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The optimal control problem of a quarter-car semi-active suspension has been studied in the past. Considering that a quarter-car semi-
active suspension can either be modeled as a linear system with state dependent constraint on control (of actuator force) input, or
a bi-linear system with a control (of variable damping coefficient) saturation, the seemingly simple problem poses several interesting
questions and challenges. Does the saturated version of the optimal control law derived from the corresponding un-constrained system,
i.e. “clipped-optimal”, remain optimal for the constrained case as suggested in some previous publications? Or should the optimal deviate
from the ”clipped-optimal” as suggested in other publications? If the optimal control law of the constrained system does deviate from
its un-constrained counter-part, how different are they? What is the structure of the optimal control law? Does it retain the linear state
feedback form (as the unconstrained case)? In this paper, we attempt to answer some of the above questions by utilizing the recent
development in model predictive control (MPC) of hybrid dynamical systems.

The constrained quarter-car semi-active suspension is modeled as a switching affine system, where the switching is determined by
the activation of passivity constraints, force saturation, and maximum power dissipation limits. Theoretically, over an infinite predic-
tion horizon the MPC controller corresponds to the exact optimal controller. The performance of different finite-horizon hybrid MPC
controllers is tested in simulation using mixed-integer quadratic programming. Then, for short-horizon MPC controllers, we derive the
explicit optimal control law and show that the optimal control is piecewise affine in state. In the process, we show that for horizon equal
to one the explicit MPC control law corresponds to clipped LQR as expected. We also compare the derived optimal control law to various
semi-active control laws in the literature including the well-known “clipped-optimal”. We evaluate their corresponding performances for
both a deterministic shock input case and a stochastic random disturbances case through simulations.

1 Introduction

For a quarter-car suspension problem, its ride and handling performance can be quantified based on the
`2 norm of its states and output [1]. Therefore, linear optimal control theory such as LQ control can
be applied to an (un-constrained) active suspension problem. [2–4] suggested a semi-active controller by
passing the optimal active force through a limiter. This control law is known as the “clipped optimal”
law. The question arises if the “clipped-optimal” is still optimal for the constrained case as suggested in
some previous publications (described in [1]). Or should the optimal deviate from the ”clipped-optimal”
as suggested in other publications [5,6]? If the optimal control law of the constrained system does deviate
from its un-constrained counter-part, how different are they? And what would be the structure of the
optimal control law?

Different attempts have been made over the years to answer the questions arisen above. For a determin-
istic road disturbance case, the existence of the optimal semi-active control based on two point boundary
problem has been shown in [5]. [6] showed that the clipped optimal law cannot be optimal and postulated
that the constrained optimal control maintains a linear feedback form. However, the solution of optimal
control in [6] involves switching among three state dependent Riccati equations and must be done through
off-line iterations. To date, to the author’s knowledge, no explicit optimal control law for semi-active
suspension has been shown.

In this paper, we address the above optimal semi-active suspension problem in the context of model
predictive control (MPC) of hybrid systems. We derived explicit optimal control law for the deterministic
case. Hybrid systems are characterized by the interaction between continuous states, whose dynamics
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Figure 1. Two degree of freedom quarter car model

is governed by differential or difference equations, and discrete states, whose dynamics is described by
finite state machines, logic rules, if-then-else conditions, etc. Typically, different continuous dynamics
(or “modes”) are associated with different discrete states and discrete inputs, and mode transitions (or
“switches”) are triggered by variables crossing specific thresholds (state events), by the elapse of certain
time periods (time events), or by external decisions (input events) [7]. The MPC control strategy consists
of solving at each sampling time, starting at the current state, an open-loop optimal control problem over
a finite horizon. At the next time step the optimal control problem is solved starting from the new state
and over a shifted horizon, leading to a moving horizon policy.

Recently, in [8–10] optimal control problems for discrete-time hybrid systems were solved by modeling
the hybrid system as a mixed logical dynamical (MLD) system. This consists of a set of linear equalities
and inequalities involving both real and (0-1) variables, so that the MPC control problem can be solved
by a mixed-integer programming (MIP) solver. Despite the fact that efficient MIP solvers exist, on-line
implementation of hybrid MPC control may require a substantial computational effort. This is usually
acceptable in simulation while tuning the controller, but inadequate in fast-sampling automotive applica-
tions. In [10] and [11], it was shown that the MPC control law can be expressed explicitly as a collection
of affine state feedback control gains and of corresponding polyhedral cells in the state-space: the cell the
current state belongs to determines the corresponding gain to be applied. In this way, the computational
burden associated with the hybrid-MPC controller becomes that of a lookup-table of linear gains.

