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ABSTRACT
This paper analyses stability of discrete-time piecewise-affine systems, defined on possibly non-
invariant domains, taking into account the possible presence of multiple dynamics in each of the
polytopic regions of the system. An algorithm based on linear programming is proposed, in order
to prove exponential stability of the origin and to find a positively invariant estimate of its region of
attraction. The results are based on the definition of a piecewise-affine Lyapunov function, which is
in general discontinuous on the boundaries of the regions. The proposed method is proven to lead
to feasible solutions in a broader range of cases as compared to a previously proposed approach.
Two numerical examples are shown, among which a case where the proposed method is applied to
a closed-loop system, to which model predictive control was applied without a-priori guarantee of
stability.

1. Introduction

The research area of piecewise-affine (PWA) sys-
tems (Sontag, 1981), has received a lot of attention during
the last 15 years. Different techniques have been recently
studied for their stability analysis, mostly based on the
computation, through semi-definite programming, of
common quadratic or piecewise-quadratic Lyapunov
functions (Eghbal, Pariz, & Karimpour, 2013; Feng, 2002;
Ferrari Trecate, Cuzzola, Mignone, & Morari, 2002;
Mason, Sigalotti, & Daafouz, 2012; Sun, 2010). Other
methods are based on piecewise-polynomial Lyapunov
functions (Prajna & Papachristodoulou, 2003), and on
PWA Lyapunov functions (Grieder, Kvasnica, Baotić, &
Morari, 2005). In spite of their simple formulation, PWA
Lyapunov functions can in some cases find a solution
where higher order piecewise-smooth functions fail to
succeed. This is due to the non-conservative nature of the
computational scheme employed for determining PWA
Lyapunov functions: if such a function exists on a given
partition, then the associated optimisation problem will
be able to find it (this property is no longer valid for
higher order functions).

In particular, PWA Lyapunov functions are obtained
through linear programming (LP), imposing positive-
definiteness and decay conditions at the vertices of the
polytopes that compose the (bounded) domain, therefore
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enforcing the same properties for all the points of interest.
Usually, the set (henceforth referred to as X ) where the
PWA dynamics is defined is a known positively invariant
set, because the notion of stability has no practical rele-
vance if the state trajectory can exit the domain where the
dynamics is defined (Biswas, Grieder, Löfberg, & Morari,
2005). However, there are many cases when the PWA sys-
tem to be analysed is not defined in a positively invariant
set. A typical example is when an explicit model predic-
tive control (MPC) control law (Bemporad, Morari, Dua,
& Pistikopoulos, 2002) is synthesised for a linear system
without a-priori guarantees of stability and/or positive
invariance of some suitable set for the closed-loop sys-
tem. This can occur, for instance, when approximations
of the optimal control law are introduced to obtain low-
complexity solutions (see, e.g. Bemporad, Oliveri, Poggi,
& Storace, 2011; Grieder et al., 2005; Jones & Morari,
2010).

In case of a non-invariant domain, a possible approach
is to perform an extensive reachability analysis to find,
through a recursive procedure, the maximum positively
invariant (MPI) set included inX (see Blanchini &Miani,
2008, Ch. 4–5; Rakovic, Kerrigan, Mayne, & Lygeros,
2006 and references therein). Then, the Lyapunov stabil-
ity analysis can be carried out in the MPI set. However,
it often happens that this latter one is not a domain of
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attraction for the origin, because the domain of attrac-
tion is a proper subset of it. The domain of attraction (or
a positively invariant subset of it) must then be deter-
mined in order to get a feasible solution applying one
of the previously mentioned methods (Feng, 2002; Fer-
rari Trecate et al., 2002; Grieder et al., 2005; Prajna
& Papachristodoulou, 2003). However, this procedure,
when applied to PWA systems, can lead to computation-
ally intractable solutions due to the exponential com-
plexity of reachability analysis. Moreover, in many cases,
searching for the MPI set is an undecidable problem.

An alternative solution is proposed in Rubagotti,
Trimboli, Bernardini, and Bemporad (2011), where an
invariant set is determined a posteriori by defining a fic-
titious dynamics that extends the actual dynamics of the
system defined on X . In this way, a larger domain Xe is
considered, which is positively invariant for the extended
system (i.e. the system including the regions where the
fictitious dynamics is defined). If a PWA Lyapunov func-
tion can be determined for the extended system, a posi-
tively invariant (not necessarily maximal) setPe included
in X is determined for the actual system. This solution
would avoid performing an extensive reachability analy-
sis. However, its main drawback arises from the arbitrari-
ness in the definition of the fictitious dynamics. This can
lead, for instance, to the artificial introduction of limit
cycles on the extended dynamics, which would make it
impossible to find a PWA Lyapunov function.

