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This paper proposes an explicit model predictive control design approach for regulation of linear time-invariant systems
subject to both state and control constraints, in the presence of additive disturbances. The proposed control law is implemented
as a piecewise-affine function defined on a regular simplicial partition, and has two main positive features. First, the regularity
of the simplicial partition allows one to efficiently implement the control law on digital circuits, thus achieving extremely fast
computation times. Moreover, the asymptotic stability (or the convergence to a set including the origin) of the closed-loop
system can be enforced a priori, rather than checked a posteriori via Lyapunov analysis.
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1. Introduction

Model predictive control (MPC) is becoming increasingly
popular both in academia and in industry due to its abil-
ity to solve control problems while satisfying constraints
on state and control variables (Rawlings & Mayne, 2009).
The main drawback of MPC is the computation time re-
quired for solving an optimisation problem on line, which
has historically prevented its application to fast processes.
To circumvent this problem, two main research directions
were pursued in the last decade (we limit our overview to the
control of linear time-invariant (LTI) systems that are the
subject of this paper). The first relates to fast algorithms
for online optimisation (Ferreau, Bock, & Diehl, 2008;
Patrinos & Bemporad, 2014; Richter, Morari, & Jones,
2011; Rubagotti, Patrinos, & Bemporad, 2014; Wang &
Boyd, 2010). The second regards computing the control law
offline as an explicit piecewise-affine (PWA) function of
the state vector (Bemporad, Morari, Dua, & Pistikopoulos,
2002): the offline computation employs a multi-parametric
programming solver, and leads to the same solution ob-
tained by solving the optimisation problem online. The on-
line computation in explicit MPC relies on determining
the region of the PWA partition where the current state is
located (usually referred to as the point location problem,
which typically takes a high percentage of the overall online
computation time), and then on evaluating an affine func-
tion from a pre-stored lookup table. To simplify the com-
plexity of explicit MPC controllers, approximate explicit
MPC, in which optimality is sacrificed for a control law de-
fined over a smaller number of regions, has been considered
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in the last decade (see, e.g., Grieder, Kvasnica, Baotić, &
Morari, 2005; Jones & Morari, 2010; Kvasnica & Fikar,
2012; Kvasnica, Löfberg, & Fikar, 2011, and the references
therein).

In a recent work (Bemporad, Oliveri, Poggi, & Storace,
2011), an approximate MPC controller for LTI systems was
proposed, based on a special class of functions, hereafter
referred to as piecewise-affine simplicial (PWAS) functions,
proposed by Julián, Desages, and D’Amico (2000). The
choice of PWAS functions leads to a regular partition, so
that the point-location problem is solved with a negligible
effort compared to explicit MPC defined on generic PWA
partitions (the reader is also referred to Oliveri et al., 2012,
for the practical implementation). The control law proposed
by Bemporad et al. (2011) presents feasibility and local op-
timality properties, but the asymptotic stability of the origin
of the closed-loop system and the evaluation of its domain
of attraction can be determined only a posteriori (see, e.g.,
Rubagotti, Trimboli, & Bemporad, 2013, and the references
therein). We would like to remark that PWAS functions
are not the only choice for approximation of explicit MPC
aimed at hardware implementation: for example, two differ-
ent approaches based on the use of PWA hyper-rectangular
partitions have been recently proposed by Genuit, Lu, and
Heemels (2011) and Lu, Heemels, and Bemporad (2011).
In all of these approaches (Bemporad et al., 2011; Genuit
et al., 2011; Lu et al., 2011), the possible presence of distur-
bance terms acting on the system is not taken into account.
Note that all the proposed techniques for approximation of
explicit MPC lead to a reduction of the computation time,
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but are applicable only to relatively small-sized problems,
which is an inherent limitation of explicit MPC.

In this paper, we propose an approximation method for
explicit MPC based on PWAS functions, which can be im-
plemented on digital circuits as in Bemporad et al. (2011).
However, in addition to that, we guarantee a priori the
convergence to a minimal set including the origin for the
resulting closed-loop system (also obtaining the domain of
attraction in which hard constraints on state and input vari-
ables are satisfied), in the presence of external disturbances.

More specifically, two different methods are hereafter
proposed to design a robust MPC control law u∗(x), based
on tightened constraints: an approximation procedure is
carried out, in order to find an approximate PWAS control
law u(x), such that the approximation error u(x) − u∗(x) sat-
isfies the previously defined bounds. As a drawback, u∗(x)
must be explicitly computed in order to obtain u(x). Also,
the proposed method, like all explicit MPC techniques, can
only be applied to small-sized problems, due to the expo-
nential increase of the problem complexity as the prediction
horizon or the number of states/inputs increases. However,
we can obtain a considerable decrease in the time needed
to compute the control law if compared to directly apply-
ing u∗(x), mainly due to the strong simplification of the
point-location problem. A preliminary version of the theo-
retical development in this paper is presented in Rubagotti,
Barcelli, and Bemporad (2012), where one of the two syn-
thesis methods considered here is proposed in the case of
systems without disturbances.

The paper is organised as follows. The main notation
used throughout the paper and the formulation of the con-
trol problem are introduced in Sections 2 and 3, respec-
tively, while Section 4 describes the structure of the PWAS
control law. In Section 5, the synthesis of the robustly sta-
bilising MPC control law is described, while Section 6 deals
with the approximation procedure leading to the stabilising
PWAS control law. In Section 7, two simulation examples
are shown. Finally, conclusions are drawn in Section 8.

