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Mechatronic systems such as those arising in automotive applications are characterized by
significant non-linearities, tight performance specifications as well as by state and input
constraints which need to be enforced during system operation. This paper takes a view

that model predictive control (MPC) and hybrid models can be an attractive and systematic
methodology to handle these challenging control problems, even when the underlying process
is not hybrid. In addition, the piecewise affine (PWA) explicit form of MPC solutions avoids
on-line optimization and can make this approach computationally viable even in situations

with rather constrained computational resources. To illustrate the MPC design procedure
and the underlying issues, we focus on a specific non-linear process example of a mass
spring damper system actuated by an electromagnet. Such a system is one of the most

common elements of mechatronic systems in automotive systems, with fuel injectors represent-
ing a concrete example. We first consider a linear MPC design for the mechanical part of
the system. The approach accounts for all the constraints in the system but one, which is

subsequently enforced via a state-dependent saturation element. Second, a hybrid MPC
approach for the mechanical subsystem is analysed that can handle all the constraints
by design and achieves better performance, at the price of a higher complexity of the control-

ler. Finally, a hybrid MPC design that also takes into account the electrical dynamics of the
system is considered.

1. Introduction

During the last few years the major advances in automo-

tive applications have been enabled by ‘‘smart’’ electro-

nic devices that monitor and control the mechanical

components. Cars have become complex systems in

which electronic and mechanical subsystems are tightly

connected and interact to achieve optimal performance.

Automotive actuators, in particular, have become

mechatronic systems (Barron and Powers 1996, Hrovat

et al. 2000, Guzzella and Sciarretta 2005) in which

mechanical components coexist with electronics and

computing devices. These mechatronic automotive sys-

tems are characterized by tight operating requirements

(such as high precision robustness, low power consump-

tion, fast transition time), significant non-linearities, as

well as input and state constraints which need to be

enforced during system operation. On the other hand,

their dynamics may often be characterized by relatively

low-dimensional dynamical models.
Model predictive control (MPC) (Maciejowski 2002,

Qin and Badgwell 2003, Camacho and Bordons 2004)

is a systematic feedback control design technique

which determines the control input via receding horizon

optimal control based on an open-loop model of

the process, called prediction model. The prediction

model is a compromise between simplicity and represen-

tativeness of the physics of the process. In particular,

complex non-linear systems can be approximated by

linear and piecewise linear models whose associated

optimal control problem can be solved by relatively*Corresponding author. Email: bemporad@dii.unisi.it
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simple numerical procedures. The main appeal of MPC
is in being able to enforce pointwise-in-time constraints,
while providing the control designer with direct capabil-
ity to shape the transient response by adjusting the
weights in the objective function being minimized.
MPC controllers can handle continuous-valued and
discrete-valued control inputs, accommodate system
parameter changes or subsystem faults, as long as they
are reflected in the model used for on-line optimization.
Automotive actuators can often be adequately charac-

terized by low dimensional models, and in this case an
explicit implementation of the MPC controller becomes
possible (Giorgetti et al. 2006a, b), whereby the solution
is pre-computed off-line and its representation is stored
for on-line application. The on-line optimization is not
required and the computational effort can be reduced
to the point where the implementation of these control
algorithms becomes feasible within the stringent
memory and chronometric constraints of automotive
microcontrollers.
In this paper we discuss and illustrate an application

of MPC-based control design to a magnetically actuated
mass-spring-damper system. Such a system consists of a
mechanical mass-spring-damper subsystem forced by an
electromagnetic subsystem, and it arises very frequently
in automotive actuation mechanisms, including fuel
injectors (Dyntar and Guzzella 2004) (see also Miller
et al. (2000), Kolmanovsky and Gilbert (2001) and
Isermann (2005) and the references therein). The main
control goal is to make the mass position track a given
external reference while minimizing the intensity of the
control action. The latter tends to lead to a reduction
of the energy consumption by the system. Moreover
many different constraints must be enforced on both
the electromagnetic and the mechanical subsystems. In
particular, it is assumed that the electromagnet can
only attract but not repel the mass, that the mass is
moving within a constrained region, that the mass velo-
city is bounded, and that the control input is limited.
The force from the coil decays with the square of the

distance between the mass and the coil, and is propor-
tional to the square of the electrical current, so that
the system is nonlinear and it would require a nonlinear
MPC design. By designing an inner-loop controller for
the electrical subsystem so that the resulting closed-
loop dynamics are sufficiently fast, the overall system
is viewed as a constrained second-order linear system
(with position and velocity of the moving mass as
states) controlled by the magnetic force from the coil.
The paper is organized as follows. The overall model

of the magnetically actuated mass-spring-damper system
and the operating constraints are introduced in x 2.
Due to different time constants of the mechanical and
electrical subsystems, a decoupling control approach
is presented first in x 3. The approach consists of an

MPC controller acting as a reference governor for the
electromagnetic system, whose dynamics are regulated
by a fast inner-loop controller. In x 4 two MPC designs
for the decoupled architecture are presented. The first
is based on a linear MPC scheme and it cannot take
into account the upper bound on the actual available
magnetic force. Such a constraint is enforced by a cas-
caded saturation block, with a consequent modelling
error in the prediction model. The second is a hybrid
MPC controller that is also capable of taking into
account the constraint on the maximum available
force. The decoupled controller architecture and
closed-loop experiments are reported in x 5.

In order to assess the limitations introduced by the
decoupling assumption of the above designs, where
only the mechanical subsystem is optimized by the
MPC algorithm, for comparison purposes in x 6 we con-
sider a hybrid MPC controller based on the complete
system dynamics. While this approach permits the opti-
mization of the whole system’s behaviour, the resulting
controller is more complex.