The results of this paper appeared in preliminary form in the conference paper [12].
An optimal semi-active suspension problem is described in Section 2 where the performance index and

constraints are defined. Section 3 reviews two constant (i.e. non-time varying nor state dependent) feedback
gain control laws discussed in previous literature and illustrated how the “clipped optimal” solution is
not the optimal one. In Section 4, the constrained quarter-car semi-active suspension was modeled as a
switching affine system, where the switching is determined by the activation of passivity constraints, force
saturation, and maximum dissipation limits. Section 5 discusses the explicit control law by solving the
switching affine system through model predictive/hybrid control and shows the MPC results compared to
the well-known “clipped optimal” control law.

2 Semi-Active Suspension Model and Constrained Optimization Problem

2.1 Quarter Car Model

A two degree of freedom quarter car model equipped with an adjustable force element is considered here,
see Figure 1. With the assumptions that the springs and damping are linear and the tire damping is
negligible and with the help of bond graph analysis, the active suspension system can be represented
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mathematically as

ẋ = Ax + Bf̄ + Bww (1)

where x = [x1, x2, x3, x4]
′ ∈ R

4, x1 [m] is the tire deflection from equilibrium, x2 [m/s] is the unsprung
mass velocity, x3 [m] is the suspension deflection from equilibrium, x4 [m/s] is the sprung mass velocity, f̄

[N/Kg] is the normalized adjustable force, w [m/s] is the road velocity disturbance,

A =









0 1 0 0
−ω2

us −2ρζωs ρω2
s 2ρζωs

0 −1 0 1
0 2ζωs −ω2

s −2ζωs









, (2)

B =









0
ρ

0
−1









, Bw =









−1
0
0
0









, (3)

with

ρ =
Ms

Mus
, ωus =

√

kus

Mus
, (4)

ωs =

√

ks

Ms
, ζ =

βs

2
√

Msks

, (5)

f̄ =
f

Ms
, (6)

where Mus [kg] is the unsprung mass, Ms [kg] is the sprung mass, ks [kg/s2] is the suspension spring
constant, kus [kg/s2] is the unsprung mass constant, and βs [kg/s] is the suspension damping coefficient.

2.2 Constrained Optimization Problem

If we consider only adjustable force elements that is constrained by passivity, we have to impose on the
model (1) the passivity constraint

f̄(x4 − x2) ≥ 0. (7)

To illustrate the deviation of the constrained optimal from clipped optimal, we further restrict the maxi-
mum magnitude that can be generated by the adjustable semi-active force elements, that is, we consider
the saturation constraint

|f̄ | ≤ σ, (8)

where σ is a constant indicating the maximum force capacity.
Maximum dissipating power constraint is also considered:

0 ≤ f̄(x4 − x2) ≤ (2 · ζmax · ωs)(x4 − x2)
2, (9)

where ζmax = 25.5 is the maximum damping ratio.
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The objective of our problem is to control the constrained adjustable force element to minimize the
suspension performance defined as [1]

J =

∫

(q1x
2
1 + q3x

2
3 + ẋ2

4)dt

=

∫

(xT Qx + ẋ2
4)dt, (10)

where

Q =









q1 0 0 0
0 0 0 0
0 0 q3 0
0 0 0 0









. (11)

Performance index (11) is a combination of the RMS value of tire deflections, suspension displacements,
and sprung mass accelerations that indicates road holding, packaging, and comfort respectively. We see
that our semi-active suspension optimization problem can be viewed as the optimal control problem of a
linear system under linear (8) and nonlinear (7), (9) constraints.