This paper proposes a method based on PWA Lya-
punov functions to assess exponential stability of the ori-
gin of a PWA system defined on a possibly non-invariant
domain X , and determines an estimate P of the region
of attraction contained in X . Even though the goal is
the same as that of Rubagotti et al. (2011), no fictitious
dynamics is required, and the PWA Lyapunov function
(directly defined in P) and the set P itself are found
simultaneously. Discontinuities at the boundaries of the
polytopic sets are allowed for both the system dynamics
and the PWA Lyapunov function. In particular, the sys-
tem dynamics on the regions boundaries can assume any
of the neighbouring values, and the presence of a finite
number of affine dynamics is allowed within each poly-
topic region, aspects not considered in Rubagotti et al.
(2011).

It is proven that the proposed method leads to a fea-
sible solution whenever there exists a fictitious dynam-
ics leading to a feasible solution by applying a gener-
alisation of the method in Rubagotti et al. (2011). The
focus of this paper is on (possibly multiple) nominal
dynamics: the reader interested in the direct analysis of
systems with parametric uncertainties or additive dis-
turbances is referred to Trimboli, Rubagotti, and Bem-
porad (2011) and Rubagotti, Trimboli, and Bemporad

(2013), respectively, and the references therein. A
preliminary version of the theory here developed for
the construction of the PWA Lyapunov function was
described in Rubagotti, Zaccarian, and Bemporad (2012).
As compared to Rubagotti et al. (2012), this paper analy-
ses the presence of overlapping dynamics on the bound-
aries, uses a different construction of the LP which
enlarges the domain of application of the proposed tech-
nique, and tests the new method on different examples.
It will be shown that the complexity of the proposed LP
(i.e. number of variables and constraints) increases only
linearly with the order of the system. However, since typi-
cally the number of regions increases as well if more state
variables come into play, the proposed method (like all
thementionedmethods) is suitable to analyse small-sized
systems (realistically up to 5–6 state variables) if a stan-
dard desktop computer is used.

After introducing the main notation, definitions, and
background results in Section 2, the stability problem
is formulated in Section 3. The proposed LP-based
PWA Lyapunov function construction is introduced in
Section 4, and the related theoretical results are proven.
Section 5 shows the broader applicability of the proposed
method with respect to the method based on fictitious
dynamics proposed in Rubagotti et al. (2011). Numeri-
cal results are discussed in Section 6, and conclusions are
finally drawn in Section 7.

2. Notation, definitions, and background

Let R, R>0, Z>0, and Z≥0 denote the sets of reals, strictly
positive reals, strictly positive integers, and non-negative
integers, respectively. Given a vector v ∈ Rn, let |v| denote
any vector norm. Given a discrete-time signalw : Z≥0 →
Rp, the sequence of the values of w from the zero instant
to the kth instant is denoted by w[k]. The norm of a
sequence is defined as ∥w[k]∥ ! supi∈{0,...,k} |w(i)|. Given
a setD ⊆ Rn, its interior is denoted by int(D), its closure
by D̄, its boundary by ∂D, and its convex hull by conv(D).
Given a finite number of setsDi, i ∈ Id = {1, . . . , nd}, we
say that {Di} is a partition of D if int(Di) ̸= ∅, int(Di) ∩
int(D j) = ∅, !i, j " with i # j, and

⋃nd
i=1 Di = D. A

polyhedron is a set given by the intersection of a finite
number of (closed or open) half-spaces. A polytope D is
a bounded polyhedron, and the set of the vertices of its
closure D̄ is denoted by vert(D̄). With respect to a given
vector norm, we define the norm ball of radius χ ∈ R>0
as Bχ ! {a ∈ Rn : |a| ≤ χ}. Given two sets D1,D2 ∈
Rn, their Minkowski sum is D1 ⊕ D2 ! {d1 + d2 : d1 ∈
D1, d2 ∈ D2}. A function γ : R≥0 → R≥0 of class K (γ ∈
K) is continuous, positive definite, and strictly increasing.
A function γ : R≥0 × Z≥0 → R≥0 is of class KL (γ ∈
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KL) if ∀k ∈ Z≥0, γ (·, k) ∈ K, and ∀c ∈ R≥0, γ (c, ·) is
decreasing, and limk → $γ (c, k) = 0.

Consider a discrete-time nonlinear difference inclu-
sion,

x+ ∈ ϕ(x), x ∈ X , (1)

where X ⊂ Rn, and x ∈ Rn is the state vector, X being
a compact set that contains the origin in its interior. The
notation x+ " ϕ(x) is a shorthand for x(k+ 1)" ϕ(x(k)),
k ∈ Z≥0, and will be always used in the following. Func-
tion ϕ( · ) is a locally bounded and outer semi-continuous
set-valued mapping whose domain contains X . Accord-
ing to Goebel, Sanfelice, and Teel (2012, Ch. 6), these
properties of ϕ ensure well posedness of (1) and suitable
existence properties for solutions to (1).