2. Notation

Let Z>0, Z≥0, R, and R>0 denote the sets of positive inte-
gers, non-negative integers, real, and positive real numbers,
respectively. Given a set A ⊂ Rn, its interior is referred
to as int(A). Given two sets A and B, A ⊕ B ! {a + b :
a ∈ A, b ∈ B} and A ∼ B = {a : a + b ∈ A, ∀b ∈ B}
are their Minkowski addition and Pontryagin difference,
respectively. Also, given λ ∈ R≥0, we define λA ! {x ∈
Rn : x = λa, a ∈ A}. We denote by ∥v∥1 and ∥v∥∞ the
1-norm and the ∞-norm of v, respectively. Given two vec-
tors u, v ∈ Rn, the notation u ≤ v refers to componen-
twise inequalities. Given a square matrix H ∈ Rn×n, its
trace is tr(H ), its Cholesky factor is H

1
2 , and its posi-

tive definiteness is referred to as H ≻ 0. The symbol In

represents the identity matrix in Rn×n. Given a vector
v ∈ Rn and a matrix H ∈ Rn×n, ∥v∥2

M ! v′Mv. Given a
matrix H ∈ Rn×m and a compact set W ⊂ Rm, the product
HW denotes the image of W under the mapping defined
by H, HW ! {v ∈ Rn : v = Hw, ∀ w ∈ W}. When con-
venient, the explicit dependence on time of the dynamic
variables will be omitted for the sake of readability.

3. Problem statement

The controlled plant is described by the following discrete-
time LTI state space model:

x(t + 1) = Ax(t) + Bu(t) + d(t), (1)

where t ∈ Z≥0, x, d ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m.
The whole state vector x is available for feedback, while
u and d represent the control input and an unknown and
unmeasurable disturbance term, respectively. The state and
input values are required to satisfy

x ∈ X , X ! {x ∈ Rn : Cxx ≤ gx} (2)

u ∈ U , U ! {u ∈ Rm : Cuu ≤ gu} (3)

with Cx ∈ Rsx×n, Cu ∈ Rsu×m, gx ∈ Rsx , gu ∈ Rsu , while
the disturbance term is assumed to be such that

d ∈ D, D ! {d ∈ Rn : Cdd ≤ gd} (4)

with Cd ∈ Rsd×n, gd ∈ Rsd .

Assumption 3.1: The following holds for system (1):

(i) The pair (A, B) is stabilisable.
(ii) X and U are non-empty, compact, and contain the

origin in their interiors.
(iii) D is non-empty, compact, and contains the origin.

The objective of the control law is to solve a regulation
problem to the smallest possible set containing the origin,
without violating the constraints (2) and (3). The control
variable u(x) is a state-feedback control law defined on a
PWAS partition, whose structure is described in the next
section.

4. Control law on a simplicial partition

The function u(x) is defined on a closed hyper-rectangle
S = {x ∈ Rn : xmin ≤ x ≤ xmax}, which is partitioned as
S =

⋃LS−1
i=0 Si , where {Si}L−1

i=0 are simplices, i.e., poly-
topes given by the convex hull of their n + 1 vertices
x0

i , x
1
i , . . . , x

n
i ∈ Rn. The partitioning of S is performed as

follows:
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(1) Every dimensional component xj of S is divided
into pj subintervals of length (xmax,j − xmin,j )/pj .
These intervals define a number

∏n
j=1 pj of hyper-

rectangles, and S contains Nv ! ∏n
j=1(pj + 1)

vertices vk, collected into a set named VS .
(2) Every rectangle is partitioned into n! simplices with

non-overlapping interiors. The set S contains LS !
n!

∏n
j=1 pj simplices Si, such that S = ∪LS−1

i=0 Si

and int(Si) ∩ int(Sj ) = ∅, ∀i, j = 0, . . . , LS − 1.

Note that, since the partitioning of the hyper-rectangles into
simplices is univocally determined, the resulting number of
simplices is determined by p1, . . . , pn. After defining the
sets Si, it is possible to introduce the related PWAS function.
We choose to define each component of u(x), namely uj(x),
j = 1, . . . , m, as the weighted sum of Nv linearly independent
α-basis functions (Julián et al., 2000). Every element of the
jth basis is affine over each simplex and satisfies

αj,k(vh) =
{

1 if h = k

0 if h ̸= k.

After ordering the functions of the α-basis, we can consider
them as an Nv-length vector φ(x). Then, each component of
u(x), namely uj(x), is a scalar PWAS function defined as

uj (x) !
Nv∑

k=1

θj,k φk(x) = φ(x)′θj , (5)

where θj = [θj,1 . . . θj,Nv
]′ ∈ RNv is the weight vector.

Note that the coefficients θ j,k coincide with the values of
the PWAS function uj(x) at the vertices of the simplicial par-
tition. The PWAS vector function u : Rn → Rm is defined
by the weight vector θ = [θ ′

1 θ ′
2 . . . θ ′

m]′ ∈ RmNv , as

u(x) =

⎡

⎢⎣
u1(x)

...
um(x)

⎤

⎥⎦!

⎡

⎢⎣
φ(x)′θ1

...
φ(x)′θm

⎤

⎥⎦

=

⎡

⎢⎢⎢⎣

φ′(x) 0 · · · 0
0 φ′(x) . . . 0
...

...
. . .

...
0 0 · · · φ′(x)

⎤

⎥⎥⎥⎦
θ =%(x)θ .

(6)

The main reason for defining u(x) as in Equation (6) is
that PWAS functions can be implemented in digital circuits
using linear interpolators. In fact, by exploiting the regu-
larity of the partition, the point-location problem becomes
much easier than for the case of generic PWA partitions.
The value of u(x) can be obtained, for any x ∈ S, as a linear
interpolation of the values of u at the n + 1 vertices xi,0,
. . . , xi,n of the simplex Si that contains x. For a summary
of the actual field programmable gate array (FPGA) im-
plementation (also employed to design virtual sensors in

Poggi, Rubagotti, Bemporad, & Storace, 2012), the inter-
ested reader is referred to Storace and Poggi (2010).

