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Output-feedback predictive control of constrained linear systems via set-membership state estimation

A. BEMPORAD#}* and A. GARULLI}

This paper combines model predictive control (MPC) and set-membership (SM) state estimation techniques for control-
ling systems subject to hard input and state constraints, Linear systems with unknown but bounded disturbances and
partial state information are considered. The adopted approach guarantees that the constraints are satisfied for all the
states which are compatible with the available information and for all the disturbances within given bounds. Properties of
the proposed MPC-SM algorithm and simulation studies are reported.

1. Introduction

Two features frequently arise in many practical con-
trol problems: the necessity of satisfying input/state con-
straints and the presence of disturbances. The former
are dictated by physical limitations of the actuators
and by the necessity to keep some plant variables within
safe limits; the latter by model inaccuracy and unmea-
sured noise. In recent years, several control techniques
have been developed which are able to handle hard con-
straints (see e.g. Mayne and Polak 1993, Sussmann et
al., 1994). In particular, in the last decades industry has
been attracted by model predictive control (MPC)
(Sanchez 1976, Richalet et al., 1978, Clarke et al. 1987,
Garcia et al. 1989, Mosca 1995, Lee and Cooley 1997,
Qin and Badgewell 1997). MPC is based on the so-called
receding horizon strategy. This consists of determining a
sequence of control inputs that optimizes an open-loop
performance index, according to a prediction of the
future evolution of the system from the current time ¢.
Then, only the first part of the optimal input sequence is
actually applied to the system, until another sequence
based on more recent measurements is newly computed.
The involved prediction depends on the current state,
the (unknown) future disturbances, and the selected
control input. Several strategies, which have been devel-
oped for deterministic frameworks (Keerthi and Gilbert
1988, Mayne and Michalska 1990, Rawlings and Muske
1993, Zheng and Morari 1995) can be applied by
neglecting the presence of state disturbances over the
prediction horizon. However, this does not guarantee
that state related constraints are actually satisfied.

More recently, Gilbert and Kolmanovsky (1995) and
Bemporad and Mosca (1998) have developed computa-
tionally efficient techniques for solving constrained
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problems, by manipulating the reference trajectory
(Bemporad et al. 1997, Bemporad 1998 b). In particular,
Gilbert and Kolmanovsky (1995) guarantee constraint
fulfilment also in the presence of input disturbances.
However, these techniques require full state measure-
ments. When these are not available, it is common prac-
tice to provide the predictor with an estimate generated
by a state observer, e.g. a Kalman filter. Again, no guar-
antee of constraint fulfilment holds, due to a mismatch
between the predicted evolution and the actual behav-
iour of the system.

Several approaches have been recently proposed in
the literature in order to take into account such a mis-
match, i.e. the presence of uncertainties in the model of
the plant to be controlled (see Bemporad and Morari
1999 for a survey). Some schemes assume that the
matrices of the plant can vary within given bounded
sets and the state is fully available (state-space
approach, see Kothare et al. 1996 and references
therein), or suppose that the impulse/step response of
the system lies within given uncertainty ranges (input/
output approach, see Bemporad and Mosca 1998). In
this paper we represent uncertainty and model errors
as unmeasured input and output disturbances affecting
a nominal model of the plant. Roughly speaking, this
kind of modelling is typically used in Kalman filtering,
where input disturbances are related to model uncer-
tainty, and output disturbances to measurement noise.

This paper copes with full state information unavail-
ability in the presence of model errors and measurement
disturbances in a similar fashion. Instead of expressing
their intensity in terms of stochastic properties, we
assume that input disturbances and output noises are
unknown but bounded. As shown in recent literature
on robust control and identification, the description of
uncertainty by additive terms that are known to be
bounded in some norm is a reasonable choice, as it
allows us to cope with both measurement noise and
unmodelled dynamics (see e.g. Milanese and Vicino
1993, Mékild et al. 1995).

We adopt an approach which consists of: (i) consid-
ering the effect of the worst input disturbance sequence
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over the prediction horizon (for this reason, we shall
refer to a ‘worst-case’ approach, by meaning that con-
straint fulfilment is achieved for all possible disturbance
realizations, and hence the worst disturbance realization
is taken into account); (ii) handling state unavailability
by using the so-called set-membership (SM) state estima-
tion. This approach, first introduced by Schweppe
(1968) and Bertsekas and Rhodes (1971), considers the
state uncertainty set, i.e. the set of all state vectors com-
patible with model equations, uncertainty on the initial
state, bounds on the disturbances, and output measure-
ments available up to time ¢. Due to the tremendous
amount of calculations required by the updating of the
true state uncertainty set, many recursive approximation
algorithms based on simple regions in the state space,
e.g. ellipsoids (Schweppe 1968, Bertsekas and Rhodes
1971, Chernousko 1980, Filippova et al. 1994), have
been proposed in the literature. In this paper, we
adopt the minimum volume parallelotopic approxima-
tion developed by Chisci et al. (1996) and Vicino and
Zappa (1996). The resulting set-membership estimation
algorithm is particularly appealing for MPC, as it pre-
sents both good approximation capabilities and reason-
able computational complexity.