2. Physical model and constraints

The magnetically actuated mass-spring-damper system,
whose schematics are shown in figure 1, is a heteroge-
nous system composed by a mechanical subsystem and
an electromagnetic subsystem that influence each
other. A mass m [kg] moves linearly within a bounded
region under the effect of a controlled magnetic force
F [N]. Such a force is generated by a coil placed at one
of the boundary of the region. Additional forces acting
on the mass are generated by a spring and a damper.
The overall equations defining the system are

m €x ¼ F� c _x� kx, ð1aÞ

_� ¼ V� Ri, ð1bÞ

� ¼
2kai

kb þ z
, ð1cÞ

F ¼
kai

2

ðzþ kbÞ
2
¼
�2

4ka
, ð1dÞ

z ¼ d� x: ð1eÞ

Equation (1a) represents the dynamics of the mass posi-
tion x [m] under the effect of the external force F, of
a spring with stiffness k [N/m] and of a damper with
coefficient c [N � s/m]. Equation (1b) is Faraday’s law
for a resistive circuit with resistance R [�], subject to
magnetic flux variations, where the applied voltage
V [V] is the control input. The relation between the mag-
netic flux � [V � s] and current i [A] is defined by (1c),

1702 S. Di Cairano et al.
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where ka, kb are constants, while equation (1d) defines
the magnetic force either as a function of the current
or as a function of the magnetic flux. Finally,
equation (1e) defines the relation between position coor-

dinates in the mechanical (x) and in the electromagnetic
(z) subsystem. The first has the origin at the neutral
position of the spring, while the second at the position
in which the mass is in contact with the coil.
Moreover, since x takes its maximum value at the con-
tact position, and d is the distance between the contact
position and the spring neutral position, z� 0. Note
that any bounds on current i immediately become
bounds on force F.
The mechanical prediction model considered in this

paper takes into account linear spring and viscous fric-
tion effects. Additional forces such as stiction or
Coulomb friction, that give limited effect since the
mass lifts from the coil and only slightly touches it,
could have also been included, albeit resulting in a
more complex model and higher complexity of the
control law. These additional modelling details should
be pursued in applications where such effects can signif-
icantly degrade the performance of a controller designed

on the simplified assumptions, which however is not
the case of the application studied in this paper.
The physical model (1) can be expressed as the

nonlinear dynamical system

_x ¼
1

4kam
�2 �

k

m
x�

c

m
d _x, ð2aÞ

_� ¼ �
Rðkb þ d Þ

2ka
�þ

R

2ka
�xþ V: ð2bÞ

The magnetically actuated mass spring damper is subject
to several constraints related to physical limits and
performance. The constraint

�d � x � d ½m�, ð3Þ

where d ¼ 4 � 10�3 [m], prevents the moving mass from
penetrating the coil or the symmetric stop at the other
end, therefore avoiding undesirable bouncing of the
moving mass, with consequent noise and increased
wear of the parts. Under constraint (3), the simple
mechanical model (1a) is valid.

In a number of practical applications for which the
problem considered here serves as a prototype, it is
actually desirable to control the moving mass so that
it is positioned against the coil with x ¼ d. In this case,
as the moving mass approaches the coil, its velocity
needs to be carefully controlled, and the following
soft-landing constraint

�"� �ðd� xÞ � _x � "þ �ðd� xÞ ½m=s�, ð4Þ

is imposed, where " and � are constants. The purpose
of soft-landing is to avoid high velocities during
collisions (so that noise and wear can be reduced),
which also prevents excessive disturbances to the electri-
cal current. When the mass is at the contact position
(x ¼ d ), the velocity is constrained in ½�", "�, a range
which is progressively relaxed by � as the mass moves
away from the coil. Here we choose " and � so that
for x ¼ 0, _x2½�10:2, 10:2� m/s, i.e., the constraint is
essentially inactive, while for x ¼ d, _x2½�0:2, 0:2� m/s,
i.e., the constraint is quite tight (and difficult to meet).
Note that the soft-landing constraint is not required
for position x ¼ �d since the moving mass will never
be controlled to the symmetric stop, due to the fact
that the magnetic force is insufficient to counteract the
spring force at x ¼ �d.

The current in the circuit cannot be negative and, as
a consequence of (1d), the magnetic force is able to
only attract the mass

i � 0 ½A�, ð5aÞ

F � 0 ½N�: ð5bÞ

In addition, the constraint on the voltage

0 � V � Vmax ½V� ð6Þ

is enforced to take into account the physical limits and
the safety of operation of the electrical circuit.

3. Decoupled control system architecture

Because of the nonlinearity of (2) and of the constraints
introduced in the previous section, nontrivial
control techniques are required to achieve the required
specifications. It is reasonable, however, to assume
that the dynamics of the electrical subsystem are much

i

F

k

c

d d

z

x

m

Figure 1. Schematics of a magnetically actuated mass spring
damper system.

Control of mass spring dampers for automotive applications 1703
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faster than the mechanical ones. This suggests the
possibility of decoupling the control problem, by
designing an inner-loop controller acting only on the
electrical subsystem, and, under the assumption that
the closed-loop electrical dynamics are much faster
than the mechanical dynamics, by designing an MPC
controller based on the reduced system model

€x ¼ �
c

m
_x�

k

m
xþ

F

m
, ð7Þ

where the position (x) and the velocity ( _x) of the mass
are the state components and the magnetic force F
is the controlled input, subject to constraints (3), (4),
(5b) and

F � ka
i 2max

ðdþ kb � xÞ2
: ð8Þ

Constraint (8) defines an upper bound on the available
force, related to the maximum available current imax.
Once the force command is computed by the MPC
controller, it is passed as a reference to the closed-loop
electrical subsystem, which generates the voltage profile
required to obtain such a force. The corresponding
control system architecture is reported in figure 2, and
is structured as follows:

. the MPC controller generates the force profile rF,
based on measurements from the mechanical
subsystem (7) and on the reference position rx for
the mass;

. rF is converted into the current reference profile ri,
which is used as a reference signal by the inner-loop
controller regulating the electromagnetic subsystem;

. the inner-loop controller actuates the voltage V to
make the current i in the electromagnetic subsystem
track ri;

. the current i generates the actual force F.