The following ones are standard definitions for differ-
ence equations/inclusions. Due to the generality of inclu-
sion (1), we characterise positive invariance as ‘strong’, in
the first definition below, to emphasise the fact that all
solutions starting inD remain inD for all forward times.
Definition 2.1: A setD ⊆ X is called strongly positively
invariant (SPI) for dynamics (1) if all solutions starting in
D remain inD for all times.
Definition 2.2: For system (1), the one-step reach-
able set from D ⊆ X is R(D) ! {y ∈ Rn : y ∈
ϕ(x) for some x ∈ D}.
Remark 2.1: Note that setX is not assumed to be SPI for
(1), so that some solutions can leave X and are therefore
defined only on a bounded time domain.
Definition 2.3: Consider dynamics (1) and an SPI set
D ⊆ X with 0 ∈ int(D). The origin is exponentially sta-
ble in D (ES(D)) if there exist c, ρ ∈ R>0, such that all
solutions to (1) satisfy

x(0) ∈ D ⇒ |x(k)| ≤ c|x(0)|e−ρk, ∀k ∈ Z≥0.

Theorem 2.1: Assume that system (1) is defined in the SPI
setD ⊆ X with 0 ∈ int(D), and admits a (possibly discon-
tinuous) function U : D → R, such that for all x ∈ X ,

α1|x|η ≤ U (x) ≤ α2|x|η, (2a)

U (g) −U (x) ≤ −α3|x|η, ∀g ∈ ϕ(x), (2b)

where η, αi ∈ R>0, i = 1, 2, 3. Then, the origin is ES(D)

for (1).
Proof: The proof follows from Teel, Forni, and Zaccarian
(2013, Theorem 1), by only concentrating on the jump
dynamics (namely selecting the flow set to be empty).
Note that Teel et al. (2013, Theorem 1) assumes continu-
ous differentiability of U but this property is never used
in the discrete-time part of the proof. Therefore, the same

proof technique can be used to prove our Theorem 2.1.
"

Note that Theorem 2.1 allows U( · ) (called uniformly
strict Lyapunov (USL) function, cf. Lazar, Heemels, &
Teel, 2009) to be a discontinuous function. Continuity at
the origin is implied by condition (2a), but the continu-
ity on a neighbourhood of the origin is not required. In
the remainder of the paper, discontinuous USL functions
will be exploited to obtain theoretical results that avoid
the conservativity possibly arising from enforcing conti-
nuity conditions.

3. Stability analysis problem and basic
definitions

Let X ⊂ Rn be a compact polytope that includes the ori-
gin in its interior. Consider a partition {Xi} ofX that con-
sists of a finite number s of polytopes,

Xi ! {x : Hix ≤ hi}, i ∈ I ! {1, ..., s}, (3)

where Hi ∈ Rn×qi , and hi ∈ Rqi are constant vectors, and
the inequality should be understood component-wise.
The number of vertices ofXi is denoted bymi. The subset
of indices I0 is defined as I0 ! {i ∈ I : 0 ∈ Xi}, and it
is assumed without loss of generality that, for all i ∈ I0,
0 ∈ vert(Xi).

The system dynamics can be defined by different affine
functions gj(x) = Ajx + aj, with Aj ∈ Rn×n, a j ∈ Rn,
j ∈ S ! {1, . . . , ng}. We denote Si ⊆ S as the subset
of indices of functions gj associated to region Xi: for
example, if S4 = {1, 5, 8}, it means that, if x ∈ X4, the
state update can be defined according to g1, g5, or g8.
The autonomous discrete-time PWA system is formally
defined as

x+ ∈ ϕ(x) =
⋃

j∈Si

g j(x), x ∈ Xi, i ∈ I. (4)

Note that, being allXi defined as closed sets, (4) allows
x to evolve according to any of the neighbouring dynam-
ics when x is on a boundary shared by more regions. For
instance, if x ∈ ∂X1 and x ∈ ∂X2, then x+ can be deter-
mined according to any gj with j ∈ S1 ∪ S2. The idea
of taking into account PWA systems with overlapping
dynamics on the boundaries has already been considered
by Hovd and Olaru (2013).