The paper is organized as follows. In §2 we formu-
late the worst-case MPC problem and give the basic
assumptions. Section 3 shows how the posed infinite
horizon optimization problem can be solved by consid-
ering only a finite number of constraints, and studies
asymptotic properties of the overall feedback loop.
The computations involved in the optimization algor-
ithm are investigated in §4. Finally, we report simula-
tion results in § 5, and draw some conclusions in §6.

2. Problem formulation and assumptions

By referring to the scenario depicted in figure 1, con-
sider the following linear, discrete-time, time-invariant
system

Predictive Controller

Linear System

A. Bemporad and A. Garulli

Xp(t+ 1) = Apx, (1) + Byuy (1) +&,(2)
y(t) = Cpxp(t) + C(Z)

c(t) = Epxy(t) + Gpu,(1)

(1)

where x,(t) € R" is the state vector and is supposed not
to be directly measurable, u,(f) € R™ is the command
input to the actuators, y(#) € R” the measured output
which should track a desired reference r(z) € R?,
¢(t) € R’ is a vector to be constrained within the convex
polyhedral set
C={ceR:4c<B}, BeR (2
(1) R and ((f) € R’ are respectively unknown
input and output disturbances, and ¢=0,1,....
Typically, £,(#) accounts for unknown signals acting
on the system, model errors and unmodelled dynamics
(e.g. slowly time-varying drifts, mild non-linearities,
etc.), while ((r) is measurement noise on the output y().
For the linear plant (1), we assumed that the linear
low-level controller
xe(14 1) = A1) + By(t) + Fa(t)
R EE
upU) = C(,'xc(t) + Dcy(t) + Kc“(t)

has already been designed without taking care of the
constraints, for instance through standard control tech-
niques such as PID, LQG or H,, control, to provide
stability and noise attenuation properties. By consider-
ing u(f) € R™ as a new input, the overall-closed loop
system can be rewritten as

x(t+1) = Ax(t) + Bu(t) + &(1)
y(r) = Cx(1) + (1)
c(t) = Ex(t) + Gu(t) + L¢(1)

where

6 1)

%0,

u(t)

Y

A

Y

c(tz
»(1)

Figure 1.

Proposed control strategy.
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[Xp(l)} BpDcC([) +§P(t):l
(1) & c®, £() 2 1%
x(1) B.((1)

and the matrices in (4) can be derived by the matrices in
(1)-(3). We assume that the precompensated linear
system (4) satisfies the following.

Assumption 1: A is asymptotically stable.

Assumption 1 means that system (4), i.e. the feed-
back connection of the open-loop system (1) and the
low-level controller (3), is asymptotically stable in the
absence of constraints, and is indeed equivalent to stabi-
lizability of the open-loop linear system (1). On the
other hand, in the presence of constraints, for a certain
set of initial conditions system (1) might not be stabiliz-
able under the selected actuator constraints and
bounded disturbances. As we will discuss later, this
would lead to infeasibility, namely no control sequence
u(t) would be able to satisfy constraints (2), and in par-
ticular those constraints in (2) which come from actua-
tor saturation (after the precompensation (3), the
original input u,(r) becomes a state-dependent vector,
which can be included in ¢(?)).

We assume that both £(¢) and {(¢) are unknown but
bounded, namely

{) €E (5)
ez (6)
Yt > 0, where Z, Z are the hyper-rectangles
EL{feR g <6<, 208 i=1,...,n}

ZA{(eR (<GS, G <0< i=1,,p)

and &, &, ¢, ¢ are given bounds.

The goal of this paper is to investigate a feedback
control law such that the output y(¢) tracks a desired
reference r(¢) € R?, while the vector ¢(¢) fulfils the con-
straint

c(t)yeC (7)

for all possible disturbance realizations £(z) € £ and
¢(¢) € 2. Without loss of generality we can consider

x()
0=
and rewrite (2) as

C— { {z} c R - Aix 4+ Ahu < Bc} (8)

where A2 AE, A*2 4,G, B,2 B, —maxgz A,L(.