In the block diagram depicted in figure 2, the white
blocks represent the dynamical subsystems, and the
dark-grey blocks represent the controllers. Light-gray
blocks represent static blocks: the rF !ri block converts
the force reference into the current reference by inverting
equation (1d) in the current domain defined by (5a)

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rF
ðzþ kbÞ

2

ka
,

s
ð9Þ

the i!F block represents the transduction (1d) of the
current into the magnetic force acting on the mass.
Constraint (8) ensures that the force can be physically

generated, given the maximum allowed current imax

in the circuit. The value imax is computed from (1b)
in static conditions, given the maximum voltage Vmax.
Note that (8) defines a non-convex set in the
(x,F )-space, being the hypograph of a convex function.

3.1 Inner-loop controller

The current dynamics defined by (1b) and (1c) are

di

dt
¼

kb þ z

2ka
V�

kb þ z

2ka
Riþ

1

kb þ z
i
dz

dt
: ð10Þ

A way to make the current i track the desired
reference ri given the non-linear dynamics (10) is to
design a controller V ¼ g i, z, dz=dt, rið Þ by feedback
linearization. By letting di=dt ¼ f ði, z, dz=dt,V Þ be
dynamics (10), the control law

V ¼
2ka

kb þ z

kb þ z

2ka
Ri�

1

kb þ z
i
dz

dt
� �iþ �ri

� �
, ð11Þ

is chosen by imposing that di=dt ¼ f ði, z, dz=dt,
g i, z, dz=dt, riÞð Þ ¼ ��iþ �ri, with �, �>0, so that the
closed-loop current dynamics become linear first-order
dynamics with a stable pole pi ¼ �� and steady-state
gain �=�.

In the decoupled MPC design approach the behaviour
of the whole system largely depends on the dynamics
imposed by the feedback linearization controller for
the electromagnetic subsystem. In particular, mass
position and velocity are treated as disturbances acting
on the electromagnetic subsystem, and should be
slowly varying with respect to the electromagnetic
variables.

Drawbacks of the proposed feedback linearization
controller are that the voltage command can take large
values and vary rapidly, that the controller requires

Mechanical
subsystem

MPC
controller

rF →ri

Inner-loop
controller

Electromagnetic
subsystem

i→F

ri

rF

x,x
.

F

V

i

rx

Figure 2. Controller architecture for decoupled MPC design.

1704 S. Di Cairano et al.
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also the velocities to be estimated, while often the only
position is measured in such actuators, and that small
modelling errors can cause loss of stability or
performance degradation. Since the main concerns
here are the properties of the decoupled MPC design,
for simplicity we proceed with the assumption that the
inner-loop controller is the feedback linearization
controller (11), while noting that a more robust design,
for instance based on backstepping techniques, could
be used as an alternative.

3.2 Model predictive controller

The overall idea behind the decoupled design is to exploit
a nonlinear controller to obtain a linearization of the
dynamics, and to use a model predictive controller to
meet specifications and performance. Because of
the short sampling period required by automotive actua-
tors, standard non-linear MPC techniques based
on smooth nonlinear optimization to be solved in
real-time (Rawlings 2000) are not applicable in the
present context. Hence, linear and hybrid MPC
controllers that can be implemented in an explicit
form (Bemporad et al. 2002) are considered here. Other
techniques that may be applicable include suboptimal
explicit non-linear MPC (Johansen 2004) and implicit
MPC implemented on appropriate hardware
architectures (Bleris et al. 2006, Ling et al. 2006).
However, the evaluation of such recent techniques is
out of the scope of this paper, and it may be the subject
for future investigations.
In the next section we propose two MPC

schemes based on linear and hybrid prediction models,
respectively.

4. Linear and hybrid decoupled model predictive control

Conventional linear feedback controllers, such as LQR
controllers, do not explicitly handle pointwise-in-time
constraints on system’s inputs, states, and outputs.
On the other hand, model predictive control is an
optimization-based closed-loop control strategy in
which such constraints can be explicitly embedded into
the controller (Rawlings 2000, Maciejowski 2002, Qin
and Badgwell 2003).
We consider two different types of MPC controllers

for the decoupled architecture proposed in the previous
section: (1) a linear model predictive controller obtained
by neglecting the non-linear constraint (8), which is
enforced later by a state-dependent saturation function,
and (2) a hybrid model predictive control law which
considers a piecewise affine approximation of (8).
As observed earlier, in the MPC design

we assume that the dynamics of the electrical subsystem

in closed-loop with the inner-loop controller are
infinitely fast, that is F ¼ rF. Thus, with a slight abuse
of notation, we will refer to F as the output of the
MPC controller. The effects of the electrical dynamics
will be analysed in x 5.

4.1 Decoupled linear model predictive control

As MPC requires a discrete-time model, the mechanical
dynamics (7) are discretized in time with sampling
period Ts ¼ 5 � 10�4 [s]

�ðkþ 1Þ ¼ A�ðkÞ þ BuðkÞ, ð12Þ

where

� ¼
x
_x

� �
, u ¼ F:

In addition, the output-equation yðkÞ ¼ C�ðkÞ, where

y ¼
x

_xþ �x
_x� �x

2
4

3
5,

is introduced to specify the desired performance and
for imposing constraints on velocity.

The MPC strategy is based on the solution of the
optimal control problem

min
f�ukg

NU�1

k¼0

XNJ�1

k¼0

ðxkþ1� rxðtÞÞ
0Qxðxkþ1� rxðtÞÞ

þ�u 0kQ�u�ukþ��
2

subject to ymin��1� yk� ymaxþ�1, k¼ 1, . . . ,NC

umin� uk� umax, k¼ 0, . . . ,NU�1

�umin��uk��umax, k¼ 0, . . . ,NU�1

�uk¼ 0, k�NU

�kþ1¼A�kþBuk

yk¼C�kþDuk, xk¼ ½1 0��k,

k¼ 0, . . . ,NJ�1

�� 0,

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;
ð13Þ

where �uk ¼ uk � uk�1, and u�1 ¼ uðt� 1Þ is the pre-
vious input. NJ is the prediction horizon used to define
the performance index, NC�NJ is the horizon along
which the output constraints are enforced, and NU is
the number of free control actions, NU�NJ and
uk ¼ uNU�1, 8k ¼ NU, . . . ,NJ. The slack variable �
(also called ‘‘panic variable’’) is introduced to soften
output constraints (vector 1 has all its entries equal

Control of mass spring dampers for automotive applications 1705
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to one), therefore preventing infeasibility and a
consequent halt of the control algorithm (the weight �
is significantly higher than the other weights in the
objective function). If � ¼ 1, hard constraints are
enforced (�¼ 0).
The MPC algorithm can be summarized as follows.