5. Robustly stabilising optimal MPC

The next step is to obtain a function u(x) as in Equation (6)
using a procedure that leads to asymptotic convergence
to a set containing the origin for the closed-loop system.
The proposed approach consists of expressing the control
variable u(x) as

u(x) = u∗(x) + w(x),

where u∗(x) is an optimal control law which satisfies

u∗ ∈ U , (7)

while w(x) represents an approximation error (a-priori un-
known), and is considered as a bounded disturbance. Sys-
tem (1) can therefore be expressed as

x(t + 1) = Ax(t) + Bu∗(t) + Bw(t) + d(t). (8)

5.1 Definition of the auxiliary control laws

In order to formulate the MPC control law u∗(x), we first
need to define an auxiliary control law, for which we intro-
duce two alternative choices.

The first control law is synthesised on the nominal sys-
tem as follows.
Statement 5.1: The auxiliary control law is defined as
u∗(x) = Knx, where Kn is the solution for the nominal
system

x(t + 1) = Ax(t) + Bu∗(t) (9)

of the infinite-horizon linear quadratic regulator (IH-LQR),
given the weight matrices Q = Q′ ∈ Rn×n on the state and
R = R′ ∈ Rm×m on the input, with Q, R ≻ 0.

Remark 1: Note that, by classical results of LQR theory,
the closed-loop system obtained by imposing u∗(x) = Knx
in Equation (9) is asymptotically stable.

The second choice concerns an auxiliary control law
which is robustly stabilising for

x(t + 1) = Ax(t) + B (u∗(t) + w(x(t))) , (10)

where each component wi of w is such that

|wi(x)| ≤ α∥x∥1, i = 1, . . . , m, (11)

and α is a tuning parameter. This formulation of the
uncertainty can be shown to be a structured feedback
uncertainty, as in Kothare, Balakrishnan, and Morari
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2586 M. Rubagotti et al.

(1996). To this purpose, let 1 ∈ Rm×n be a matrix of ones,
and & = diag(δ1, δ2, . . . , δn) be a matrix of uncertain pa-
rameters such that |δi| ≤ 1 for all i ∈ 1, . . . , n. Then, Equa-
tion (11) can be equivalently formulated as w(x) = α1&x.
More precisely, this latter expression is equivalent to wi =
α(

∑n
j=1 δj xj ) for all i = 1, . . . , m, which leads to Equa-

tion (11).

Statement 5.2: The auxiliary control law is defined as
u∗(x) = Kpx, where Kp = Y(−1, ( = (′ ≻ 0 and Y are the
solution of the following semi-definite programme:

min
γ ,*,(,Y

γ (12a)

s.t. * > 0 (12b)

tr(() = 1 (12c)

⎡

⎢⎢⎢⎢⎣

( Y ′R
1
2 (Q

1
2 ( (A( + BY )′

R
1
2 Y γ I 0 0 0

Q
1
2 ( 0 γ I 0 0
( 0 0 * 0

A( + BY 0 0 0 ( − Bp*B ′
p

⎤

⎥⎥⎥⎥⎦
≽ 0

(12d)

where Bp ! αB1 and * = diag(λ1, λ2, . . . , λn).

Remark 2: The control law obtained in Statement 5.2 is
related to the result in Theorem 1 in Kothare et al. (1996).
While in Kothare et al. (1996), a semi-definite programme
is solved online, we here fix the gain Kp offline. Also, as
α → 0 (i.e., the dynamics of the uncertain system (10) ap-
proaches the nominal dynamics (9)), the gain Kp tends to
the gain Kn (with the same weight matrices Q, R) defined
in Statement 5.1 (Kothare et al., 1996, Remark 4). Ev-
ery possible realisation of matrix A + B(Kp + α1&) has
eigenvalues strictly inside the unit circle, which means that
the closed-loop system (10) with u∗ = Kpx is absolutely
asymptotically stable as defined by Gurvits (1995).

In conclusion, two different auxiliary control laws have
been defined, both assuming no external disturbance d, the
first assuming no approximation error w, and the second
assuming that w is vanishing as x approaches the origin as
described in Equation (11). By defining either K ! Kn or
K ! Kp, the resulting closed-loop system is

x(t + 1) = Aκx(t) + Bw(t) + d(t), (13)

where Aκ ! A + BK. Both of these control laws will be
used in the remainder of the paper as baseline to design the
MPC controller.

5.2 Preliminary concepts for the definition
of the MPC control law

A robust MPC control law is now described, which leads
to robust convergence of the state to the origin without
violating constraints (2) and (7). Let w̄ ∈ R≥0 be a fixed
scalar such that

w(x) ∈ W ! {w ∈ Rm : ∥w∥∞ ≤ w̄}, ∀x ∈ X , (14)

which represents a requirement on the maximum approx-
imation error. At this point, two additive disturbances are
present in the system. We define

ξ (t) ! Bw(t) + d(t)

from which it follows that ξ ∈ - = BW ⊕ D, and rewrite
system (8) as

x(t + 1) = Ax(t) + Bu∗(t) + ξ (t). (15)

The following standard definition is used as follows.

Definition 5.3: A set P is robust positively invariant (RPI)
for system (15), if x(0) ∈ P implies x(t) ∈ P for all ξ (t) ∈
- and for all t ∈ Z≥0.

First of all, we define

Rk !
k−1⊕

i=0

Ai
κ-, (16)

which is the set of states reachable by system (13) in k
time steps from the origin. Then, we compute the minimal
RPI set R∞ for the closed-loop system (13), assuming that
Equation (14) holds. The minimal RPI set for system (13)
with ξ ∈ - is defined as R∞ ! limk→∞ Rk . Considering
that this set can only be computed exactly under very re-
strictive assumptions, one usually needs to compute a poly-
topic over-approximation (not necessarily RPI) R̂∞ such
that R∞ ⊆ R̂∞. Details on the characterisation and com-
putation of R∞ and R̂∞ as compact polytopes are given in
Appendix 1.