Note that this corresponds to setting E = % ,

G= [?] and L =0 in (4). Hereafter, we shall assume

that

Assumption 2: C is bounded.

Note that assuming that C is bounded is not restric-
tive in practice, since usually inputs and states are often
bounded for physical reasons. The following develop-
ments will be meaningful if, in addition, C has a non-
empty interior. Moreover, in order to compute a matrix
pseudo-inversion later in (11), we assume that

Assumption 3: The dc-gain matrix H & C(I — A7'B
has full rank, rank H = min{m, p}.

According to the above setting, at a generic time ¢
the available information on the state vector x(f) is
given by the model equation (4), the bounds on the
input disturbances (5) and output noise (6), and the
observed measurements y(k), k=0, 1,...,7 Let us
denote by X*(11|t,) the state uncertainty set of all state
vectors x(¢,) at time ¢;, compatible with the dynamic
equations (4), the bounds (5)-(6), and the measurements
{3(0),(1),...,»(ty)} available at time #,. If the a priori
information set X*(0| — 1) is a bounded polytope con-
taining the initial state x(0), then the state uncertainty
sets evolve according to the recursion

X4ty = &% (dle = 1) () A5(0)
X+ 1) =A4x"(t) @ {Bu(t)} ® 2
where
Xy() ={xeR": y(1) — Cx € Z}

is the set of states compatible with the single measure-
ment y(¢), and & denotes the vector sum of sets. It is
clear that the complexity of the polytopes X*(¢|t) and
X*(t+ 1]f) (i.e. the number of faces) grows with 7, and
therefore it is common practice to approximate these
sets by simpler regions, the so-called set-valued estimates
X(t|t) and X (¢t + 1|t) respectively.

Here below, we base the MPC law on the set-valued
estimate X(¢|t—1). In this way, the input at time ¢ is
computed on the basis of the available information up
to time ¢ — 1, so that the required computations can be
performed over one full sample interval.

2.1. MPC-SM controller

As mentioned in the introduction, MPC consists of
minimizing at each time ¢ a performance index, which
depends on the future evolution of the system, with
respect to the sequence of future moves. Then, only
the first move of the optimal sequence is applied, and
the whole optimization is repeated at next time ¢+ 1. In
order to use efficient optimization procedures, typically
the sequence of future moves is parameterized by a finite
number of variables, so that the optimization is per-
formed in a finite dimensional space. We adopt the strat-
egy proposed by Rawlings and Muske (1993) by limiting
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to N, the number of control degrees of freedom, and by
defining the future control moves {u(t),u(t+1),...} as

~ wk) ifk=0,...,N,~1
“(’+k)“{v(N,,—1) ifk=N, N,+1,... &

Consequently, the optimization vector is
(N, — 1)

y A : € RM,m

v(0)

In order to define an optimization problem which is
based on the predicted evolution of the system, we
denote by c¢(z+k,x,V,K;) the constrained vector at
time ¢ + k, evolved from x(f) = x € X(¢#|¢ — 1) by apply-
ing the input sequence u(t + k) = v(k), Yk > 0, and dis-
turbance K € 5, where

Eit+k-1)

[I]

L.—ak 2 Fx =X C R

As optimization will be performed on line, we need to
select a performance index J(2,V) so that the minimiza-
tion of J(¢,V) with respect to V is computationally
viable and provides good tracking properties, A reason-
able choice is to select the index

N,-2
V)= Z [[v(k) - (N, — l)HzTJ

k=0
+ v, -1 - B5 @R, (10)
where N, > 1 (the first sum in (10) is considered 0 for
N,=1)

H'H)'H ifm<;
H#é{( ) P (11)

H'(HHY™ ifm>p
and T;, T, >0 are symmetric weight matrices,
{[v|54£v'Yv. This choice is motivated by the two-fold
objective of minimizing both the steady-state tracking
error and the control energy. Since by (9), w(N, — 1)
represents the final constant input on the prediction hor-
izon, T, penalizes the predicted steady-state tracking
error, while Y, penalizes the deviations of the first
N,—1 control moves from the steady-state input
¥(N, = 1). Note that if m = p, by Assumption 2 there
exists H , and therefore ||v( 1) H¥#r(t )||~1~2
”HV—*T" T3 where T (H‘I) T2H—

At each time ¢, the selection of the optimal vector V,
proceeds as follows. Denote by Q(¢) the set of all vectors
V leading to feasible evolutions of the constrained vector

Q) ={VeRM™ :c(t+k,x,V,K) €,
Vx € X(t|t—1),YK € 5, Vk >0} (12)
If Q(¢) is non-empty, define
V= argl}élél(lt) J(1,V) (13)

Then, by denoting by V! the extension of the previous
optimal vector V,_y, i.e.