Given the PWA system (4), for which X is not nec-
essarily an SPI set, our goal is to prove the exponential
stability of the origin and provide an SPI set P ⊆ X con-
tained in its region of attraction. In order to introduce
the Lyapunov stability analysis framework, suitable sets
related to the possible transitions between regions are
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defined, as follows. We define the polytope,

Xe ! conv (X ∪ R(X )) , (5)

withR(X ) =
⋃

i∈I Ri, and whereRi is the set of points
reachable in one step from region Xi, that can be com-
puted (Blanchini & Miani, 2008) as

Ri(X ) =
⋃

j∈Si

conv
h=1,...,mi

(Ajvi,h + a j),

being vi,h ∈ vert(Xi). The closure of the set Xout ! Xe \
X , namely X̄out, is in general a non-connected set, that
can always be expressed as X̄out =

⋃s̃
i=s+1 Xi, where Xi

are closed polytopes with (possibly) overlapping bound-
aries, but with disjoint interiors. An extended set of
indices is also defined as Ĩ ! {1, . . . , s̃}. In this way, new
regions Xi, i = s + 1, . . . , s̃, are defined outside X , but
no dynamics is associated with them. Notice that, in the
particular case when X is an SPI set, then Xe ≡ X , and
Xout = ∅. For each pair (i, k) ∈ I × Ĩ , and each dynam-
ics g j ∈ Si, we define the closed transition sets,

X j
ik !

{
x ∈ Xi : Ajx + a j ∈ Xk

}
, (6)

of states that may be mapped into the polytope Xk in one
step from the polytopeXi under dynamics gj. The number
of vertices of each region X j

ik is denoted by mj
ik. The sets

X j
ik can be conveniently expressed as

X j
ik = {x ∈ Rn : Hix ≤ hi, Hk(Ajx + a j) ≤ hk}.

4. PWA Lyapunov analysis

To the end of synthesising a USL function for system (4),
defineVi : Xi → R, i ∈ I as

Vi(x) ! Fix + fi, (7a)

where in (7a) Fi ∈ R1×n and fi ∈ R are free variables to
be determined by the optimiser. Then, defineV : X → R
as

V (x) = max
i∈N (x)

Vi(x), N (x) ! {i ∈ I : x ∈ Xi}. (7b)

Note that Vi(x) and Vj(x) may be different on points
x ∈ Xi ∩ X j. Therefore, for the values of x on the inter-
sections, the required conditions on Vi are imposed for
all i ∈ N (x), although only the maximum value is taken
in (7b), as V(x) must be single valued. The constraints

Fivi,h + fi ≥ α1|vi,h|, α1 ≥ ϵ, (8a)

are imposed for all the mi vertices vi,h ∈ vert(Xi), i ∈ I ,
h = 1, … , mi, where α1 is a free parameter, while 0 < ϵ
≪ 1 is a fixed parameter. The use of ϵ arises from the fact
that strict inequalities cannot be imposed in standard LPs.
Condition (8a) will lead to V(x) % α1|x| in X , as will be
formally shown in the remainder of the paper. The value
of V( · ) at the vertices of each region Xi is limited by
imposing

Fivi,h + fi ≤ Mi, Mi ≥ ϵ, (8b)

for all the mi vertices vi,h ∈ vert(Xi), i ∈ I , h = 1, … ,
mi, whereMi for i ∈ I are free variables used by the opti-
miser. In order to obtainV(0)= 0, it is also required that

fi = 0, ∀i ∈ I0. (8c)

Due to the boundedness ofV(x), (8c) willmake it possible
to prove that there exists α2 % ϵ, such that V(x) & α2|x|
for all x ∈ X .

Also, it is required that, for allX j
ik ̸= ∅, with (i, j, k) ∈

I × Si × I ,

Fk
(
Ajv

j
ik,h+a j

)
+ fk − Fiv

j
ik,h − fi ≤ −α3

∣∣v j
ik,h

∣∣, α3 ≥ ϵ,

(8d)
for all v j

i j,h ∈ vert(X j
ik), with h = 1, . . . ,mj

ik, while α3 is a
free variable. A last set of constraints is introduced as

Fiv
j
ik,h + fi ≥ 1, (8e)

for all vertices v
j
ik,h ∈ vert(X j

ik), with h = 1, . . . ,mj
ik,

(i, j, k) ∈ I × Si × (Ĩ \ I ).
With constraints (8) in place, the vector of variables to

be determined via a suitable optimisation is composed of
α1, α3, and the termsMi, Fi and fi, for all i ∈ I .