3 Linear Constant Feedback Gain Control for Sub-Optimal Semi-Active Suspensions

3.1 Clipped-Optimal (Clipped-LQR)

A way to look at the constrained optimization problem is noting the relation between the performance of
the optimal active suspension and that of any semi-active suspension [6]:

Jsemi = Jactive,LQR +

∫

∞

0
(f̄a − f̄)2dt, (12)

where

Jactive,LQR = xT
0 Pax0, (13)

f̄a = (BT Pa + S0)x, (14)

S0 = B4A(4,:), (15)

(where B4 is the 4th element of vector B and A(i,:) is the i-th row of A), x0 ∈ R
4 is the initial condition,

Pa is the solution of the Riccati equation

Pa(A − BS0) + (A − BS0)
T Pa = Q − (ST

0 S0) + PaBBT Pa. (16)

If one tries to minimize the integrand of the performance differences at every instant but not the whole
integral, the control would attempt to follow the active force whenever it can. As a result, the corresponding
desired semi-active force f is clipped whenever it exceeds its constraints due to either passivity or actuator
limitations and can be expressed as

f̄clipped−LQR = sat[f̄a]

= sat[(BT Pa + S0)x]

= sat[KLQx], (17)
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where sat[·] operates on the commanded linear feedback term and saturated whenever it exceeds the
constraints (8) and (9). Note that BT Pax is the desirable total suspension force and f̄p = −S0x is the
passive suspension force from the passive spring and damper.

3.2 Steepest Gradient Method

Another way to look at the constrained optimization problem is noting the relation between the perfor-
mance of a passive suspension and that of any semi-active suspension [6]:

Jsemi = Jpassive +

∫

∞

0
(−2f̄(BT PLx + S0x) + f̄2)dt

= Jpassive +

∫

∞

0
(−2f̄(BT PLx − f̄p) + f̄2)dt (18)

Similarly, one can relate any semi-active suspension with the optimal passive suspension as

Jsemi = Jpassive,opt+
∫

∞

0
(−2f̄(BT PL,optx − f̄p,opt) + f̄2)dt, (19)

where

Jpassive = xT
0 PLx0, (20)

Jpassive,opt = xT
0 PL,optx0, (21)

PL is the solution of the Lyapunov equation,

AT PL + P T
L A = Q + AT

(4,:)A(4,:), (22)

PL,opt is the solution of the Lyapunov equation,

AT
optPL + P T

L Aopt = Q + AT
opt,(4,:)Aopt,(4,:), (23)

and Aopt is the A matrix with optimal damping, i.e., βs = βs,opt.
Since (19) relates the performance of the optimal passive suspension and that of a semi-active suspension,

one can improve upon the optimal (damping) passive suspension by minimizing the second term in (19).
If one minimizes the integrand of the performance differences at every instant (to be negative) but not
necessarily the whole integral (due to state dependent constraint) in (19), the semi-active force which
improves upon the optimal passive suspension can be expressed as

f̄SGM = sat[BT PL,optx − f̄p,opt]

= sat[(BT PL,opt + S0,opt)x]

= sat[KSGMx] (24)

where S0,opt = B4Aopt(4,:) and sat[·] operates on the commanded adjustable force and saturates whenever
it exceeds the constraints (8) and (9).
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Table 1. Parameter values used in simulation

Parameter Value Description

Ts 10 ms Sampling time
ωs 1.5 Hz Sprung mass natural frequency
ωus 10 Hz Wheel-hop natural frequency
ρ 10 Sprung-to-unsprung mass ratio
ζ 0 Damping ratio
σ 1 Maximum force capacity
q1 1100 Weight on tire deflection
q3 100 Weight on suspension deflection

3.3 Simulation of Sub-Optimal Semi-Active Suspensions

In this section, through two “shock tests” of different initial conditions, we illustrate that the “clipped
optimal” solution is not the optimal one. To study the optimal semi-active suspension with on-line control
implementations, discrete time simulations of sampling time Ts were considered and the weighting factors
of design point “A” described in [1] were used (see Table 1). The semi-active suspension parameters studied
are listed in Table 1 and the control feedback gains (described in Sections 3.1 and 3.2) for the discrete-

time equivalent (eTsA,
∫ Ts

0 etABdt) of the semi-active system described by the matrices A and B defined
in (2)–(3).