[vi_i(N, = 1) [Vt (N, = 1)
V1(N, — 2) Vit (Ny = 1)
Vi = V= v =2) | (14
v (1)
L va(0) L vi(l)
we set

_ Vi i@ #@ and J( V) < I,V = €(h)
V=14 .} /
V, otherwise
(15)
where ¢(¢) & min{p,J(t,V}),p,), and p,, p, are fixed
arbitrarily small positive scalars. Then, according to
the receding horizon strategy described above, we set

u(t) = v,(0) (16)
The entire procedure is then repeated at time ¢ + 1.

Finally, in order to complete the above scheme, we
make the following hypothesis on (0] — 1).

Assumption 4: For the a priori information set
X(0| — 1) there exists a finite input sequence V_; such

that V' | € Q(0).

As mentioned above, stabilization of an unstable
system with saturating actuators might not be possible
for a given a priori information set X(0| —1). In this
case, Assumption 4 would be violated, i.e. no feasible
solution to the optimization problem (13) would exist at
t=0. In other words, the problem of stabilizing an
unstable system with state and input constraints has
been converted to a feasibility problem.

A brief summary of the MPC-SM algorithm is
reported in table 1.

3. Constraint reduction and asymptotic properties

The optimization problem (13) involves an infinite
number of linear constraints. However, in order to
solve (13) via standard tools for Quadratic
Programming, a finite number of constraints is desir-
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Table 1. MPC-SM algorithm.

1. Solve the optimization problem (13).

2. If (13) is feasible and J(1, V}) < J(t,V}) — €(t), setV, = VL.
Otherwise, set V, = V! as in (14).

3. Extract from V, the first control move v;(0).

4. Apply u(t) = v,(0).

5. Compute X(t+ 1|¢) as described in table 2.

6. tet+4+1

7 Goto l.

able. Next Proposition 1 shows that such a finite number
exists, provided that an extra linear constraint on V is
added.

Proposition 1:  There exist an index k, > N, and § > 0
such that, if 'V satisfies

(451 — 4)7'B+ AN, - 1)< B, 81 (17)
1=11,...,1], then

et +k,x,V,K) €C, VxeX(ift—1),

VK, €y, Yk=0,...,k, =1V e Q)

(18)

Proof: Without loss of generality set 7=0. Let
k> N,, x € X(0| - 1), V € Q(0) such that (17) is satis-
fied, and c(h,x,V,Ks) €C, Vh=0,...,N,. Consider
the state at time k

x(k, x, V, 1) = A" x(Ny, x,V, Ky, )
k-N~1
+ { Y, A’B] y(N, = 1)
i~0
k=N~1
+ Y Aele-1-1)  (19)
i=0
where
A;x(Ny, x,V,Ky,) + Aev(N, — 1) < B,
By Assumption 2, there exist constants Az and A¢ such
that
los 8 lesat V]3|

Let M > 0 and 0 < X < 1 such that
| 4¥fl o0 MXE (20)

where || 4[|, denotes the co-induced matrix norm, and
let

k-N,~1

N2 max | Y 45AE0) [l (21)
E(i)es P

Since 0 € &, by considering the case £(k+ 1) =0, one
can easily see that N;.; > Ny. Hence, by (20) there exists

Ny 2 lim N < o0 (22)

k—ro0

Since

k—N,—1 '
AN (N, 0V, Ky) + D A'BY(N, - 1)

i=0

—(I - A" By(N, - 1)

k=N~ o0
= A"Mx(N,x, VKy) + | D A —ZA’} Byv(N, - 1)
i=0 i=0

= 4N [x(N,,x,V,Ky,) = (I = 4)7'By(N, = 1)]
from (19) it follows that
142 be(e, %, V, 1) = (T = A) ™ Bo(N, = Do
<430 MNM(AFH ([T = A)7 Bllog A) + No < 6

(23)
for
62 Ny + 65 (24)
k>k*
= Nv + logA ©

M || 4]0 (A3 +(T = A) 7' Bllow Af)
(25)

where ¢; > 0is a chosen (small) number, and [r] denotes
the minimum integer greater than r. Hence, by (17) and

(23)
A?JC(k, X, vv ]Ck) + A?V(k)