A procedure is now proposed so as to determine a
choice for such variables by solving the following LP:

minimise
∑

i∈I
Mi, (9a)

subj. to (8). (9b)

Once (9) has been solved, the function V(x) is defined
for all x ∈ X , based on (7). The following main result
holds for the set:

P ! {x ∈ X : V (x) < 1}. (10)

Theorem 4.1: Consider system (4), whose dynamics is
defined onX , and assume that a bounded solution to prob-
lem (9) exists. Then, with reference to dynamics (4), P
in (10) is an SPI set, and the origin is ES(P ).
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Proof: Given x ∈ Xi, for any i ∈ N (x) (see (7b)),
define γ i, h % 0, such that

∑mi
h=1 γi,h = 1, as a set

of coefficients defining x as a convex combina-
tion of the vertices of Xi. We obtain from (8a)
that α1|x| = α1

∣∣∑mi
h=1 γi,hvi,h

∣∣ ≤
∑mi

h=1 γi,hα1|vi,h| ≤∑mi
h=1 γi,h(Fivi,h + fi) = Fix + fi = Vi(x). This means

that Vi(x) % α1|x|, for all i ∈ N (x). As a conse-
quence, α1|x| ≤ maxi∈N (x){Fix + fi} = V (x). Since
X =

⋃
i∈I Xi, this implies that, for all x ∈ X , V(x)

% α1|x|. With a similar argument one can show that
(8b) implies V(x) & Mi for all x ∈ Xi, with i ∈ I , and
that (8e) implies Fix + fi % 1 for all x ∈ X j

ik, with
(i, k) ∈ I × (Ĩ \ I ). Considering that (8c) implies Vi(0)
= 0 for all i ∈ I0, and that V(x) is upper bounded by
maxi∈I Mi < +∞, there exists a scalar α2 % ϵ, such that
V(x) & α2|x| for all x ∈ X . We conclude that

α1|x| ≤ V (x) ≤ α2|x|, ∀x ∈ X . (11)

Consider any x ∈ XI !
⋃

(i, j,k)∈I×Si×I X
j
ik ⊆ X .

Using again a convex combination by expressing
x =

∑mj
ik

h=1 γ
j
ik,hv

j
ik,h, such that

∑mj
ik

h=1 γ
j
ik,h = 1 for all

admissible values of i, j, and k, we get from (8d),

Vk(g j(x)) = fk + Fk

⎡

⎣Aj

⎛

⎝
mj

ik∑

h=1
γ

j
ik,hv

j
ik,h

⎞

⎠ + a j

⎤

⎦

= fk +
mj

ik∑

h=1
γ

j
ik,h

(
Fk

(
Ajv

j
ik,h + a j

))

≤ fk +
mj

ik∑

h=1
γ

j
ik,h

(
− fk+Fivk

ik,h+ fi−α3|v j
ik,h|

)

= Fi
mj

ik∑

h=1
γ

j
ik,hv

j
ik,h+

mj
ik∑

h=1
γ

j
ik,h fi−α3

mj
ik∑

h=1
γ

j
ik,h|v

j
ik,h|

≤ Fix + fi − α3|x| = Vi(x) − α3|x|, (12)

which proves that Vk(gj(x)) − Vi(x) & −α3|x| for all x ∈
X j

ik, with (i, j, k) ∈ I × Si × I . This allows us to state
that, for all (i, j, k) ∈ I × Si × I ,

max
k∈N (g j(x))

(
Fkg j(x) + fk

)
≤ max

i∈N (x)
(Fix + fi) − α3|x|.

Since {X j
ik}, with (i, j, k) ∈ I × Si × I , is a partition of

XI , we obtain

V (g) −V (x) ≤ −α3|x|, ∀ x ∈ XI, ∀ g ∈ ϕ(x). (13)

Note that, after definingP as in (10), one hasP ⊆ XI . The
reason why is that, from (8e), one can easily obtain that

Fix + gi % 1 for all x contained in the closure of X \ XI .
Therefore, conditions (11) and (13) hold for all x ∈ P ⊆
XI ⊆ X . This fact leads to two conclusions: first, since P
is a sublevel set of V(x), then from (13), P is an SPI set;
second, from (11)–(13), applyingTheorem2.1, system (4)
is ES(P ). "

Remark 4.1: Even if the formulation of the LP (9) will not
lead to an explicit maximisation of the domain of attrac-
tion, the minimisation of the sum of the Mi leads to val-
ues of the Lyapunov function as close as possible to zero,
preventing them to be assigned large values. Intuitively, if
more values of the PWA Lyapunov function on the ver-
tices of the partition are below 1, then the set P is larger.

Remark 4.2: The preliminary version of the algorithm
here proposed (presented in Rubagotti et al., 2012), apart
from considering a single affine dynamics for each region
Xi, would produce an unbounded LP solution in the
special case in which X were already SPI. Therefore, in
Rubagotti et al. (2012) it had to be assumed thatX was not
an SPI set. This assumption is not needed in this revised
algorithm, since, in that special case, conditions (8e) do
not appear in the LP, and the proof of Theorem 4.1 is still
valid.

Remark 4.3: It can be inferred from the description of the
LP (9) that the total number of variables is nv = 2 + s(n
+ 2), while the total number of inequality constraints is
nc = 2 + s +

∑s
i=1

(
2mi +

∑
j∈Si

∑s̃
k=1 m

j
ik

)
.