At each sampling instant t

1. set

�0 ¼
xðtÞ

_xðtÞ

� �
;

2. solve problem (13) obtaining the optimal inputs
u�0, . . . , u�NU�1

;
3. use F ðtÞ ¼ u�0 as the reference force for the inner-loop

controller and discard the remaining optimal inputs.

The complexity of the MPC algorithm clearly
depends on the structure of the optimization problem.
In particular, as the system dynamics and the design
constraints are linear and problem (13) involves only
continuous-valued variables, the MPC algorithm
requires, at each time step t, the solution of a
quadratic program (QP), for which solution
algorithms of polynomial complexity exist (Boyd and
Vandenberghe 2004).
Constraint (8), which is disregarded in (13), is

enforced a posteriori by the saturation function

~u ¼

u�0 if u�0 � ka
i 2max

ðdþ kb � xÞ2

ka
i 2max

ðdþ kb � xÞ2
if u�0 > ka

i 2max

ðdþ kb � xÞ2
:

8>>><
>>>:

ð14Þ

If constraint (8) is rarely active, the resulting MPC
controller cascaded by the state-dependent input-satura-
tion may be sufficient for adequately controlling the
system, and simple and relatively easy to compute
at the same time. On the other hand, if constraint (8)
is often active, the predicted trajectory will largely
differ from the actual one, because of the unmodelled
state-dependent input saturation (14). In the latter
case, the system performance will most likely be
degraded.

For the magnetically actuated mass spring damper,
the linear-MPC controller was designed using the
Hybrid Toolbox (Bemporad 2003), with

yðtÞ ¼

1 0

2500 1

�2500 1

2
64

3
75xðtÞ ð15Þ

and

Qx ¼ 104, Qu ¼ 10�10, � ¼ 1

ymin ¼

�4 � 10�3

�1

�10:2

2
664

3
775, ymax ¼

4 � 10�3

10:2

þ1

2
664

3
775,

umin ¼ 0, umax ¼ 104, ��umin ¼ �umax ¼ 1,

NJ ¼ 30, NC ¼ 5, NU ¼ 3:

Figure 3 shows the behaviour of nominal (ideal)
closed-loop formed by the linear model and the MPC
controller when tracking a desired reference profile,

0 0.02 0.04 0.06 0.08 0.1
−2

0

2

4

Time (s)

0 0.02 0.04 0.06 0.08 0.1

−2000

0

2000

Time (s)

x 2
 (

m
m

/s
)

0 0.02 0.04 0.06 0.08 0.1
−0

0.5

1

Time (s)

u 
(k

N
)

−1 0 1 2 3 4 5
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

x1 (mm)

x 2
 (

m
m

/s
)

x 1
 (

m
m

)

(a) (b)

Figure 3. Linear closed-loop MPC simulation (ideal case of no position-dependent force constraints and of infinitely fast electrical
dynamics): (a) state and input trajectories; (b) phase-plane trajectories.
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over a simulation time interval of 0.1 seconds from the
initial state

�ð0Þ ¼
0
0

� �
:

The corresponding position, velocity and input profiles
are reported in figure 3(a), while the phase plane in
which satisfaction of velocity constraint (4) is shown
in figure 3(b). This velocity constraint only becomes
active near the contact position x ¼ d. Because the
controller cannot provide quick decelerations due to
the unidirectionality of the magnetic force,
constraint (4) is kept inactive by the MPC controller
when away from the contact point.
Figure 4(a) shows that the simplification introduced

by removing constraint (8) is actually unjustified.
In figure 4(a), the curved line representing the upper
bound on the force of equation (8) as a function of the
moving mass position x ¼ �1 is superimposed on the
input signal generated by MPC, showing that
constraint (8) is often violated. The effects of such a
simplification after the variation of the set-point in the
negative direction are apparent in figure 4(b), which
shows the behaviour of the closed-loop system when
the position-dependent saturation block (14), enforcing
constraint (8), is cascaded to the MPC controller.
The reason for the degradation of the tracking

performance is that the linear MPC controller is not
aware that braking the mass at large distances away
from the coil is impossible because of the state-depen-
dent input saturation. This is in fact seen from
the input plot in figure 4(b) where the dashed line
corresponds to the output of the MPC controller,

while the solid line corresponds to the output of the
saturator.

To avoid wide oscillations and long settling periods,
the saturation constraint (8) should be taken into
account in the MPC setup. Unfortunately, (8) is a
non-convex constraint that cannot be handled by
standard linear MPC. Next section shows how such a
constraint can be handled by a hybrid MPC approach.

4.2 Decoupled hybrid model predictive control

The general idea of the approach is to approximate
non-linear dynamics and constraints through piecewise
affine functions (referred to as ‘‘hybridization’’ process)
and to formulate the optimization problem on the
approximated model, which has the form of a piecewise
affine (PWA) system (Sontag 1981). PWA systems
can be recast as mixed logical dynamical (MLD)
systems (Bemporad and Morari 1999), a more
convenient prediction model whose associated optimal
control problem can be solved by mixed-integer
programming.

The resulting hybrid MPC controller usually performs
satisfactorily in terms of both tracking performance and
constraint handling, even if the hybrid prediction model
is only an approximation of the real system.