Referring to a generic gain K, which can be determined
equal to Kn or to Kp, let the MPC control law acting on
system (1) be

u∗(x) ! Kx + µ∗(x), (17)

so that Equation (1) becomes x(t + 1) = Aκx(t) +
Bµ∗(t) + ξ (t). Note from Equation (17) that µ∗(x)
represents the difference between the MPC control move
and the baseline linear control law Kx. In the following,
we will make use of tightened constraints on the nominal
evolution of Equation (15) to ensure the fulfilment of
the actual constraints for the perturbed system. Starting

D
ow

nl
oa

de
d 

by
 [C

on
si

gl
io

 N
az

io
na

le
 d

el
le

 R
ic

er
ch

e]
 a

t 0
0:

40
 0

3 
Ju

ly
 2

01
5 



International Journal of Control 2587

from the initial condition x(t) = x at time t, the nominal
evolution of Equation (15) at time t + k is denoted by
x̂(t + k|t), while the evolution of the actual system with
the same initial condition by x(t + k|t). Both evolutions are
obtained by applying the corresponding control sequence
denoted by µ∗(t |t), . . . , µ∗(t + k − 1|t). It is well known
from the set-theoretical analysis in Chisci, Rossiter, and
Zappa (2001) and Kolmanovsky and Gilbert (1998) that,
given Xk ! X ∼ Rk and Uk ! U ∼ KRk , one has that,
for all k ∈ Z≥0, x̂(t + k|t) ∈ Xk ⇔ x(t + k|t) ∈ X and
Kx̂(t + k|t) ∈ Uk ⇔ Kx(t + k|t) ∈ U , for all ξ ∈ -.

The next step is to find the maximal output admissible
robust set for system (13), defined as

Xf ! {x(0) ∈ Rn : x(k|0) ∈ X , Kx(k|0) ∈ U ,

∀k ∈ Z≥0, ∀ξ ∈ -}. (18)

Details on the computation of Xf as a compact polytope
are given in Appendix 1.

Assumption 5.4: It is supposed that 0 ∈ int(X ∼ R∞)
and 0 ∈ int(U ∼ KR∞) (which ensures the computabil-
ity of Xf , see Appendix 1). Moreover, we assume that
R̂∞ ⊂ int(Xf ).

Remark 3: The condition R̂∞ ⊂ int(Xf ) represents only
a slightly stronger requirement with respect to condi-
tion R∞ ⊆ Xf , which always holds. Note that, if R̂∞ ⊂
int(Xf ), being R̂∞ a closed set, any state trajectory that
converges to R̂∞ asymptotically, converges to Xf in finite
time.

Recalling the sets Si defined in Section 4, we introduce
the set

Sf !
⋃

Si : Si ⊆ Xf , i = 0, . . . , L − 1, (19)

which will be useful to formulate the subsequent results.
Being Xf a convex set, Sf is connected, but not necessarily
convex.

5.3 MPC with tightened constraints

For the proposed robust MPC strategies, the prediction
of the system trajectory on the finite prediction horizon
N ∈ Z>0 will make use of the nominal model of the system
and of tightened constraints, as in Chisci et al. (2001). The
vector of optimisation variables (inputs) to be determined
at time t is M ! [µ′(t |t) . . . µ′(t |t + N − 1)]′ ∈ RmN . The
definition of the optimal sequence µ∗(x) is based on the so-
lution of the following finite-horizon optimal control prob-
lem (FHOCP) at each time t, with x(t) = x:

M∗(x) = arg min
M

N−1∑

k=0

∥µ(k)∥2
., . = . ′ ≻ 0 (20a)

s.t. x̂(k) ∈ Xk, k = 0, . . . , N − 1 (20b)

Kx̂(k) + µ(k) ∈ Uk, k = 0, . . . , N − 1 (20c)

x̂(N ) ∈ Xf ∼ RN . (20d)

For ease of notation, implying that the solution of the
FHOCP is computed at time t, we set µ(k) ! µ(t + k|t) and
x̂(k) ! x̂(t + k|t). Note that Equations (20b) and (20c) lead
to the fulfilment of Equations (2) and (7), respectively, along
the prediction horizon. Finally, Equation (20d) guarantees
that x(t + k|t) ∈ Xf for all possible disturbance sequences.

The FHOCP (20) is quadratic with respect to the deci-
sion variable M, and is subject to linear constraints. Also,
the current state x can be considered as a parameter. There-
fore, Problem (20) can be recast as a multi-parametric
quadratic programme (mpQP), where the set of parame-
ters x, for which a feasible solution exists, is called FN .
Since X , U , and - are convex polyhedra, FN is a con-
vex polytope and can be easily computed using linear pro-
gramming and projections (Chisci et al., 2001). Also, an
increase of the prediction horizon leads to a larger set FN ,
i.e. FN ⊇ FN−1 ⊇ · · · ⊇ F1 ⊇ Xf . The nominal case (i.e.,
- = 0) can be seen as a limit of the robust case, and FN is
always included in the corresponding set obtained for the
nominal case.

Recalling Remark 3 in Chisci et al. (2001), matrix .

can be chosen such that Problem (20) coincides with the
solution of the constrained IH-LQR associated to the weight
matrices Q and R.

The application of the receding horizon principle
leads to defining the MPC control law µ∗(x) as µ∗(x) !
[I 0 . . . 0]M∗(x). Following the development in Bemporad
et al. (2002), explicit expressions for the optimal value
of the cost function in Equation (20a), namely J∗(x), and
for M∗(x), can be obtained solving an mpQP. In partic-
ular, both J∗(x) and M∗(x) are Lipschitz continuous, and
more precisely J∗(x) is piecewise-quadratic, while M∗(x)
is PWA. This also implies that µ∗(x) and u∗(x) are PWA
functions defined in FN . The set FN is then partitioned as
FN =

⋃LF −1
i=0 Fi , where {Fi}LF −1

i=0 are polytopes (not neces-
sarily simplices) with non-overlapping interiors.