= A¥x(k, x,V,K¢) — (I — A By(N, - 1)]
+AXI - A BU(N, — 1) + AN, = 1)
< A¥x(k, x,V, Ky) — (I ~ A)"' By(N, — 1)]
1
+B,—8|1| < B,
1

or equivalently

{x(k, x,V,Kg)

W(k) ] eC, Vk >k
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Then, there exist integers k, < k* such that (18) is satis-
fied. [l

Remark 1: Constraint (17) imposes that the predicted
steady-state constrained vector, corresponding to the
constant input level v(N, — 1) and £(¢) =0, lies inside
C by at least a fixed distance away from the border.
Because of Assumption 1 and since the disturbances
¢(¢) are bounded, when £(¢) # 0 after a finite time the
c-trajectory will remain within a finite set. The idea is
to select § large enough so that this set lies inside C.
Then, it is clear that once the c-vector has entered this
set, checking the fulfilment of the constraints is no
longer necessary. In other words, there is an upper-
bound to the number of possible active constraints. It
is clear that Ny, and consequently 6, might be large
numbers. This mostly depends on the eigenvalues of A
and the magnitude of Z. For instance, if 4 is nilpotent,
the sum in (21) is only affected by the last n disturb-
ance inputs &(k— N, —n), ..., §(k—N,—1). On the
other hand, if 4 has eigenvalues close to the unit
circle, there is an accumulation of the uncertainty
which might lead to a very conservative value Ny, and
hence to large §. We point out that simulation tests
have shown that usually the constraints
c(t+kx,V,K)eC, VxeX(ft—1),

V}Ck EEka Vk'——"O,...,kO

are more stringent than the constraint (17).
Unfortunately, a worst-case approach inescapably
leads the set of admissible input moves to shrink, this
reduction being above all proportional to the intensity
of the process disturbance £. In the following we will
assume that = is small enough, so that the set defined
by the inequality (17), with § as in (24), is non-empty,
and hence feasible solutions V exist.

Remark 2: The bound k* in (25) is usually overesti-
mated. This means that the minimum k, such that (18)
holds will be in general much smaller than k*. Such a
minimum k, can be either estimated heuristically from
the time-domain response of the system (4), or com-
puted exactly as suggested in (Bemporad 1998a).

The next proposition describes the asymptotical be-
haviour of the overall control scheme.

Proposition 2: Consider system (4) and a sequence of
approximated state uncertainty sets {X (1|t —1)}70y. Let
rt)y=r, YVt 2 1, > 0. Then, the control strategy (13)-
(16), based on the optimization of the performance index
(10) in the presence of constraints (12) and (17), guaran-
tees that My, oo u(t) = @i, where ii is a constant, and as

t—

x(t) = Xa(@)) & {x e R": x= (I — 4) "' B

£ k) (k) € )
k=0

Proof: Let L(t) = J(1,V,), with V, as in (15). Then, by
(10), L(¢) is a monotonically decreasing non-negative
sequence

Lit—1)=L()>L(-1) =TV

2] ves(0) = vy (N, = 1) 320 (26)
and converges as t — co. Moreover
tim [ v (0) = v (N, = 1) flr, =0 (27)
Let
t. & sup{t: J(t,V)) <J(L, V) —e(t)}  (28)

t>1,
If ¢, < 400, then by (15)
V=V,  Vi>t,
and therefore
u(t) =v(0) = v, (N, - 1), Vi>t+N,-1

Conversely, assume that ¢, = 400, and define a sub-
sequence {1 }ey such that J(t, Vi) < J(t, Vi,) — e(te).
By (15)

L(ty~ 1) = L(t) 2]v;p-1(0) = vyt (N, = D)7, +e(t) >0

Since L(#) converges as k — oo, and by (27), it results

. . 1
-l—lbl:lkloo E(fk) = k!-lrrfoo le(zk, Vtk) = 0. Then,
‘C(Zk) = J(tk’vtk) < J(t/CJV}k) - 6(tk) — 0

and, being £(z) monotonic, it follows lim £(#) =0, or
equivalently oo

k

lim V, = [v)...v]'

where v, £ H*r. In particular, lim u(f) = v,.
=00

Assume for the moment that after a finite time
€(1)=0. In this case, system (4) is converging input
converging-state stable (Sontag 1995). In fact, let
%(f) & x(t) — (I — )" Bit, i(t) £ u(t) — @ and consider
the system X(1 + 1) = 4%(z) + Bi(t). By Assumption 1,
there exist constants A < 1,k; > 0,k, > 0 such that