The hybrid MPC approach can be summarized as
follows: first, the non-linear dynamics and constraints
are approximated by a piecewise affine function;
second, the resulting piecewise affine system is modeled
as an MLD system; finally, the MLD system is used as
a prediction model in the MPC algorithm. The above
steps are detailed here below for the problem tackled
in this paper.
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Figure 4. Effects the saturation (14) cascading linear MPC controller: (a) input value generated by the linear MPC controller vs.

position and curve representing the position-dependent upper-bound of the available current; (b) state and input trajectories when
(8) is enforced a posteriori. The superimposed dashed line in the bottom figure is the non-saturated input.
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1. Hybridization of non-linear functions. We consider
here the simple case of hybridization of a (possibly dis-
continuous) one-dimensional function into the piecewise
affine form f ð�Þ ¼ ri�þ qi, if �2½ ��i, ��iþ1Þ,
i ¼ 0 . . . ‘� 1, where ��i< ��iþ1. The points f ��ig

‘�1
i¼1 are

the function breakpoints and define the borders between
regions in which f ð�Þ has different affine terms. Next,
we introduce ‘� 1 binary variables �1, . . . �‘�12f0, 1g
defined by the logical conditions

½�i ¼ 1� $ ½� � ��i�, i ¼ 1, . . . , ‘� 1, ð16Þ

and ‘� 1 continuous variables z1, . . . , z‘�12R

defined by

zi ¼
ðri�1 � riÞ�þ ðqi�1 � qiÞ if �i ¼ 1

0 otherwise

�
i ¼ 1, . . . ‘� 2, ð17aÞ

z‘�1 ¼
r‘�2�þ q‘�2 if �‘ � 1 ¼ 1

r‘�1�þ q‘�1 otherwise:

�
ð17bÞ

Then, the piecewise affine approximation is

f ð�Þ ¼
X‘�1
i¼1

zi: ð18Þ

Relations (16), (17), (18) can be embedded into an MLD
system, using for instance the modelling language
HYSDEL (Torrisi and Bemporad 2004), along with the
logical constraints

½�i ¼ 1� ! ½�iþ1 ¼ 1�, 8i ¼ 1, . . . , ‘i ð19Þ

which are included to largely simplify the complexity
of the MPC optimization problem associated with the
MLD model.
The non-linear and non-convex force constraint (8)

is approximated by a piecewise affine approximation
with three segments (‘¼ 3), and as a consequence, two
� and two z auxiliary variables have been introduced.
The force constraint (8) is defined as

u � z1 þ z2, ð20Þ

where z1 and z2 are defined by (16) and (17) with � ¼ x
and ‘¼ 3. Clearly f ðxÞ ¼ z1 þ z2 is the function that
approximates the right-hand side of (8).

2. Hybrid MPC design. Model (7) with (15), (16), (17),
(20), can be modelled in HYSDEL (Torrisi and Bemporad
2004), and the equivalent Mixed Logical Dynamical

(MLD) hybrid model (Bemporad and Morari 1999)

�ðkþ 1Þ ¼ A�ðkÞ þ B1uðkÞ þ B2�ðkÞ þ B3zðkÞ, ð21aÞ

yðkÞ ¼ C�ðkÞ þD1uðkÞ þD2�ðkÞ þD3zðkÞ, ð21bÞ

E2�ðkÞ þ E3zðkÞ � E1uðkÞ þ E4�ðkÞ þ E5, ð21cÞ

corresponding to the saturated magnetic actuator
is obtained, where the matrices A, Bi, i ¼ 1. . . 3, Ej,
j ¼ 1, . . . 5, are generated automatically in MATLAB

using the Hybrid Toolbox (Bemporad 2003).
The hybrid MPC optimization problem is

formulated as

min
fukg

N�1
k¼0

ð�N � r�Þ
TQNð�N � r�Þ

þ
XN�1
k¼0

ð�k � r�Þ
TQ�ð�k � r�Þ þ ukQuuk þ ��

2 ð22aÞ

subject to MLD dynamics (21), ð22bÞ

ymin � �1 � yk � ymax þ �1, k ¼ 1,. . . ,N, ð22cÞ

umin � uk � umax, k ¼ 0,. . . ,N� 1, ð22dÞ

� � 0, ð22eÞ

where (22c) models (3) and (4), and (22d) models (5b).
Here, we choose

Q� ¼ QN ¼
2 � 106 0

0 0

� �
,

Qu ¼ 10�7, N¼ 3, � ¼ 1. Output constraints,
where ymin and ymax are the same as for problem (13),
may be enforced as soft constraints, while input
constraints, where umin ¼ 0 and umax ¼ þ1, and
the approximation of (8), which is embedded
into the MLD model, are always enforced as hard con-
straints.

Because of the binary variables �, the hybrid MPC
strategy (22) requires the solution of a mixed-integer
quadratic program. Here only two binary variables are
considered for each prediction step, so that for short
prediction horizons the resulting optimization problem
is of very small size.

The resulting closed-loop trajectories of the simulation
scenario proposed in x 4.1 when the hybrid MPC control
algorithm is applied are reported in figure 5. Note that the
piecewise affine approximation (16), (17) is a lower bound
to the maximum force, so that the force generated by the
hybrid MPC algorithm never exceeds the saturation
limits. With respect to the simulation of the linear MPC
cascaded by the saturation block (reported as dashed
line in the position trajectory plot in figure 5) the
system reacts slightly slower when starting from the neu-
tral position �ð0Þ ¼ ½0 0�0. This is the effect of the

1708 S. Di Cairano et al.
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conservative approximation of the force constraint.
While such a negative effect could be eliminated by intro-
ducing a more refined approximation, the positive effects
of the hybridMPC controller are clear when the reference
decreases. Both the undershoot and the settling period
are reduced, because the controller is now aware of the
available magnetic force. Soft-landing constraints are
fully satisfied similarly to what was reported in
figure 3(b).
Table 1 compares the cumulated squared position

errors
P

kðxðkÞ � rxðkÞÞ
2 and cumulated squared inputsP

k uðkÞ
2 for the different MPC control scenarios.