Next, define the following two sets: Rn
∞, the minimal

RPI set for the closed-loop system

x(t + 1) = (A + BKn)x(t) + d(t), (21)

and Rp
∞, the minimal RPI set for the closed-loop system

x(t + 1) = (A + BKp + αB1&)x(t) + d(t). (22)

In both cases, the presence of the disturbance w(t) is not
taken into account. The computation of sets Rn

∞ and Rp
∞,
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2588 M. Rubagotti et al.

and of their over-approximations R̂n
∞ and R̂p

∞ are described
in Appendix 1.

We are now ready to state the first main result of the
paper.

Theorem 5.5: Let Assumptions 3.1 and 5.4 hold for system
(8) with ξ ∈ -, and let u∗(x) be defined in Equation (17).

(I) Let the MPC control law in Equation (17) be de-
signed with K = Kn, w(x) such that

w(x) = 0, ∀ x ∈ Sf , (23)

with 0 ∈ int(Sf ) (the latter being defined in Equa-
tion (19)), and R̂∞ ⊂ int(Sf ). Then, for all pos-
sible realisations of the disturbance term d(t), if
x(0) ∈ FN , then x(t) ∈ X and u∗(t) ∈ U for all t ≥
0, and moreover, x(t) → Rn

∞ ⊆ R∞ as t → ∞.
(II) Let the MPC control law in Equation (17) be de-

signed with K = Kp for a given α > 0. Moreover,

|wi(x)| ≤ α∥x∥1, ∀i = 1, . . . , m, ∀x ∈ Xf ,

(24)
i.e., condition (11) be satisfied for all x ∈ Xf . Then,
for all possible realisations of the disturbance term
d(t), if x(0) ∈ FN , then x(t) ∈ X and u∗(t) ∈ U
for all t ≥ 0, and moreover, x(t) → Rp

∞ ∩ R∞ as
t → ∞.

In both cases, if D = {0}, then Rn
∞ = Rp

∞ = {0}, i.e., the
origin is an asymptotically stable equilibrium for system
(1), with domain of attraction FN .

Proof. See Appendix 2.1. "

6. PWAS approximation

In this section, we describe how to obtain the control law
u(x) defined on a PWAS partition as in Equation (6) ap-
proximating the control law u∗(x) in Equation (17), in order
to obtain asymptotic stability and constraint satisfaction for
system (1).

6.1 Approximation procedure

Assume that a control law u∗(x) has been computed for
system (1) with domain of attraction FN . Let S be de-
fined as the smallest hyper-rectangle such that FN ⊆ S, as
described in Section 4. Then, we partition the (not neces-

sarily convex) set S \ FN as S \ FN =
⋃L̂F −1

i=0 Fi , where

{Fi}L̂F −1
i=0 are polytopes with non-overlapping interiors. In

this way, a generic partition of S as S =
⋃L̃F −1

i=0 Fi is ob-
tained, where L̃F ! LF + L̂F , while we denote its set of
vertices as ṼF . In order to introduce the used approxima-
tion procedure, we use the concept of mixed partition (see,

e.g., Bemporad et al., 2011) as the partition of S induced
by the facets of both simplicial (Si) and generic (Fi) par-
titions. As a result, S is further partitioned into convex
polytopes, and the partition is completely defined by the
sets of vertices VS , ṼF , and VM , the latter representing the
set of vertices given by the intersection of the two parti-
tions and belonging neither to VS nor to ṼF . Finally, let
VI ! {v ∈ (VS ∪ ṼF ∪ VM ) : v ∈ FN }, and note that FN

is the convex hull of all v ∈ VI .
Let u(x) be defined as the control law that minimises the

maximum discrepancy with respect to u∗(x) for all x ∈ FN

(note that u∗(x) is not defined on S \ FN ), i.e.,

F∞ ! max
j=1,...,m

sup
x∈FN

{∣∣uj (x) − u∗
j (x)

∣∣} . (25)

When minimising F∞ in Equation (25), some constraints
have to be imposed for all x ∈ FN . Since the minima and
maxima of the PWA function w(x) = u(x) − u∗(x) on any
of the regions of the mixed partition are on vertices, it is
sufficient to impose constraints only on the vertices of VI .
In particular:

(1) The control law u(x) must satisfy the constraint (3),
which is already satisfied by u∗(x). This can be done
imposing Cuu(v) ≤ gu for all v ∈ VI , which implies
Cuu(x) ≤ gu for all x ∈ FN .

(2) The value of u(x) must be computed such that
∥u(x) − u∗(x)∥∞ ≤ w̄, in order for system (1) to
satisfy Equation (14). This can be obtained by sim-
ply imposing ∥u(v) − u∗(v)∥∞ ≤ w̄ for all v ∈ VI .

(3) • If K = Kn, in order to obtain Equation (23), we
impose that u(v) = u∗(v) for all v ∈ VI ∩ Sf ;

• If K = Kp, in order for system (1) to fulfil Equa-
tion (24), we require that |wi(x)| ≤ α∥x∥1 for
all i = 1, . . . , m and all x ∈ FN , which is ob-
tained by forcing |ui(v) − u∗

i (v)| ≤ α∥v∥1 for all
v ∈ VI ∩ Xf .

Therefore, after recalling the relationship between vec-
tor θ and the control variable u(x) in Equations (5) and (6),
we obtain u(x) by solving the following linear programme:

min
θ,η

η (26a)

s.t. η ≥ ±
(
φ(v)′θj − u∗

j (v)
)
, v ∈ VI , j = 1, . . . , m

(26b)

Cu%(v)θ ≤ gu, v ∈ VI (26c)
⎧
⎨

⎩

%(v)θ = u∗(v), v ∈ VI ∩ Sf , if K = Kn

|ui(v) − u∗
i (v)| ≤ α∥v∥1,

i = 1, . . . , m, v ∈ VI ∩ Xf , if K = Kp

(26d)

η ≤ w̄. (26e)
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The formulation of the cost function (26a) together with the
constraint (26b) leads to finding the vector θ that minimises
the maximum difference between uj(x) and u∗

j (x) for all
x ∈ FN and all components j. Conditions (26c) and (26d)
lead to the fulfilment of Equations (3) and (23) (or Equation
(24)), respectively. Condition (26e) ensures the fulfilment
of Equation (14). Once a feasible solution to Equation (26)
has been found, vector θ determines the control law u(x) for
all x ∈ S.