With the discrete-time implementation, for the “clipped optimal” control, we have,

KLQ = [−10.4748 0.2446 79.1519 − 3.9295]. (25)

For the “steepest gradient” method, we have

KSGM = [1.5325 6.6053 43.8503 − 10.0321]. (26)

Figure 2 shows a shock test with initial suspension deflection or a step change in suspension deflection
defined by the initial condition x0 = [0, 0, 0.1, 0]′. In Figure 2, we see that the “steepest gradient”
method is 17% better (in terms of performance index) than the “clipped optimal” solution in this case. It
should be pointed out that the amount of improvement is highly dependent on the initial condition and
constraints. While the “clipped optimal” method is superior (in terms of the performance index) to the
“steepest gradient” method in other simulation conditions, Figure 2 offers an important counter example
that “clipped optimal” is at least 17% away from the true optimal in some cases.

Figure 3 shows a shock test with initial tire deflection or a step change in tire deflection defined by the
initial condition x0 = [0.09 0 0 0]′. In Figure 3 we see similarly that the “steepest gradient” method, being
used as a counter example, illustrates that the “clipped optimal” solution is at least 16% away from the
true optimal in this particular case.

It should be pointed out that the amount of performance differences is highly dependent on the initial
condition and constraints. For example, Figure 4 shows “clipped optimal” out-performs the “steepest
gradient” method in a different initial condition.

4 Hybrid Dynamical Model and Model Predictive Control

4.1 Hybrid Dynamical Model

The interest in hybrid systems is mainly motivated by the large variety of practical situations where
physical processes interact with digital controllers, as for instance in embedded systems. Several modeling
formalisms have been developed to describe hybrid systems [13,14], among them the class of Mixed Logical
Dynamical (MLD) systems [8]. Examples of real-world applications that can be naturally modeled within
the MLD framework are reported in [8, 15, 16]. The language HYSDEL (HYbrid Systems DEscription
Language) was developed in [9] to obtain MLD models from of a high level textual description of the hybrid
dynamics. HYSDEL models are used in the Hybrid Toolbox for MatlabTM [10] for modeling, simulating,
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and verifying the safety properties of hybrid systems, for designing MPC controllers for linear systems with
constraints and hybrid systems, and for determining equivalent piecewise affine control functions that can
be immediately prototyped on hardware.

In this section we explain how model (1) with constraints (7), (8) can be described as a hybrid dynamical
system, and later we will show how the derived model can be used to define an optimal control policy
which satisfies the passivity condition and a maximum dissipative constraint.

The nonlinear constraint (7) can be translated into a set of thresholds and logic conditions by introducing
two binary variables δv, δf̄ such that

[δv = 1] ↔ [x4 − x2 ≥ 0], (27a)

[δf̄ = 1] ↔ [f̄ ≥ 0], (27b)

[δv = 1] → [δf̄ = 1], (27c)

[δv = 0] → [δf̄ = 0]. (27d)

The maximum dissipating power constraint (9) can be rewritten as

F =

{

f̄ − (2 · 25.5 · ωs)(x4 − x2) if (x4 − x2) ≤ 0
−f̄ + (2 · 25.5 · ωs)(x4 − x2) otherwise

(28a)

where F ∈ R is an auxiliary continuous variable on which is imposed the constraint

F ≥ 0. (28b)

By assigning

y =
dx4

dt
=

[

0 2ζωs −ω2
s −2ζωs

]

x − f̄ (29)

as the output of the system, the discrete-time version of (1), obtained by sampling (1) with the sampling
time Ts (see Table 1), constraints (27) and (28) are modeled as a hybrid system in HYSDEL [9]. Constraint
(8) is included in the optimal control setup. The corresponding list is reported in the appendix. The
HYSDEL compiler translates differences equations and constraints into the MLD system

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t), (30a)

y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t), (30b)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5. (30c)

In our case, x = [x1 x2 x3 x4]
′ ∈ R

4, y ∈ R, u = [f̄ ] ∈ R. The values of vectors δ(t) and z(t) are,
respectively, binary and real, and are determined uniquely by inequalities (30c) once x(t) and u(t) are
fixed [8]. In our case the binary vector is δ = [δv δf̄ ]′ ∈ {0, 1}2 and the continuous vector is z = F ∈ R.