The tracking performance is clearly worse than in the
ideal linear MPC scenario (no force saturation), but the
hybrid controller provides better performance (around
15%) with respect to saturated linear MPC. Note also
that a certain component of the tracking error is intrinsi-
cally due in all cases by the one-step delay in reacting to
reference changes, due to the non-anticipative implemen-
tation of the MPC algorithms. Such an error, that with
respect to data in table 1 has a value of 25.5, is indepen-
dent of the controller applied, and thus should not be
considered in comparing performances. Following this
reasoning, the increase of net performance of the
hybrid MPC algorithm is about 20% with respect to
the linear-saturated one.

5. Explicit MPC, implementation issues, and simulation

results

We consider important implementation issues of
the aforementioned control schemes on hardware.
First we derive an equivalent piecewise affine form of
the control laws, and then analyse the effects of the

dynamics of the electrical current under the controller
based on feedback linearization.

5.1 Explicit implementation of the controller

The implementation of the MPC controllers described
in x 4 in an automotive microcontroller may be pre-
vented by the excessive time required for the on-line
solution of the MPC optimization, given the very short
sampling time Ts ¼ 0:5ms. In Bemporad et al. (2002)
it is shown that the solution to problem (13) can be
obtained as a function of the parameters �0 and rx
(i.e., the actual position, velocity and position reference)
by using multiparametric quadratic programming
(mp-QP). Using the mp-QP solver in the Hybrid
Toolbox, we obtain an explicit feedback law uð�, rxÞ in
continuous piecewise affine form consisting of 80
regions, which can be evaluated on-line very quickly,
as the largest part of the computations have been
performed off-line by the mp-QP solver. The mp-QP
algorithm also returns the value function Vð�, rxÞ,
which is a convex piecewise quadratic function.
It must be stressed that the implicit MPC controller
and the explicit one produce the same results, but
there is a difference in the amount of computation
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Figure 5. Closed-loop simulation using the hybrid MPC controller (22): (a) State and input trajectories: the superimposed dashed
line in the top figure is the position trajectory obtained with saturated linear MPC; (b) nonlinear force constraint, its PWL
approximation, and input values generated by hybrid MPC.

Table 1. Comparison of the three MPC scenarios.

MPC
controller

Cumulated
position error (mm2)

Cumulated square
inputs (kN2)

Linear (ideal) 51.4679 29.1918
Linear saturated 97.8608 26.6314
Hybrid 83.1005 26.6588
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required at each sampling step. More specifically, this
difference is between the solution of an online optimiza-
tion problem versus the evaluation of a set of
inequalities and the computation of an affine state
feedback term.
Figure 6(a) shows a section of the three-dimensional

polyhedral partition of the explicit linear MPC control-
ler (where hard input/state/output constraints are
enforced, i.e., � ¼ 1) obtained for rx¼ 0. There is an
affine state feedback controller associated to each
region in the partition. Figure 6(a) also shows the state
trajectory superimposed over the polyhedral partition.
In the case of hybrid MPC, we use the algorithm

of Bemporad (2003) to obtain a representation of the
MPC controller as a set of (possibly overlapping)
continuous piecewise affine controllers. During on-line
operation, the corresponding value functions V are
evaluated and compared to determine the command
input with minimum cost. Thus the explicit hybrid
MPC solution involves the potential additional opera-
tion of comparing the value functions on-line. In our
case, the number of regions increases to 671, thus the
controller requires a larger storage memory in the
microcontroller and a certain (typically small) number
of comparisons to find the active controller region.

5.2 Simulation of the decoupled MPC architecture

We analyse now the effect of the neglected dynamics
of the electrical current. We have tested the decoupled
linear/hybrid MPC approach and compared the results
with the ones obtained in the ideal case, in which
the dynamics of the electromagnetic subsystem are
infinitely fast.

The inner-loop controller (11) is designed with
� ¼ � ¼ 1:5 � 105. Since the mechanical subsystem is
a second-order under-damped system with damped
frequency peak at !r ¼ 950 rad=s and -3db bandwidth
BW3 ¼ 3 � 103 rad=s, the feedback linearization control-
ler imposes a current dynamics (BW3 ¼ 1:5 � 105 rad=s)
which is much faster than the mechanical one.

We consider a square wave between the critical
value 4mm and 0mm and with frequency 15Hz as the
position reference rx. The initial state is �0 ¼ ½0 0�T.

Figure 7 reports the results obtained with the linear
MPC controller (13) cascaded by the saturator (14),
where the inner-loop controller is (11). In figure 7(a)
the position of the mass (solid) and its reference
(dashed) are shown. Figure 7(b) reports the difference
dxðtÞ ¼ xðtÞ � xðMPCÞðtÞ, where x is the position obtained
by the decoupled linear MPC, in which the current
dynamics are imposed by the feedback linearization
controller, while xðMPCÞ is the nominal linear MPC
positionþ saturation but assuming infinitely fast
current dynamics. The difference is rather small (in the
order of tens of micrometers), because of the fast
response of the controlled current dynamics. Note that
the position constraints are slightly violated, mainly
because of the neglected current dynamics, but only
for a limited amount. Thanks to the use of soft
constraints, the MPC algorithm always returns a control
action.

