to 0.0646, which is less
than 0.2% of the interval where the values of vy are defined.

6.2 Circuit implementation

The VHDL files defining the circuit architecture described
in Section 2.3 for the FPGA implementation of the lateral
velocity estimator were generated in an automated way by
using the previously described toolchain. A serial archi-
tecture was chosen, since the sampling time of the system
(100 ms) is quite high if compared to the circuit latency
(see Section 6.3) and therefore the circuit with lowest com-
plexity was preferred. The selection of the best values for
the number of bits to code inputs (N_BIT) and coefficients
(N_BIT_COEFF) was performed by analysing the results
of several simulations, carried out as described below.

A Simulink model was created in which a Xilinx Sys-
tem Generator Black Box block simulates the VHDL files
describing the virtual sensor architecture. This block allows
taking into account the effects of the fixed point represen-
tation and of the circuit delays.

The samples of the measurable system inputs and out-
puts related to all maneuvers in the validation data set
are loaded from the MATLAB workspace, scaled (with an
affine transformation) and provided to the Black Box block,
together with a reset signal, which is activated at the be-
ginning of each maneuver, in order to avoid that different
maneuvers influence each other. The Black Box block es-
timates variable z by simulating the digital circuit, whose
output is scaled back with coefficients α and β and saved
to MATLAB workspace as variable zcir. The estimates pro-
vided by the circuit are compared to the exact measurements
of the validation set (containing Tv elements) and two kinds
of global errors are evaluated, the RMSEE(z, zcir) (see (11))
and the relative error RE(z, zcir), defined as follows:

RE(z, zcir) =
∑T −1

t=Tt
|z(t) − zcir(t)|

∑Tv

t=1 |z(t)|

The target FPGA for the implementation of the DVS is
a Virtex5 XC5VLX50T, which is equipped with 18 × 25
bit multipliers. Therefore, the pairs N_BIT, N_BIT_COEFF
are chosen in order not to exceed the multipliers’ range. We
performed several simulations by varying the number of
bits for representing inputs and coefficients and for each of
them we measured the two aforementioned errors, together
with the resource occupation (number of registers and look-
up tables) of the selected FPGA. A summary of the main
results is shown in Table 2.

It can be noticed that the percentage of used FPGA reg-
isters exhibits negligible variations, while the percentage
of used FPGA LUTs mainly depends on N_BIT_COEFF.
Moreover, the estimation errors are most of all influ-
enced by N_BIT. Since the errors have significant drops

Table 2. Estimation errors and FPGA resources exploitation by
varying the number of bits for inputs and coefficients.

N_BIT N_BIT_COEFF RMSEE RE Regs LUTs

12 25 3.1372 0.9681 3% 76%
14 12 0.9469 0.2679 3% 37%
14 18 0.9353 0.2646 3% 57%
14 25 0.9345 0.2645 3% 78%
16 12 0.2366 0.0674 3% 39%
16 18 0.2364 0.0654 3% 59%
16 25 0.2360 0.0653 4% 80%
18 12 0.1086 0.0250 3% 40%
18 18 0.1118 0.0237 4% 60%
18 25 0.1114 0.0237 4% 82%
20 12 0.1015 0.0183 4% 41%
20 18 0.1049 0.0160 4% 62%
22 12 0.1015 0.0174 4% 44%
22 18 0.1063 0.0150 5% 64%
25 12 0.1054 0.0159 5% 51%
25 18 0.1068 0.0149 5% 66%

until N_BIT = 18 we decided to fix N_BIT = 18 and
N_BIT_COEFF = 12 and to use the obtained circuit archi-
tecture to perform the HIL simulation of the virtual sensor
described next.

So far, to the best of the authors’ knowledge, no auto-
matic procedure for tuning the circuit parameters (N_BIT,
N_BIT_COEFF) or the RC-DVS structure (Mu, My, Mz,
etc.) has been proposed.

6.3 Hardware-in-the-loop simulation

A Digilent Genesys Development Board equipped with a
Xilinx Virtex5 XC5VLX50T FPGA was programmed with
the virtual sensor architecture and connected to a PC via
USB cable. The board is equipped with a 50 MHz clock,
thus allowing to obtain a circuit latency of 220 ns, which is
much lower than the circuit sampling time (100 ms). The
estimated power consumption of the circuit resulted be-
ing of 600 mW. A Simulink model for the HIL simulation
of the virtual sensor was designed. The model is analo-
gous to the one described in Section 6.2, only the Black
Box has been replaced by a block (named Virtex5), which
allows sending inputs to and retrieving outputs from the
FPGA physically connected to the PC. This allows to val-
idate in a very easy way the functioning of the designed
circuit.

In order to test the effect of noise-corrupted data on
our circuit implementation of the RC-DVS, a Gaussian
noise with zero mean and different standard deviations was
summed to the validation data coming from the vehicle sim-
ulator. We call z̃cir the estimation performed by the FPGA
considering this noise and zcir the estimation obtained with
nominal inputs. Figure 4 shows the mean value e and stan-
dard deviation σ e of the error zcir − z̃cir, with respect to
the standard deviation σ n of the Gaussian noise. It can be
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Figure 4. Mean value and standard deviation of the error zcir −
z̃cir by varying the standard deviation of the Gaussian noise.

noticed that the mean value remains almost zero till σ n =
0.06; for higher values of the standard deviations an offset
appears in the estimate.

Figure 5 shows zcir compared to the real data (z) for some
maneuvers taken from the three categories (step steer, sine
steer, lane change). The plots are related to a Gaussian noise
with standard deviation σ n = 0.05 and show that the virtual
sensor has an acceptable degree of robustness with respect
to the noise introduced in the simulation. The local errors
e = z − zcir and ẽ = z − z̃cir on the 57 maneuvers in the
validation set are shown in Figure 6.

Figure 5. Real data values (grey line) and estimation performed
by the FPGA (black thin line) related to step steer (top panel), sine
steer (middle panel) and lane change (bottom panel) maneuvers.

Figure 6. Estimation error related to all maneuvers between the
true data and the values computed by the circuit with (bottom
panel) and without (top panel) added Gaussian noise (with null
mean and standard deviation σ n = 0.05).

7. Conclusions

This paper has described the design, the theoretical proper-
ties and the FPGA implementation of RC-DVSs in PWAS
form. The contribution of this work relies on the following
aspects. First, the proposed approach overcomes the curse of
dimensionality observed in Poggi et al. (2012), and is proved
to be a minimum-variance estimator among all the virtual
sensors with the same structure. Second, the proposed DVS
is proved to be easily implementable on digital devices,
also due to the use of an automated toolchain. Its practi-
cal implementation at very fast rates makes the approach
appealing for industrial applications, mainly when unmea-
surable variables of relatively low-order systems must be
estimated with high sampling frequencies.

Acknowledgements
The authors would like to thank Dr Mohsen Lakehal-Ayat and Dr
Urs Christen from Ford Forschungszentrum Aachen, for providing
guidance, support, and data for the case study.

Funding
This work was partially supported by the European Commission
under project FP7-CNECT-ICT-248858 ‘MOBY-DIC - Model-
based synthesis of digital electronic circuits for embedded control’
(http://www.mobydic-project.eu/) and by the University of Genoa.

Notes
1. The toolbox can be downloaded at http://ncas.dibe.unige.it/
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4. http://ncas.dibe.unige.it/software/MOBY-DIC_Toolbox/
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