6.2 Properties of the PWAS control law

The following result holds when the approximate control
law u(x) is applied to system (1).

Theorem 6.1: Let Equation (14) and Assumptions 3.1 and
5.4 holds for system (1). Assume that a feasible solution
for the FHOCP (20) exists, and define u∗(x) as in Equation
(17). Finally, suppose that one of the following holds:

(i) The MPC control law in Equation (17) is designed
with K = Kn, all the assumptions in case (I) of
Theorem 5.5 are satisfied, and there exists a reali-
sation of u(x) obtained through a feasible solution
of Equation (26).

(ii) The MPC control law in Equation (17) is designed
with K = Kp. Moreover, all the assumptions in case
(II) of Theorem 5.5 are satisfied, and there exists
a realisation of u(x) obtained through a feasible
solution of Equation (26).

Then, if x(0) ∈ FN , one has x(t) ∈ X and u(t) ∈ U for all
t ≥ 0. Moreover, the state is asymptotically driven to Rn

∞ in
case (i), or to Rp

∞ ∩ R∞ in case (ii). Finally, if D = {0}, in
both cases (i) and (ii), the origin is an asymptotically stable
equilibrium point for system (1), with domain of attraction
equal to FN .

Proof. See Appendix 2.2. "
Remark 4: Due to the properties of the α-basis chosen
to formulate u(x), Equation (26) imposes conditions only
on a subset of the components of θ related to the vertices
v ∈ VS . In particular, if v ∈ Si with Si ∩ FN = ∅, then any
value assigned to the corresponding component of θ is not
influencing the solution of Equation (26), because their
values do not affect u(x) in FN .

6.3 Parameter tuning

Considering that the feasibility of Equations (12), (20), and
(26) is not guaranteed a priori, we give some guidelines on
choosing the design parameters of the proposed approach.
We assume that the number of vertices Nv of the simplicial
partition is fixed, which fixes the memory occupation and
latency time on the digital circuit implementing the control
law, since these quantities only depend on the structure of

the chosen PWAS structure, and not on its values. Given the
sets X and U , the tuning parameters on which the designer
can act to design u∗(x) are w̄ (if K = Kn) or both w̄ and
α (if K = Kp). In case K = Kn, we can fix a value of
w̄, compute R̂∞ and Xf checking if Assumption 3.1 is
satisfied, check if 0 ∈ int(Sf ) and R̂∞ ⊂ int(Sf ), and then
solve Problem (20). If Problem (20) is feasible and all the
required assumptions are satisfied for a given w̄ = w̄1, then
the same will hold for any w̄ ≤ w̄1. Then, one can find by
bisection the maximum feasible value of w̄, namely w̄max,
and then Problem (20) will be feasible for all w̄ such that
0 ≤ w̄ ≤ w̄max.

In case K = Kp, one can choose a sufficiently small value
for the parameter α (such that Problem (12) be feasible),
and compute Kp. Then, one would act on the value of w̄

as in the previous case, but without checking the condi-
tion relative to the set Sf , since the equality constraints in
Equation (26d) are not imposed if K = Kp.

In any case, we know that, once all the other parameters
are fixed, a smaller value of w̄ leads to a larger set FN .
On the other hand, a small value of w̄ could impose a too
tight approximation in problem (26), making it infeasible.
In conclusion, the designer can start obtaining a feasible
realisation of the PWAS control for a value of w̄ close to
w̄max. Then, this value can be decreased in order to enlarge
the set FN and obtain the desired performance.

7. Simulation examples

7.1 Example 1

As a first example, we consider the problem of regulat-
ing to the origin the LTI discrete-time system proposed
in Bemporad et al. (2011), where system (1) is defined
by

A =
[

1.2 1
0 1.1

]
, B =

[
0 1
1 1

]
(27)

with the sets in Equations (2)–(4) defined as X = {x ∈
R2 : ∥x∥∞ ≤ 2}, U = {u ∈ R2 : |u1| ≤ 0.5, |u2| ≤ 0.6},
D = {d ∈ R2 : ∥d∥∞ ≤ 5 · 10−2}. In this case, we de-
cide to design the auxiliary control law with K = Kn =[ 0.9337 −0.1540

−1.0333 −0.9373

]
, obtained using the weight matrices Q = I2

and R = 0.1I2, and we set w̄ = 0.1. The MPC control
law u∗(x) in Equation (17) is computed with . = I2 and
N = 4, and its domain of attraction FN is shown in Figure 1,
together with sets R̂∞, Xf , and R̂n

∞. The control law u∗(x)
is composed of 83 irregular regions, and the point-location
problem (see, e.g., Bemporad et al. (2002)) uses a binary
search tree with 427 nodes, and a depth between 6 and 9.
The approximate control law u(x) is computed with p1 =
p2 = 50 (defined in Section 4), obtaining Nv = 2601 vertices
and Ls = 5000 simplices, with a maximum approximation
error η = 0.0373. In Figure 1, the set Sf is also shown, and
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2590 M. Rubagotti et al.

Figure 1. Sets F ′
N , FN , Xf , R̂∞, R̂n

∞ for the obtained robust MPC control law u∗(x) in Example 1.

it is possible to verify that all the assumptions required in
case (i) of Theorem 6.1 are satisfied. The PWAS control
law so obtained is shown in Figure 2. In Figure 1, the set
F ′

N of feasible states using the optimal MPC control law
(designed with W = {0}) is shown, and one can note a rea-
sonably contained reduction of the region of attraction with
respect to the direct employment of u∗(x).