Figure 8 reports the situation in which the hybrid
MPC (22) is used with (11) as an inner-loop controller.
Figure 8(a) reports the position of the mass (solid)
and its reference (dashed), and figure 8(b) reports the
difference dx(t) between position of the decoupled
hybrid MPC and of the nominal MPC. It is evident
that the hybrid MPC controller is better than the
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Figure 6. Section of the explicit controller partitions obtained for rx¼ 0: (a) Linear explicit MPC controller; (b) Hybrid explicit
MPC controller.
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linear one in both the difference dx(t), which is almost

halved, and in tracking performance, especially in

the transition from 4mm to 0mm. The increase of per-

formance is paid by a higher complexity of the control-

ler, since the hybrid MPC algorithm requires at each

step the solution of a mixed-integer program instead of

the convex quadratic program of linear MPC. In terms

of CPU time, for simulating the closed-loop system

(system’s dynamics, feedback linearization controller,

and MPC controller) in Simulink over 0.125 s (¼250

sampling steps) a Pentium-M 2GHz computer with

1 GB RAM running Cplex 9.1, Matlab 7 and the

Hybrid Toolbox takes 4 s to simulate the decoupled

linear implicit MPC controller, and 6.5 s for the

decoupled hybrid implicit MPC. When the the nonlinear

system is in closed loop with the explicit linear MPC

and the feedback linearization controllers the simulation

time is 1.54 s; if the explicit hybrid MPC is used instead,

the time is 0.89 s. To evaluate the computation time

required by the explicit MPC controllers we have ran-

domly generated 100 points in the controller partitions,

and we have evaluated the CPU time in the C code auto-

matically generated by the Hybrid Toolbox on the same

computer used for simulation. The average and the

worst-case CPU time for evaluating the control input

are reported in table 2 for the linear and hybrid control-

lers, together with the corresponding data-memory

occupancies. Even if the controller is not executed

on a dedicated hardware, the computation time is

shorter than the sampling period also in the
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Figure 7. Decoupled linear MPC of the mass-spring-damper system: (a) tracking performance; (b) position difference dx(t )
between the decoupled linear MPC and the nominal MPC.
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Figure 8. Decoupled hybrid MPC of the mass-spring-damper system: (a) tracking performance; (b) position difference dx(t )
between the decoupled hybrid MPC and the nominal MPC.
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worst case. This suggests that if the C code is optimized

and executed on a dedicated hardware, e.g., on a FPGA

device, the CPU time would be significantly smaller than

the sampling period.
The worst-case number of operations that the

controller has to perform in a sampling unit are reported

in table 3. Such worst case is almost exceptional and

for the explicit hybrid MPC the reported numbers are

also upper bounds. According to such data and not

accounting for the inner loop current controller,

a device that executes one operation per clock

period and runs at about 200MHz seems suitable for

implementation of both MPC controllers even in the

most pessimistic situation.
We finally show that in case slower dynamics of the

current are imposed by the feedback linearization

controller, the performance clearly degrades. Figure 9

shows the results for the linear decoupled MPC that

tracks a square reference with frequency 15Hz, higher
value 3.1mm and lower value 0mm. In this case the
feedback linearization controller parameters are
� ¼ � ¼ 5 � 103, and the closed-loop current dynamics
have bandwidth BW3 ¼ 5 � 103 rad=s, the same order
of magnitude as the one of the mechanical subsystem.
The tracking performance is largely degraded and
the difference between the decoupled MPC and the
nominal MPC trajectory is increased by an order of
magnitude. When the reference has larger amplitude
or the imposed current dynamics are slower, larger
constraint violations and numerical instability of the
MPC algorithm also occur.

The feedback linearization controller is not designed
to enforce voltage constraints. The voltage could be
limited by inserting a saturation block between the
feedback linearization controller and the electromag-
netic subsystem, at the price of a possible reduction of
the overall tracking performance. In the next section,
we explicitly take into account voltage constraints in
the design by considering a hybrid prediction model
of the full system.

6. Coupled model predictive control

The decoupled MPC has been proven to be feasible even
by using a simple feedback linearization controller as
an inner-loop controller. However, in this approach
the MPC algorithm does not take into account
the current dynamics and, as a consequence, it cannot
optimize the behaviour of the entire system and enforce
voltage constraints.

In order to analyse the degree of optimality of the
decoupled MPC approach we can design an MPC

Table 2. CPU time and data memory occupancy for the
explicit linear and hybrid controllers.

Explicit
controller

Average
CPU time

Worst-case
CPU time

Data
memory

Linear MPC 0.005ms 0.2ms 17KB
Hybrid MPC 0.025ms 0.3ms 98KB

Table 3. Worst case number of operations to be executed
in a sampling unit.

Explicit controller # multiplications # sums # comparisons

Linear MPC 3689 3163 526
Hybrid MPC 12609 8700 3930
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Figure 9. Performance degradation caused by slow current dynamics: (a) tracking performance; (b) position difference dx(t )
between the decoupled linear MPC and the nominal MPC.
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controller which takes into account both the
mechanical and the electromagnetic subsystems.
The control loop becomes a standard feedback
loop, in which the MPC receives the reference and
the measurements of both the mechanical and electro-
magnetic states, and chooses the voltage to be applied
to the system for optimizing the performance, while
satisfying all the constraints.

6.1 Model of the overall system

The non-linear dynamics (2) cannot be used as a
prediction model for linear/hybrid MPC, since it
cannot be embedded into a quadratic optimization
problem with integer variables. However, we can apply
again the approach of x 4.2.1 to find a piecewise affine
approximation of (2).
To this end consider (2b) and the following change

of variable, � ¼ ln ð�=�0Þ, where �0 ¼ 1 [V � s] is used
to make the argument of the logarithm adimensional.
Since _� ¼ ��1 _�, equation (2b) becomes

_� ¼
R

2ka
xþ u�

Rðkb þ dÞ

2ka
, ð23Þ

where u ¼ ðV=�Þ ¼ ðV=�0e
�Þ [s�1] is the input. Thus,

taking x, _x, and � as state variables, system (1) is
described by

€x ¼ �
c

m
_x�

k

m
xþ

F

m
, ð24aÞ

_� ¼
R

2ka
xþ u�

Rðkb þ dÞ

2ka
, ð24bÞ

F ¼
�20e

2�

4ka
, ð24cÞ

u ¼
V

�0e�
�

Vmax

�0e�
, ð24dÞ

which consists of two affine dynamical equations,
modelling the mechanical and electromagnetic
subsystems, and of two non-linear static equations.
In order to obtain a piecewise affine model of such
system, a piecewise affine approximation of (24c),
(24d) as functions of � is needed. In particular,
equation (24d) is used to enforce the
constraint 0�V�Vmax as a piecewise affine constraint
on u.