4.2 Optimal Control Problem

We describe how receding horizon optimal control for hybrid systems [8] can be usefully employed here to
design a control law for the posed semiactive suspension control problem. The main idea is to setup a finite-
horizon optimal regulation problem for the hybrid MLD system (30) by solving the following optimization
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problem

minξJ(ξ, x(t)) , x′

NQNxN +

N−1
∑

k=1

x′

kQxk +

N−1
∑

k=0

y2
k (31a)

s. t.















xk+1 = Axk + B1uk + B2δk + B3zk

yk = Cxk + D1uk + D2δk + D3zk

E2δk + E3zk ≤ E1uk + E4xk + E5

x0 = x(t)

(31b)

at each time step t, where x(t) is the state of the MLD system at time t, ξ , [u′

0, . . . , u
′

N−1,

δ′0, . . . , δ
′

N−1, z
′

0, . . . , z
′

N−1]
′, and Q is defined as in (11). According to the so called “receding horizon”

philosophy, the first move u∗

0 of an optimizer ξ∗ of (31) defines the current input:

u(t) = u∗

0. (31c)

The terminal weight QN is defined as the Riccati matrix associated with the infinite horizon cost

min
∞

∑

k=0

x′

kQxk + y2
k (32)

where xk, yk are the states and output, respectively, of the discrete-time equivalent of the semiactive
suspension system described by matrices A and B in (2)–(3). The corresponding LQR gain was reported
in (25).

Using the Hybrid Toolbox [10], problem (31) is translated into a mixed integer quadratic program
(MIQP), i.e., into the minimization of a quadratic cost function subject to linear constraints, where some
of the variables are constrained to be binary.

4.3 Simulations of MPC Semi-Active Suspensions

The performance of the derived MPC controller was simulated for the two shock tests described in Section
3.3 with no road disturbances as well as for a “white noise” road velocity disturbance.

The shock tests simulation traces for the hybrid MPC with a control horizon N=1 were illustrated in
Figures 2 and 3, where we see that indeed MPC with N=1 is identical to the “clipped optimal” control.
This is expected as described below.

Consider the performance index relationship (12) between an unconstrained case and the constrained
one:

Jsemi = Jactive,LQR +

∫

∞

0
(f̄a − f̄)2dt, (33)

We see that the model predictive control with N = 1 optimizes the integrand between [t, t+ dt]. With dis-
crete time control, this should be identical to minimize the instantaneous difference between a constrained
control and the unconstrained one (LQR). Indeed, the explicit MPC control law, which will be described
in the next section, is equal to the “clipped-optimal”.

In Table 2, we show the performance of the MPC controller (with various design control horizons) with
respect to Clipped-LQR and LQR in terms of cost function and PI values for the shock test with initial
condition x0 = [0 0 0.1 0]′. It improves beyond both “clipped-optimal” and “steepest gradient method”
described in Section 3. As we can see the hybrid MPC approach can show that the “clipped-optimal”
control is far from the optimal solution for this particular initial condition and constraints. It also shows
that the performance of hybrid MPC is equal to the “clipped-optimal” for N = 1.



November 25, 2005 15:35 International Journal of Control AA0512-SAsuspension

9

Table 2. Shock Test: MPC cost value for different control

horizons subjected to I.C.=[0 0 0.1 0]′

N MPC Clipped-LQR SGM LQR

1 20.4282 20.4282 17.4944 0.4446
2 20.4054
3 20.3290
4 20.1100
5 19.7380
10 20.9840
12 19.3084
14 18.4842
15 18.5996
16 19.3212
20 18.0764
30 17.1494
40 17.1304

In Table 3 where the shock test starts from a different initial condition, we show that the MPC is still
superior to both “clipped optimal” and “steepest gradient” as N increases. In contrast to Table 2, we see
that “clipped optimal” method is superior to “steepest gradient” method in this case.

In Figure 5 we compare the power dissipated by the MPC controller with N=40 with respect to the
SGM, semi-active, and active controllers for the shock test with initial condition x0 = [0 0 0.1 0]′.

For a “white noise” road velocity disturbance, a random road disturbance described in [17] is implemented
in discrete time. The road velocity w is a discrete-time noise signal normally distributed with zero mean
and the standard deviation of

wRMS =

√

2 · π · v · Aroad

Ts
, (34)

where Aroad = 4.9 ·10−6, v = 88 [Kmh] is considered, and Ts = 10 [ms] is the time interval of discretization.
Considering the weights reported in Table 1, a simulation time T = 20 s, the above road disturbance,

and a zero initial condition x0 = [0 0 0 0]′ , we compare the simulation traces of MPC with N=40 and
MPC with N=1 (“clipped-optimal”) in Figure 6.