Remark 4.4: In case (8) is infeasible, a possibility is to
increase the number of regions Xi, therefore providing
more flexibility in synthesising the PWA Lyapunov func-
tion (7). A possible way is to consider the sets X j

ik as the
new sets Xi and restart the one-step reachability analy-
sis. As an alternative, one can employ a grid of the set X ,
which, redefining the partition together with the old sets
Xi, defines the new sets Xi.

Remark 4.5: In order to make the proposed approach
more general, one might want to consider the case in
which affine dynamics, additional with to those defined
in the full-dimensional regions Xi, are present defined
only on given facets of dimension 1, . . . , n − 1 of one or
more region Xi (a thorough definition of the concept of
facet can be found, for instance, in Spjøtvold, Kerrigan,
Jones, Tøndel, & Johansen , 2006). In this way, specific
(possiblymultiple) dynamics can be defined on the lower-
dimensional intersections between regions Xi, including
the case of dynamics defined only on one vertex. By con-
sidering each facet as a new and independent region, the
results proved in Theorem 4.1 still hold.
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5. Comparison with a previous approach

In Rubagotti et al. (2011), an analogous problem has been
addressed by proposing a different solution. Since the
approach of Rubagotti et al. (2011) considered the case of
a single dynamics for each region Xi, in order to make a
comparison we will consider a particular sub-case of our
approach in which Si = {i}, i.e. the i − th dynamics is
associated with the i − th region only. Therefore, we can
omit the index j from the subsequent formulation of this
section. In Rubagotti et al. (2011), a contractive PWA fic-
titious dynamics )(x) is defined a priori in the polytopic
regions Xi, i = s + 1, . . . , s̃, as

x+ = )(x) = )i(x), x ∈ Xi, i = s + 1, . . . , s̃, (14)

such that Xe is an SPI set for the so-called extended sys-
tem, defined as

x+ =
{

ϕ(x), x ∈ X
)(x), x ∈ X̄out.

(15)

In Rubagotti et al. (2011), due to the difficulty of defining
the function )(x), it was suggested to define it as a con-
tractive dynamics of type )(x) = ρx, ρ ∈ R[0,1), which
was noticed to give good results in practice. In the fol-
lowing we generalise such an approach, by assuming that
)(x) can be any PWA dynamics. Then, a PWA Lyapunov
function Ve : Xe → R is determined by LP, in order to
satisfy Equation (2) with η = 1 for all x ∈ Xe. More pre-
cisely, we have

Ve
i (x) ! Fe

i x + f ei , i ∈ Ĩ, (16a)

with Fe
i ∈ R1×n and f ei ∈ R, and then we define Ve as

Ve(x) = max
i∈Ne(x)

Ve
i (x), Ne(x) ! {i ∈ Ĩ : x ∈ Xi}.

(16b)
If a feasible realisation of function Ve(x) can be deter-

mined, the set Pe is defined as

Pe !
{
x : Ve(x) ≤ inf

x∈Xe\X
Ve(x)

}
, (17)

and system (4) is proven to be exponentially stable in Pe.
The fictitious dynamics provides an additional degree of
freedom, but it is in general very hard if not impossible
to know (except perhaps for very simple examples) what
choice of the fictitious dynamics would lead to a larger
set Pe, or even if there exists a realisation of )(x), such
that a set Pe ̸= ∅ can be determined. Therefore, in some
cases, a wrong choice of the fictitious dynamics can pre-
vent the extended system from converging to the origin.
The approach of this paper overcomes this problem, since

no dynamics is defined out of the setX , and the Lyapunov
function is defined only for x ∈ X .

The next result on the comparison between the two
methods is now introduced.
Theorem 5.1: Given a PWA system in form (4), whose
dynamics is defined on X , define the extended set Xe as
in (5), such that Xe is an SPI set for the extended system
(15). Assume that there exists a fictitious dynamics )(x),
x ∈ X̄out , such that a PWA USL function Ve(x) is deter-
mined for all x ∈ Xe. Then, for system (4) defined on X ,
there exists a feasible solution of problem (9) and a scalar
β ∈ R>0, such that V(x) = βVe(x) for all x ∈ X .
Proof: According to the assumptions, for system (15),
Ve(x) is defined as a PWA function onXe.Moreover, there
exist αe

1, αe
2, αe

3 ∈ R>0, such that

αe
1|x| ≤ Ve(x) ≤ αe

2|x|, (18)

Ve(x+) −Ve(x) ≤ −αe
3|x|. (19)

Wewill show that, starting fromVe(x), we can always find
another USL function Ṽ e(x) defined for x ∈ X , which is
a feasible solution of (9).