2O Fr AT [|5(t0) || +eag (10)

where g(fy) = max,, |[#(f)]|. Clearly, g(t)—0 as
fp —o0o. Let a>0, and define £ such that
kog(ty) < /2, Viy>1t, and # >t such that
k1>\t~h H.??(to)”é a/Z,Vz > 1. Then, [|5c(t)||§ a, V2t
This proves that lim,_, x(¢) = (I — A)” Bi. By super-
imposing the effect of non-zero £(), it follows that x(f)
converges to the set X'z (it). Notice that, when @ = v, and
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m>p,y(1) converges to the set {yeR’:y=
(o Deeg CATE(K), E(k) € B, C € 2} =

Remark 3: Even though Proposition 2 guarantees the
convergence of the state to a set whose magnitude de-
pends on E, the desired set-point C(I — 4)™' By, is ap-
proached in steady-state only when z, = oo in (28).
The verification of this condition is influenced by the
constraints and the disturbance bounds = and Z. In
fact, because of the adopted worst-case approach, too
stringent constraints and/or too large = and Z might
prevent the control input u(f) to reach the desired
value v,. In this case, the cost function (10) tends to
pull u(z) towards the safe level which is closest to v,.
The relation between f.,v, (N, — 1), r and the sets Z,
Z, and C clearly depends on the convergence proper-
ties of the adopted set-valued observer, whose analysis
goes beyond the aims of this paper.

4. Constrained optimization algorithm

In this section, we derive the solution of the con-
strained optimization problem posed in § 2. The control
algorithm must perform two main tasks:

(1) update the approximated state uncertainty set
X(t)t - 1);
(2) perform the constrained optimization (13), (17).

4.1. Set-valued observer X(t]t — 1)

The existence of a command input sequence which is
able to guarantee the fulfilment of actual constraints (7),
clearly depends on the quality of the approximation of
the state uncertainty set. In fact, if the approximated
state set X(¢|r — 1) is too large, an input sequence that
achieves constraints fulfilment for every x € X(¢f]t — 1)

might not exist. Conversely, when X(ft— 1) is too
small, it might happen that the actual state vector
x(#) & X(|t - 1), and hence feasibility cannot be guaran-
teed. It is easy to see that the control strategy (13)—(16)
guarantees that c(f)eC, Vi>0, if and only if
X(tlt=1) 2 X*(tr = 1), ¥¢>0. Hence, the approxi-
mated set must overbound the true uncertainty set and
this bound should be as tight as possible.

In this paper, we will consider parallelotopes (Vicino
and Zappa 1996) as approximating regions for the state
uncertainty sets.

Definition 1: Let a non-singular matrix T € R™" and
a vector X € R" be given. Then

P(T,%)={x:x =%+ To,| o)< 1}

defines a parallelotope in R", with centre £ and edges
parallel to the column vectors of T.

Recently, a recursive algorithm for the outer approx-
imation of the uncertainty state set of a linear system
through parallelotopic regions has been proposed by
Chisci et al. (1996). At a generic time, ¢, the following
two steps are performed

o measurement update: given the parallelotope
X(t]t—=1) = P(t — 1), compute a paralielotope P
outbounding P(z — 1) N A%(1);

e time update: compute a parallelotope P(f) out-
bounding AP & {Bu(f)} ® = and set X(t+ 1]t) =
P(1).

The iterations above are initialized by setting X(0| — 1)
equal to the given @ priori information set X*(0] — 1).
The recursive approximation is computed according to a
minimum volume criterion. A brief summary of the
algorithm is reported in table 2; more details can be
found in Chisci et al. (1996).

Table 2. Recursive algorithm for computing the parallelotopic approximation of the state uncertainty set.

Initialization: Find a parallelotope P(0] — 1) such that x*(0] — 1) € P(0| - 1).

Recursion: For t=0,1,...

o Set Py(t|t) = P(i|t - 1).
e Forj=0,1,...,p,

Compute the minimum volume parallelotope P;(#]f) such that P, () N {x € R": 7 < y;(1) = Cx < G} S Pi1)),

where C; denotes the jth row of C.
e Set 'P()(t + ].‘ f) = Pp(t'l).

e Forj=0,1,...,m,

Compute the minimum volume parallelotope P;(¢ + 1) such that
AP (t+ 1) & {Bu()} @ {x e R": & < x <&} S Pyt +1)0).

o Set P(t+ 1)t) = P, (t + 1]1).
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4.2. Computation of optimization matrices

In order to solve the optimization problem, we need
to express the cost function (10), the set (z) in (12), and
the additional constraint (17) in terms of the optimiza-
tion vector V. By letting