In Table 4, we show the performance of the MPC controller with respect to Clipped-LQR, SGM, and
LQR in terms of cost function and PI values when subject to the road velocity w as a noise signal normally
distributed with mean 0 and standard deviation (34). We see that Clipped-LQR is better than SGM. And
MPC with larger N is superior to both Clipped-LQR and SGM.

The MPC performance can further be visualized in the enhancement of comfort and road holding qualities
as well as in the trade-off between the two. Figure 7 shows the RMS value of sprung mass acceleration
(which reflects comfort) versus the RMS value of tire deflection (which reflects road holding) of various
suspensions when subject to the random road disturbance described above. The optimal performance
of Active-LQR with weighting factors described in Table 1 is illustrated. This performance is checked
and confirmed against the design point “A” in Figure 8 of [1] since the same weighting factors and road
disturbances were used. In addition, Figure 7 shows the performance of various Active-LQR controls when
the weighting factor of tire deflection varies. The line populated by various Active-LQR controls with
varying weighting factors describes the performance envelope of a suspension and/or the performance
trade-off limitation between comfort and road holding. Figure 7 further compares the performance of the
two evaluated semi-active suspensions with those of active suspensions. We see that the performance of
MPC controller is closer to the performance envelope than that of clipped-optimal controller, indicating
better performance in both comfort and road holding qualities.

5 Explicit Model Predictive Control

As shown in [11, 18], it is possible to compute an explicit representation u(t) = f(x(t)) of the receding
horizon control law (31) as a collection of affine gains over (possibly overlapping) polyhedral partitions of
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Table 3. Shock Test: MPC cost value for different con-

trol horizons subjected to I.C.=[0 2 0 0]′

N MPC Clipped-LQR SGM LQR

1 0.5148 0.5148 0.6198 0.2203
2 0.4744
3 0.4629
4 0.4558
5 0.4547
10 0.4482
12 0.4446
14 0.4427
15 0.4427
16 0.4427
20 0.4419
30 0.4404
40 0.4398

Table 4. Random noise:MPC cost value for different

control horizons

N MPC Clipped-LQR SGM LQR

1 1.5155 1.5155 2.1361 0.1874
2 1.5474
3 1.5445
4 1.4579
5 1.4416
10 1.5238
12 1.3079
14 1.3160
15 1.3083
16 1.2886
20 1.2204
30 1.1456
40 1.1462

the set of states x ∈ R
4. We denote by nr the total number of polyhedral cells and corresponding affine

gains. The explicit controller is obtained by using the Hybrid Toolbox for MatlabTM [10]. To compute
the control law, the toolbox transforms the MLD model (30) into a piecewise affine form [19], determines
all possible feasible mode sequences that are compatible with the constraints via backward reachability
analysis, and employs multiparametric quadratic programming to determine candidate polyhedral regions
of the solution and the corresponding value functions and optimal control gains.

If we consider a control horizon N = 1 we obtain nr = 8 regions. A section of these regions for x1 = x2 = 0
is shown in Figure 8. The corresponding control law is

u(x) =































10.4748x1 + 0.2446x2 +79.1519x3 − 3.9235x4

(= KLQ) Regions #1, #6
0 Regions #2, #5
(2 · ζmax · ωs)(x4 − x2) Regions #3, #7
−1 Region #4
1 Region #8

(35)

In regions #1 and #6 the explicit MPC control law is equal to the LQR gain. Regions #4 and #8 represent
the saturated maximum dissipation constraint (8), whereas regions #3 and #7 represent the saturated
maximum dissipating power constraint (9).

If we consider the control horizon N = 2 we obtain 62 regions, a few of which are overlapping. Techniques
for reducing the number of regions without changing the control law u(x) are currently under development.
We do see that, despite more regions are needed as N increases, the MPC controller maintain a linear state
feedback form as N increases and approaches the optimal.
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6 Conclusions

For the optimal control problem of a quarter-car semi-active suspension modeled as a linear system under
state dependent linear and nonlinear constraints, we have compared different semi-active control laws and
proposed MPC hybrid control tools as a way for obtaining control laws with different degrees of optimality,
depending on the chosen control horizon N . In particular, we have shown that for N = 1 the hybrid MPC
law corresponds to the “clipped-optimal” control law, obtained by computing the active LQR control
law and by clipping it to enforce the given constraints. Through the hybrid MPC with increased control
horizon N, we also have shown that significant deviation of optimal from the “clipped optimal” can occur.
We also confirmed that the optimal control law remains in an affine state feedback form. With the explicit
MPC control law, we confirmed that as the control law remains affine state feedback form as it approaches
optimal with increasing N.
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Appendix A: HYSDEL List