7.2 Example 2

As a second example, we design the approximate MPC
controller for the same system in form (1) described by

matrices A and B in Equation (27), in case D = {0}. In this
case, we set α = 0.05, and design the auxiliary control law
with K = Kp =

[ 0.9385 −0.1696
−1.0387 −0.9570

]
, which is obtained using

the same weight matrices as in Example 1. The MPC con-
trol law u∗(x) in Equation (17) is computed with . = I2 and
N = 4, and its domain of attraction FN is shown in Figure 3,
together with the other sets related to this example. The ap-
proximate control law u(x) is computed with p1 = p2 = 50,
obtaining Nv = 2601 vertices and Ls = 5000 simplices, with
a maximum approximation error η = 0.0297. In this case,
the control law u∗(x) is composed of 104 irregular regions,
thus the point-location problem uses a binary search tree

Figure 2. Control function u(x) on the simplicial partition of the set S in Example 1.
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Figure 3. Sets F ′
N , FN , Xf , R̂∞ for the obtained robust MPC control law u∗(x) in Example 2.

with 701 nodes, and a depth between 7 and 10. Since all the
conditions required in case (ii) of Theorem 6.1 are satisfied,
the asymptotic stability of the origin is guaranteed for all
initial conditions in FN . In Figure 4, the time evolution of
the state and control variables are shown starting from the
initial condition x(0) = [ 0.88 −0.2 ]′.

7.3 Circuit performance comparison

In order to test the performance of the proposed control laws
on real circuits, we used a Xilinx Spartan 3 FPGA (xc3s200)
board to implement the PWAS law of Example 2, coding
the state variables (circuit inputs) with 12-bit words. The
employment of architecture B (serial) in Storace and Poggi
(2010) for the simplicial approximation uses 7.8 KB of
RAM, 165 slices, and 1 multiplier, allowing the control law
computation to occur in 12 clock cycles. The simplified cir-

Figure 4. Time evolution of the state and control variables in Ex-
ample 2 (solid line for optimal values, dashed line for approximate
PWAS solution).

cuit design allows an effective circuit frequency of 80 MHz,
which leads to a sampling time interval of 150 ns. Note that
implementing the PWAS control law of Example 1 requires
exactly the same circuit specification on the FPGA.

The optimal MPC control law, which is a generic PWA
function described in Equation (17), in case W = {0} (i.e.,
no approximation error) and serial implementation, uses
1.012 KB of RAM, 1684 slices, and 1 multiplier, allowing
the computation to occur in 49 clock cycles. Using the
parallel architecture, the circuit uses 1.012 KB of RAM,
1267 slices, and 2 multipliers, allowing the computation
to occur in 25 clock cycles. Both architectures can push
the circuit frequency to 60 MHz, leading to latencies of
813 and 415 ns for serial and parallel implementations,
respectively.

As one would expect given the more involved hard-
ware architecture, the generic PWA implementations have
greater computation latency. Moreover, the number of used
slices is increased by a factor of 10 with respect to the
simplicial approximation, which, however, requires more
RAM to store data relative to the greater number of regions.
Notice, however, that the ongoing trend in computer hard-
ware technology is not, as few decades ago, to push on fre-
quency, but to increase the number of processing units and
RAM memory. Evidently, an upper limit to the execution
efficiency of hardly parallelisable algorithms (such as op-
timization) is reached, suggesting the manufacturers to in-
vest in quantity rather than in pure speed. As a consequence,
the trade-off between time and space resources has changed,
making RAM occupation an increasingly negligible issue
when compared to online computation power (as required
by online MPC). The parameters of the described circuits
are summed up in Table 1.
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Table 1 Parameters relative to the FPGA implementation of
the described control laws.

Control law PWAS PWA (serial) PWA (parallel)

RAM (kB) 7.800 1.012 1.012
No. of slices 165 1684 1267
No. of multipliers 1 1 2
No. of clock cycles 12 49 25
Frequency (MHz) 80 60 60
Latency (ns) 150 813 415

8. Conclusions

In this paper, an approximate MPC control law for un-
certain LTI systems based on PWAS functions has been
proposed, which can be efficiently implemented on digi-
tal hardware. The proposed synthesis methods guarantees
a priori the asymptotic convergence of the closed-loop sys-
tem to a terminal set (or its asymptotic stability in case no
external disturbance is present). In particular, the approach
with K = Kn does not require the introduction of the ad-
ditional tuning parameter α, but can be applied only if the
simplicial partition is dense enough to obtain a non-empty
set Sf . The approach with K = Kp, instead, requires the
introduction of α, but can be applied also with a coarser
simplicial partition. The applicability of the proposed con-
trol strategy is effective for the case of small-sized systems,
similarly to standard explicit MPC. The theoretical prop-
erties of the control law have been proved based on robust
MPC synthesis, and the simulation results have confirmed
the expected results, both for the theoretical properties of
the PWAS controller and for the performance of the related
FPGA implementation.

Funding
This work was partially supported by the European Commission
under project ‘MOBY-DIC – model-based synthesis of digital
electronic circuits for embedded control’ [grant number FP7-
INFSO-ICT-248858] (http://www.mobydic-project.eu/).

References
Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E.N. (2002).

The explicit linear quadratic regulator for constrained sys-
tems. Automatica, 38, 3–20.

Bemporad, A., Oliveri, A., Poggi, T., & Storace, M. (2011). Ultra-
fast stabilizing model predictive control via canonical piece-
wise affine approximations. IEEE Transactions on Automatic
Control, 56, 2883–2897.

Blanchini, F. (1999). Set invariance in control. Automatica, 35,
1747–1767.

Blanchini, F., & Miani, S. (2008). Set-theoretic methods in control.
Boston, MA: Birkhauser.

Chisci, L., Rossiter, J.A., & Zappa, G. (2001). Systems with per-
sistent disturbances: Predictive control with restricted con-
straints. Automatica, 37, 1019–1028.

Ferreau, H.J., Bock, H.G., & Diehl, M. (2008). An online ac-
tive set strategy to overcome the limitations of explicit MPC.
International Journal of Robust and Nonlinear Control, 18,
816–830.