First of all, define

Ve
inf ! inf

x∈Xe\X
Ve(x), (20)

β ! 1/Ve
inf, (21)

Mi ! β max
x∈Xi

{
Ve(x)

}
, i ∈ I. (22)

Then, define Ṽ e(x) ! βVe(x), x ∈ X . It is now possi-
ble to state that Ṽ e(x) = maxi∈N (x) Ṽ e

i (x), with Ṽ e
i (x) !

F̃ e
i x + f̃ ei , being F̃ e

i ! βFe
i and f̃ ei ! β f ei .

Note that Ve(x) for x ∈ X satisfies, by construction,

F̃ e
i x + f̃ ei ≥ βαe

1|x|, ∀x ∈ Xi, i ∈ I, (23a)

F̃ e
i x + f̃ ei ≤ Mi, ∀x ∈ Xi, i ∈ I, (23b)

f̃ ei = 0, i ∈ I0, (23c)

F̃ e
k (Aix + ai) + f̃ ek − F̃ e

i x − f̃ ei ≤
−βαe

3|x|, ∀x ∈ X i
ik, (i, k) ∈ I × I, (23d)

F̃ e
i x + f̃ ei ≥ βVe

inf = 1, ∀x ∈ X i
ik, i ∈ I, k ∈ Ĩ \ I.

(23e)

If any of the conditions (23) is satisfied for all x in
a given compact set, it is automatically satisfied also
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on its vertices. Therefore, conditions (23) imply condi-
tions (8), which means that Ṽ e is a feasible solution of
problem (9). "
Remark 5.1: Notice that the existence of a feasible solu-
tion of problem (9) does not necessarily imply that, once
)(x) is fixed, there exists a PWA USL function Ve(x)
in Xe. For example, consider the following PWA sys-
tem defined in X = [−1, 2]: f(x) = −0.5x for x ∈ X1 !
[−1, 0]; f(x) = −0.3x for x ∈ X2 ! [0, 1]; f(x) = 3x
for x ∈ X3 ! [1, 2]. Since R(X3) = [3, 6], a new region
is defined as X4 = [2, 6], such that Xe !

⋃4
i=1 Xi =

conv{X ∪ R(X )}. The fictitious dynamics in X4 would
be defined a priori as a contractive one. We assume that
x+ = 0.5x, leading to a positively invariant set Xe =
[−1, 4]. For any initial condition x(0) " (1, 4], the state
evolution will exhibit a limit cycle, therefore prevent-
ing to prove the (in this simple case, apparent) fact that
the origin is an exponentially stable equilibrium point
with domain of attraction X1 ∪ X2. This result is instead
obtained with the approach presented in this paper: both
X1 andX2 are SPI sets, while x+ /∈ X , ∀x ∈ X3. The tran-
sition sets would be X 1

11 = X1, X 2
22 = X2, and X34 = X3.

An optimal solution for (9) would be given by the PWA
Lyapunov function,

V (x) =

⎧
⎨

⎩

−ϵx, x ∈ X1
ϵx, x ∈ X2
1, x ∈ X3.

In conclusion, it is always possible to obtain P solv-
ing (9) when Pe can be found with the method based on

fictitious dynamics. On the other hand, there are systems
for which this latter gives no solution (mainly because of
the difficulty, in an n-dimensional case, of understanding
what a reasonable choice for )(x) can be), while it is pos-
sible to find a setP by using the method proposed in this
paper.

6. Numerical examples

6.1 Example 1

As a first example, a simple first-order piecewise-linear
system is considered, which allows one to intuitively
understand the possible advantages of the application of
the proposed method. The system is defined as follows:

x+ =

⎧
⎪⎪⎨

⎪⎪⎩

−2x, x ∈ X1 ! [−2, −1]
0.1x, x ∈ X2 ! [−1, 0]
0.5x, x ∈ X3 ! [0, 5]
2x, x ∈ X4 ! [5, 6].

One can immediately see that, because of the dynamics
in X4, the set X =

⋃4
i=1 Xi is not SPI, and therefore clas-

sical methods for numerically determining a Lyapunov
function cannot be directly applied. The method pro-
posed in this paper, instead, would determine the SPI
set P = [−2, 5) and the Lyapunov function shown in
Figure 1. In this latter, notice that V(x) = 1 for x ∈ X4,
while values smaller than 1 are achieved or the other 3
regions. The computation of the transition setsX j

ik (in this
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Figure . The PWA Lyapunov function V(x) associated to the LP () for the first-order example. Given the small values of the function for
x" [− , ], a zoomed plot is provided.
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Figure . The maximum control-invariant set for the open-loop system in the second-order example (external set in black), containing
the PI setP .

example, with j = k) and the other preliminary calcula-
tions took 0.36 s on a 2.4 GHz processor with 8Gb RAM.
The LP for determining V(x) consists of 32 constraints
and 14 variables, and is solved using CVX (Grant & Boyd,
2013) in 0.62 s on the previously-mentioned machine.
In this simple case, the set P coincides with the max-
imal positively invariant set, which can be determined
intuitively, and for which an efficient computational algo-
rithm is in general provided in theMPT toolbox (Herceg,
Kvasnica, Jones, & Morari, 2013). After determining the
MPI set, classical methods (based on PWA or piecewise-
quadratic Lyapunov functions implemented for instance
in the MPT toolbox) can be successfully employed to
prove the exponential stability of the origin. Notice that
a common quadratic Lyapunov function does not exist in
P for the considered example.