(N =DY+7T, | =Ty - =T
v -1y T
=T Ty
the cost (10) can be rewritten as
J(,V) = VWY = 2 (H* Y[, 0 - (]
X V+r' () H* 0, H#1(5) (29)

By (8), the fulfilment of the constraints ¢(z +k, x, V,
Ki) €C, for every x € X(tjt — 1) and K, € B, over a
finite horizon k =0, ...,%,, can be expressed as

Aix(t+ k%, V, K) + Agv(k) < B,
Vxe X(tt—-1),
where

x(t+kx,V,K) = A%+ RMY + B, (31)

VK €5 Vk=0,...,k, (30)

and
R.=[B AB A1)
Rliz [Il‘l A Ak"l]
( [Oinkxz71(Nv—k) [mk] ifk <N,
1y,
My = 4 0m(k-N\,)xm(N,,—-l) .
ifk>N,
Ly,
\ L ]mN,, i

According to (31), after some algebraic manipulations,
(30) can be rewritten as

A x+ AV + ALK, <B, BeR!

Vxe X(tt~1), VK €8, (32)

where h=g(k,+1), and A* € R™" A" e R
AS € R0 gre suitably defined matrices.

Next Lemma 1, whose proof is straightforward,
shows how to express (32) as a set of linear inequalities
on the optimization vector V.

Lemma 1: Les

V={veR:Py<P}, P eR™ PeR'

be bounded and non-empty. Denote by [P]i the ith row of
P and by
max,cp[P]'y

max Py &
veV ' I
max,cy [P

Then, the following sets
D={weR": Pyv+Pw< Ps,¥y eV}

P e [kav’ P4 € Rlcxw’ PS € Rk
and
D= {w eR": Pyw< Ps— max&v}
VeV
are equal.

The above lemma proves that V' satisfies the con-
straints (32) if and only if
AV<B~ max A'x— max AK, (33)
xeX(ie-1) Ky, €5, ’
Note that the second term in the RHS of (33) depends
on the current approximated state uncertainty set
X(t|t — 1), and hence provides feedback from new out-
put measurements. Finally, the additional constraint
(17) can be rewritten as

I -4)" 0 OV<B. -6 (34

4.3. Computational complexity analysis

Let us analyse the computational burden of the con-
trol strategy outlined above.

The complexity of the parallelotopic state observer
described in §4.1 has been proved to be polynomial in
the state dimension n. In particular, Chisci et al. (1996)
have shown that the computation of the minimum vol-
ume parallelotope containing respectively the intersec-
tion of a parallelotope and a strip (measurement update)
and the sum of a parallelotope and a segment (time
update), both require O(1*) computations. As a result,
the computational complexity of a single step of the
parallelotopic approximation algorithm turns out to be
O(max(n’, n*p, n*m)), which is comparable to that of the
classical Kalman filter.

Turning to the optimization required by MPC, one
has to minimize the positive definite quadratic cost (29),
under the linear constraints (33)—(34), as shown in §4.2.
This is a convex quadratic programming (QP) problem
that can be efficiently solved by standard algorithms,
once the two maximizations in (33) have been per-
formed. Notice that the third term in the RHS of (33)




Output-feedback control of constrained linear systems 663

does not depend on the system evolution and can be
computed off-line through linear programming (LP).
Therefore, at each time instant ¢ one has to solve one
convex N,-dimensional QP and ¢(k, + 1) LPs.

Summing up, the overall computational complexity
of the proposed control strategy is suitable for on-line
implementation. The quality of set approximation in
SM state estimation and the length of the control hor-
izon N, (which determines the complexity of the quad-
ratic program associated to MPC) are tuning
parameters that can be selected by the control designer
according to the available computer power.

5. Simulation results
The proposed control strategy has been investigated

by simulations on the following second-order discrete
time SISO system

x(i+1) = {1'6;’63 0'3866%(0 + mu(r) +£(d)
() =1[0.1404 0O]x(z) + ((2)
(i) =[-19313 22121]x()

(35)

whose y- and c-step responses are depicted in figure 2
(dashed lines). The transfer function from the input u to
the constrained variable ¢ is underdamped and non-
minimum phase.

In order to compress the dynamics of ¢ within the
range.