Remark 1: From a mathematical point of view the
nonlinear change of coordinate � ¼ ln ð�=�0Þ is valid
only in the interval �2ð0,1Þ. Constraint (5a) enforces
i� 0, so that we have to discuss only the case i¼ 0.
Such an error can be considered as a modelling error,

since model (24) is used only for prediction by

the MPC controller, and it can be arbitrarily small by

leaving � unbounded from below. However, in order

to maintain the possibility of having a force

exactly null, in the piecewise linearization we can

impose F¼ 0 for ���̂, where �̂ is a negative number.

As a consequence the modelling error occurs for

0����0e
�, while for �¼ 0 the approximation error

in the force is null.
The piecewise linearization of equations (24c)

and (24d) is performed with the approach described

in x 4.2.1, where � ¼ �. An approximation with four

segments for each function is considered,

fjð�Þ, j ¼ 1, 2, ð25Þ

where j¼ 1, 2 indicates the approximation of (24c)
and (24d), respectively. Hence, ‘j ¼ 4, j¼ 1, 2,

and in total 6 discrete auxiliary variables (16) and

6 continuous auxiliary variables (17) have been

introduced. However, because of the additional

constraints (19), only 7 combinations of discrete vari-

ables are feasible. In particular we have

approximated (24c) so that ½�1 ¼ 1�!½F ¼ 0� and

½�1 ¼ 1�$ ½���̂�, in order to have an exact representa-

tion of the force when i¼ 0.
Equations (24a), (24b) and the linearization (25)

of equations (24c), (24d) are embedded into an MLD

system (21), with three states, three outputs, one input

and 12 (6þ 6) auxiliary variables.

6.2 Simulation of the MPC controller based on the
coupled model

A hybrid MPC controller (22) can be designed,

where (22b) is the MLD approximation of (24)

computed in x 6.1 and

� ¼
x
_x

�

2
4

3
5:

Constraints (3), (4) are enforced as soft constraints,
while the input constraint

0 � V � Vmax, ð26Þ

where Vmax ¼ 350V, is enforced as a hard constraint
embedded in the MLD model, by exploiting the

piecewise affine approximation of (24d).
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The prediction horizon is N¼ 3, the cost matrices and
the input/output bounds are

Q� ¼ QN ¼

2 � 1010 0 0

0 5 0

0 0 1

2
64

3
75, Qu ¼ 10�8,

ymin ¼

�4 � 10�3

�1

�10:2

2
64

3
75, ymax ¼

4 � 10�3

10:2

þ1

2
64

3
75,

umin ¼ �1, umax ¼ 1, � ¼ 1014:

The maximum voltage constraints are embedded
into the MLD model. With regards to the third state
component, ���0 is weighted in the cost function.
By setting �0 ¼ �̂ ¼ �7, the reference value for the
flux � ¼ �0e

� is practically zero.
Figure 10 reports the nominal results obtained for

the coupled MPC approach when tracking the same
reference as in x 5.2. The tracking performance and the

mechanical subsystem trajectories are reported in
figure 10(a), while figure 10(b) shows the trajectories
of the electromagnetic subsystem and of the input
signal. The performance is even better than in the ideal
case of the decoupled linear/hybrid MPC. This is due
to the fact that the voltage constraint is less conservative
than the current constraint. The peaks of the
input signal u occur when � reaches large negative
values. This depends on the fact that V=�0e

� and
for �!�1, u is no longer upper-bounded. In
figure 10(c) the phase plane behaviour of the mechanical
subsystem is illustrated. The landing constraints (4) are
slightly violated, as they are treated as soft
constraints. Since the state dimension has been
increased, there is one additional step of delay in
the effects of the input on the position. However, the
violation is small, because of the large cost associated
to the constraint violation, which forces the system
to avoid as much as possible such situations. Table 4
reports the cumulated squared position errorsP

kðxðkÞ � rxðkÞÞ
2 obtained from the tests in x 4 for
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Figure 10. Coupled hybrid model predictive control: (a) trajectories of the mechanical subsystem; (b) trajectories of the
electromagnetic subsystem; (c) phase plane of the mechanical subsystem.
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linear and hybrid MPC with inner-loop controller (11)
and the one of the coupled MPC controller obtained
from the test in this section. Note that the simulation
parameters, duration and reference signal rx(k), in the
tests are the same.
The practical advantage of the coupled MPC

approach is that the two controllers are fused into
a single one, so that the overall system dynamics are
optimized, while enforcing constraints also on the
voltage. On the other hand, the optimal control problem
becomes more complex, so that in our preliminary tests
the explicit version of the coupled MPC controller has
about 11,000 regions, and therefore much more complex
than the linear and hybrid MPC controllers described in
the previous sections. Even if it is possible to reduce the
controller complexity, for instance, by absorbing small
regions (i.e., regions that have a Chebychev radius
smaller than a given threshold) into the neighbouring
ones, the coupled MPC controller will remain
certainly much more complex than the decoupled
MPC controllers.

7. Conclusions

We have presented different model predictive
control schemes for controlling a magnetically
actuated mass-spring-damper system for automotive
applications. Two different strategies are based on
decoupling the mechanical and electromagnetic subsys-
tems. The resulting MPC controllers optimize only the
mechanical subsystem behaviour, while the electromag-
netic subsystem is controlled by an inner-loop controller
that provides a fast current dynamics. The decoupled
MPC controllers have been tested in closed-loop with
the nonlinear system, and with the inner-loop controller
implemented through feedback linearization. A third
MPC approach based on the coupled model of the
system has been analysed.
Although the third approach may be more

difficult to implement because of its computation
complexity, still it provides an assessment of the
achievable performance, therefore proving that the first
two computationally simpler approaches perform
reasonably well but also some significant room for
improvement.

An experimental setup is currently under development
at the Automatic Control Laboratory of the University
of Siena to test the developed algorithms.
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