6.2 Example 2

In order to show amore complex example of the proposed
approach, we consider the application of the PWA control
law of Bemporad et al. (2002) to a discretised double inte-
grator,

x+ = Ax + Bu, (24)

where

A =
[
1 1
0 1

]
, B =

[
1
0.5

]

and where the goal is to optimally stabilise the ori-
gin satisfying the input constraints u(k) ∈ U for all k ∈
Z≥0, with U ! {u ∈ R : |u| ≤ 1}. In particular, follow-
ing Bemporad et al. (2002), we seek for an optimal LQ
stabiliser over a prediction horizon N = 5, with weight
matrices

Q =
[
1 0
0 1

]
, R = 1,

on the state and input variables, respectively. No termi-
nal weight or terminal constraints are defined, and no
state constraints are imposed (as a consequence, no set-
invariance or closed-loop stability properties are guar-
anteed a priori). The arising explicit MPC control law,
determined by using the MPT toolbox, is defined as a
PWA function for all x ∈ R2. If we consider the closed-
loop dynamics inX !

{
x ∈ R2 : |x|∞ ≤ 10

}
, we obtain

a partitioning of X into 31 regions, to which 31 different
affine dynamics are associated. In order to use a finer par-
tition, we increase the number of regions Xi by adding a
rectangular partitioning, obtaining a total number of s =
148 regions. The closed-loop dynamics (4) is

x+ = (A + BKi)x + Bki, x ∈ Xi.

Since state constraints were not imposed a priori, X is
not an SPI set. Therefore, we are interested in finding a
set P ⊂ X which is SPI and contained in the region of
attraction. As a first step, we find the set Xe defined in
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Figure . The PWA Lyapunov function V(x) associated to the LP () for the second-order example.

(5), and the transition sets X j
ik. Notice that, in this case,

the closed-loop dynamics defined by the MPC controller
is continuous, and j = k, since the dynamics is uniquely
defined at each x ∈ X . We are then ready to formulate
the LP (9), setting ϵ = 10−5. The resulting LP is infea-
sible. Therefore, we decide, as suggested in Remark 4.4,
to grid the set X as it can be clearly seen in Figure 2 (a
coarser grid would again lead to an infeasible LP). The
LP is successfully solved, which proves that the origin
of the closed-loop system is ES(P ) for the set P shown
in Figure 2. Also, the PWA Lyapunov function V(x) is
shown in Figure 3. The LP comprises 3108 constraints
and 594 variables, and is solved using CVX in 1.15 s on
a 2.4 GHz processor with 8GB RAM. The computation
of the sets X j

ik, together with all the other required oper-
ations apart from the LP, took about 75 s on the same
computer.

The same stability analysis problem was considered
also using themethod proposed in Rubagotti et al. (2011),
but no feasible solution was found, meaning that this
example falls into the cases considered in Section 5. In this
case,P does not necessarily coincide with theMPI set for
the closed-loop system. TheMPI set could not be numer-
ically determined using the MPT Toolbox, but an over-
estimation of it can be determined using the same toolbox
by computing the maximum control-invariant set for the
open-loop system (24) with respect to the given state and
input constraints. The result is shown in Figure 1, where
the maximum control-invariant set is depicted in black.

This shows that the area of set P is close to that of the
MPI set.

7. Conclusions

This paper proposes a convex optimisation-based
method for the analysis of stability and invariance of
PWA systems, which is based on the construction of a
suitable PWA Lyapunov function defined through LP.
Multiple affine dynamics are allowed in each region
of the PWA system, and discontinuities are taken into
account for both the system dynamics and the Lyapunov
function at the regions boundaries. The method is of
particular interest when the set of definition of the sys-
tem dynamics is not positively invariant, but the case of
positively invariant sets can be analysed with the same
procedure, as a particular case. The method can find a
feasible solution in a broader range of cases with respect
to a previously-proposed approach, being independent
from the definition of fictitious dynamics. Future work
comprises extending our approach frommere analysis to
controller synthesis. The main difficulty of this resides in
preserving the convexity of the proposed optimisation.
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