C=[-1,3]

and make the output y track the constant reference
r(t) = 1, we adopt the control law (10)~(17) along with

constrained vector ¢(t)

0 5 10 15 20 25 30 35 40

time steps (7)
output y(z) and reference r(z)

input u(t)

—

e SN ea s
g~ ’

).5

0 i H i I
0 10 20 30 40 0 10 20 30 40

time steps (#) time steps (£)
Figure 2. Closed loop behaviour (thick lines) and uncon-
strained response (dashed lines) for r(f) = 1.

the parameters Ty = 1, T, = 0.1, N, =2, py, p, = 1075,
Figure 2 shows the resulting trajectories (solid lines)
when system (35) is affected by independent randomly
generated disturbances || £(7) || < 0.01 and |{(7)| < 0.05,
for the a priori information set X(0|—1)=
0.25-[-1,1] x [-1,1]. Notice that the constraints are
fulfilled at the price of a slower output response. The
quantity N, in (22) has been calculated by setting

LY a4
*4' &
dpy A

and then

Ny =

i laai] e £ ~0.2706
|am| @il o '

i=0

where €2 max. ,{max{|¢|,|&|} =0.01. Then, if
we set e =0.01, the value &6=0.2806 satisfies
Proposition 1. By setting Ai=10, Af=2,
M =5.1107, and A =0.9032, from (25) it results
k* = 81. On the other hand, as noticed in Remark 2,
constraint horizons k, which are smaller than the con-
servative upper-bound k* are usually sufficient. In fact,
in this example no difference has been noted in simula-
tions for constraints horizon greter than k, = 16 (see
Remark 2).

Figure 3 shows the evolution of the parallelotopic
state uncertainty sets A(#|¢), and figure 4 reports
X(t)t), X(t|t — 1) during the in initial steps t =0, 1, 2.

In figure S the effect of different bounds on the input
disturbance is investigated. Due to the adopted worst-
case approach, as the size of the disturbance increases,
the constraints are fulfilled in a more conservative way
and the output dynamics gets slower.

State uncertainty sets X(¢lt)

10

_2 | i Il 1 i
-2 0 2 4 6 8 10

Xy
Figure 3. Evolution of the state uncertainty sets X'(z|¢).
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State uncertainty sets

O XD
0.4}
X(tlt)
-0.6
08 | i
-0.5 0 0.5 1

X
Figure 4. State uncertaiﬁty sets X(t|t), X(f]t - 1), for
1=0,1,2.

constrained vector ¢(t)

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 3 s 40
time steps (f)
Figure 5. Effect of different input disturbance intensities: no
disturbance and known initial state x(0) (thin line);
I 602) llo 0.01(]) ¢(1) < 0.05)  (thick line);
| €00 o< 0.04(] ¢(1) [l 0.05) (dashed line).

6. Conclusions

In this paper we have combined model predictive
control and set-membership state estimation to enforce
fulfilment of hard input and state constraints when only
output measurements are available. The proposed
approach is robust in that for the worst situation com-
patible with the available information, constraint fulfil-
ment is guaranteed, and asymptotic stability properties
of the system are preserved.

We believe that this may be a first step in a very
promising research area. The use of set-membership
techniques in estimation problems has been studied for

quite a long time and efficient algorithms are now avail-
able. On the other hand, model predictive control is
becoming more and more popular in complex industrial
applications. However, robustness issues in MPC still
need a deeper investigation and different techniques to
deal with model uncertainties, disturbances and meas-
urement noise must be analysed. In this paper, we have
chosen the bounded-error paradigm which appears to be
realistic in several situations of interest, as it allows to
account for input and output disturbances and bounded
model errors.

Encouraged by the promising simulation results,
future research will concern reduction of conservative-
ness and improvement of performance in the overall
control strategy. In particular, the proposed MPC-SM
algorithm can be improved (i) by using different poly-
topic state uncertainty sets than parallelotopes, (i) by
selecting a cost function which depends on the current
state vector, even though this might lead to solve non-
convex minmax optimization problems, and (iii) by
using closed-loop prediction schemes (Lee and Yu,
1997, Bemporad 1998 a). For the former problem, one
may think of extending the techniques recently devel-
oped in Chisci et al. (1998) for parametric identification
to state estimation, which allow one to trade off the
complexity of the approximating region with the
required computational burden. The effect of excessive
conservativeness discussed above and shown in figure 5
might be partially mitigated by adopting closed-loop
prediction schemes (Lee and Yu, 1997, Bemporad
1998 b), rather than the open-loop prediction approach
of this paper.

Finally, significant results might come by coupling
set-membership state estimation techniques with the
multiparametric solution of the MPC optimization
problem recently developed in Bemporad et al. (1999),
where the authors provide an off-line algorithm to deter-
mine the explicit form of the control law as a piecewise
affine function of the state.
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