/* HYSDEL List: semiactive suspension system

(C) 2003-2005 by A. Bemporad, N. Giorgetti,
D. Hrovat, E. Tseng

*/

SYSTEM suspension {

INTERFACE {
STATE {

REAL x1 [-0.05,0.05];
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Figure 2. Shock Test of Initial Condition x0 = [0 0 0.1 0]′ (Solid line: SGM; Dash-dotted line: clipped-LQR=MPC with horizon N=1;
dashed line: Active-LQR).

REAL x2 [-5,5];
REAL x3 [-0.2,0.2];
REAL x4 [-2,2];}

INPUT{
REAL u [-10,10];}

OUTPUT {
REAL y;}

PARAMETER {
REAL A1dot,A2dot,A3dot,A4dot,B4dot;
REAL A11,A12,A13,A14,B1;
REAL A21,A22,A23,A24,B2;
REAL A31,A32,A33,A34,B3;
REAL A41,A42,A43,A44,B4;
REAL ws;}

}

IMPLEMENTATION {
AUX {

BOOL sign;
BOOL usign;
REAL F;}

AD {
sign = x4-x2<=0;
usign = u<=0;}



November 25, 2005 15:35 International Journal of Control AA0512-SAsuspension

13

0 0.5 1 1.5 2
-0.1

0

0.1

0 0.5 1 1.5 2
-10

-5

0

5

0 0.5 1 1.5 2
-0.2

0

0.2

0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-20

-10

0

10

0 0.5 1 1.5 2
0

20

40

x
1

x
2

x
3

x
4

f̄

P
er

fo
rm

a
n
ce

SGM

Clipped-LQR

Active-LQR

Figure 3. Shock Test of Initial Condition x0 = [0.09, 0, 0, 0]′ (Solid line: SGM; Dash-dotted line: clipped-LQR=MPC with horizon
N=1; dashed line: Active-LQR).

DA {
F={

IF sign THEN u-(2*25.5*ws)*(x4-x2)
ELSE -u+(2*25.5*ws)*(x4-x2)};}

OUTPUT {
y=A1dot*x1+A2dot*x2+A3dot*x3

+A4dot*x4+B4dot*u;}
CONTINUOUS {

x1 = A11*x1+A12*x2+A13*x3
+A14*x4+B1*u;

x2 = A21*x1+A22*x2+A23*x3
+A24*x4+B2*u;

x3 = A31*x1+A32*x2+A33*x3
+A34*x4+B3*u;

x4 = A41*x1+A42*x2+A43*x3
+A44*x4+B4*u;}

MUST {
sign -> usign;
~sign -> ~usign;
F>=0;}

} }



November 25, 2005 15:35 International Journal of Control AA0512-SAsuspension

14

0 0.5 1 1.5 2
-0.05

0

0.05

0 0.5 1 1.5 2
-2

0

2

0 0.5 1 1.5 2
-0.05

0

0.05

0 0.5 1 1.5 2
-0.1

0

0.1

0 0.5 1 1.5 2
-5

0

5

0 0.5 1 1.5 2
0

0.5

1

x
1

x
2

x
3

x
4

f̄

P
er

fo
rm

a
n
ce

SGM

Clipped-LQR

Active-LQR

Figure 4. Shock Test of Initial Condition x0 = [0, 2, 0, 0]′ (Solid line: SGM; Dash-dotted line: clipped-LQR=MPC with horizon N=1;
dashed line: Active-LQR).
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Figure 5. Power dissipated for the shock test with initial condition x0 = [0 0 0.1 0]′ (solid line: MPC with N=40; dashed line: SGM;
dash-dotted line: Clipped-LQR; dotted line: active-LQR).
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Figure 6. Closed-loop results with random noise and initial condition x0 = [0 0 0 0]′ (solid line: MPC control with N=40; dashed line:
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Figure 8. Plot section of the explicit controller (obtained by setting x1 = 0, x2 = 0).