Genuit, B.A.G., Lu, L., & Heemels, W.P.M.H. (2011). Approxi-
mation of PWA control laws using regular partitions: An ISS
approach. In IFAC World Congress (pp. 4540–4545). Milan.

Grieder, P., Kvasnica, M., Baotić, M., & Morari, M. (2005). Stabi-
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Appendix 1. Characterisation and computation of
RPI sets

Relying, for instance, on Blanchini and Miani (2008, Proposition
6.9), one can prove that R∞ is a polytope in our case. Nonethe-
less, an explicit computation of R∞ is, in general, impossible
(apart from the very specific case of Aκ nilpotent, as stated by
Mayne & Schroeder, 1997). The (not necessarly RPI) polytopic
over-approximation R̂∞ can be computed using various numerical
algorithms: the reader is referred to Blanchini (1999, Sections 6.4
and 6.5) and Rakovic, Kerrigan, Kouramas, and Mayne (2005)
for an overview (an implementation of the algorithm described
in the latter paper is also available, see Riverso, Battocchio, &
Ferrari-Trecate, 2013). The same procedure, in the particular case
W = 0, leads to the computation of Rn

∞ and R̂n
∞. Analogous con-

siderations are valid for the characterisation of Rp
∞ and for the

computation of R̂p
∞, which can be obtained as a polytope after a

finite number of iterations of the numerical algorithm described
by Kouramas, Rakovic, Kerrigan, Allwright, and Mayne (2005)
(note that the system with structured feedback uncertainty (22)
is equivalent to a linear time-varying system, as highlighted by
Kothare et al., 1996).

The set Xf in Equation (18) can also be conveniently ex-
pressed, using tightened constraints, as

Xf = {x : Ak
κx ∈ Xk, KAk

κx ∈ Uk, ∀k ∈ Z≥0}, (A1)

and can be computed by Algorithm 6.1 in Kolmanovsky and
Gilbert (1998) using linear programming. In particular, exploiting
the results in Theorems 6.2 and 6.3 in Kolmanovsky and Gilbert
(1998), Xf is finitely generated, if 0 ∈ int(X ∼ R∞) and 0 ∈
int(U ∼ KR∞). If R∞ is not computable, one can use the

above-mentioned over-approximation R̂∞ instead. Efficient meth-
ods for the computation of Xf are implemented in the MPT
Toolbox for MATLAB (Herceg, Kvasnica, Jones, & Morari,
2013).

Appendix 2. Proofs

2.1 Proof of Theorem 5.5
The first part of the proof holds for both choices of K. We recall that
Assumptions (A1)–(A5) in Chisci et al. (2001) are automatically
satisfied if Assumptions 3.1 and 5.4 hold, together with Equation
(14). Therefore, according to Lemma 7 and Theorem 8 in Chisci
et al. (2001), recursive feasibility is ensured, if x(0) ∈ FN . There-
fore, x(t) ∈ X and u∗(t) ∈ U for all t ∈ Z≥0. Also, x(t) → R∞
as t → ∞, for all choices of K that are stabilising for the nominal
system (i.e., both Kn and Kp). On the other hand, according to the
expression of Xf in Equation (A1), the evolution of the nominal
system given by x̂(k) with initial condition x ∈ Xf and µ(t +
k|t) = 0, ∀k = 1, . . . , N − 1, fulfils the constraints (20b) and (20c).
Also, as noticed in Chisci et al. (2001), the constraints x̂(k) ∈ Xk

and Kx̂(k) ∈ Uk for k ≥ N are equivalent to the terminal constraint
(20d). Then, we conclude that v = [0 ··· 0]′ is a feasible solution
for Problem (20) whenever x ∈ Xf , and is the minimiser of Prob-
lem (20), since it is the global minimum of the objective function,
i.e., x ∈ Xf =⇒ M∗(x) = [0 . . . 0]′.

Consider now case (I). Since R̂∞ ⊂ int(Sf ), then there exists
ϵ ∈ R>0 arbitrary small, such that (1 + ϵ)R̂∞ ⊆ int(Sf ). Consid-
ering that R̂∞ is an RPI set for system (13), it is an RPI set for sys-
tem (21) as well. Therefore, by linearity of the system, (1 + ϵ)R̂∞
is also an RPI set for system (21). Considering now the actual dy-
namics (8), from the trivial relation R̂∞ ⊂ (1 + ϵ)R̂∞, it follows
that, for all initial conditions x(0) ∈ FN , there exists t1 ∈ Z≥0 such
that x(t1) ∈ (1 + ϵ)R̂∞. Since it is assumed that w(x) = 0 for all
x ∈ Sf , and (1 + ϵ)R̂∞ is positively invariant for system (21),
one has that the system dynamics is given by Equation (21) for all
t ≥ t1, which leads to the asymptotic convergence of the state of
system (8) to Rn

∞ for all x(0) ∈ FN .
Consider now case (II). By Assumption 5.4, for any initial

condition x(0) ∈ FN , there exists t2 ∈ Z≥0 such that, applying
dynamics (8), x(t2) ∈ Xf . Considering that Xf is by definition
an RPI set for system (13), we get u∗(x) = Kpx for all t ≥ t2.
As a consequence, since, given x(0) ∈ Xf , both x(t) → R∞ and
x(t) → Rp

∞ as t → ∞, it follows that x(t) → R∞ ∩ Rp
∞ as t →

∞ for all x(0) ∈ FN .
In both cases (I) and (II), ifD = {0}, it is immediate to see that

the asymptotic stability of system (21) or (22) implies that Rn
∞ =

Rp
∞ = {0}. Therefore, the origin would be an asymptotically stable

equilibrium point with region of attraction equal to FN .

2.2 Proof of Theorem 6.1
In both cases (i) and (ii), conditions (26d) and (26e) allow one to
consider w(x) = u(x) − u∗(x) as a disturbance term that satisfies all
the requirements to synthesise u∗(x) in Equation (17). Therefore,
by application of Theorem 5.5, all the mentioned properties are
proved.
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