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Model predictive control (MPC) is one of the few advanced control methodologies that have proven to be very
successful in real-life applications. An attractive feature of MPC is its capability of explicitly taking state and
input constraints into account. Recently, there has been an increasing interest in the usage of MPC schemes to
control electrical power networks. The major obstacle for implementation lies in the large scale of these systems,
which is prohibitive for a centralised approach. In this article, we therefore assess and compare the suitability of
several non-centralised predictive control schemes for power balancing, to provide valuable insights that can
contribute to the successful implementation of non-centralised MPC in the real-life electrical power system.
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1. Introduction

Electrical power networks are among the largest and

most complex-engineered systems ever created. In spite

of their immense complexity, power systems have

shown an impressive level of performance and robust-

ness. One reason for their success is that traditional

power systems are characterised by a highly repetitive

daily pattern of power flows, with a relatively small

amount of suddenly occurring, uncertain fluctuations

on the demand side, and with controllable, large power

plants on the supply side. As a consequence, in

traditional power systems, a large portion of energy

production can be efficiently scheduled in an open-

loop manner, with automatic generation control

(AGC) (Jaleeli, VanSlyck, Ewart, Fink, and

Hoffmann 1992; Kundur 1994) providing efficient

real-time power balancing of uncertain demands.
However, today, electrical power systems are

undergoing two fundamental restructuring processes.

Firstly, from a regulated, single-utility controlled

operation, the system has been restructured to include

many parties that compete for power production and

consumption (see, e.g. Stoft (2002) and the references

therein). With power markets as the central opera-

tional mechanism, competitive economic forces often

push the system towards its operational boundaries.

Secondly, there has been an increasing integration of
small-scale distributed generation (DG), see, e.g.
Borbely and Kreider (2001) and the references therein.
Since large amounts of DG are expected to be based on
renewable, intermittent energy sources, such as wind
and sun, future power systems will be characterised by
large and unpredictable power fluctuations on the
power production side. These observations lead to the
conclusion that the preservation of the high perfor-
mance and robustness levels that were attained in the
past will become a major challenge for power system
control in the near future.

Various recent papers have observed that model
predictive control (MPC) has the potential for solving
the problems that will appear in future electrical power
networks (Camponogara 2000; Camponogara, Jia,
Krogh, and Talukdar 2002; Venkat 2006; Jokić,
Lazar, and Van den Bosch 2007; Venkat, Hiskens,
Rawlings, and Wright 2008). MPC is capable of
handling control problems where off-line computation
of a classical control law is difficult, particularly since
MPC can explicitly take system constraints into
account when computing the control action.
Furthermore, MPC allows the use of disturbance
models, which can be employed to counteract the
fluctuations in power generation introduced by renew-
able energy sources. For a detailed survey of MPC and
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constrained optimal control, the interested reader is
referred to Mayne, Rawlings, Rao, and Scokaert
(2000) and Goodwin, Seron, and De Dona (2005).

Yet, the fact that MPC is a centralised control
mechanism is a major issue when considering power
system operation. Centralised control implies that a
single controller is able to measure all the system
outputs, compute the optimal control solution,
and apply that action to all actuators in the network,
within one sampling period. As power networks
are large-scale systems, both computationally and
geographically, a centralised MPC controller is practi-
cally impossible to implement.

The difficulties with centralised predictive control
for large-scale systems explain the increasing attention
for non-centralised MPC implementations in the
control literature (see, for example Camponogara
2000; Camponogara et al. 2002; Keviczky,
Borrelli, and Balas 2006; Alessio and Bemporad
2007; Dunbar 2007; Venkat et al. 2008). Roughly
speaking, non-centralised MPC schemes can be divided
into two categories: decentralised techniques, which
do not allow for communication between local
controllers and distributed techniques, where commu-
nication between different controllers is exploited
to improve the prediction accuracy. Distributed MPC
methods can be further categorised as techniques
that require communication between all the
controllers in the network and techniques that require
communication solely with directly neighbouring
controllers.

In the literature on non-centralised predictive
control, various power system implementations have
been illustrated, (Camponogara 2000; Camponogara
et al. 2002; Venkat et al. 2008). These methods differ in
terms of computational complexity, the extent of
communication and the size of the embedded predic-
tion model, and, as a consequence, in terms of
performance. In this article, we consider decentralised
MPC (DMPC; Alessio and Bemporad 2007), stability-
constrained distributed MPC (SC-DMPC;
Camponogara et al. 2002) and feasible cooperation-
based MPC (FC-MPC; Venkat 2006), all of which
represent viable candidates for implementation in
power systems. Alternative methods, such as strategies
for enforcing constraints that involve the dynamics of
multiple control areas (see for instance, Keviczky et al.
(2006), Richards and How (2007)) are not discussed, as
the literature does not yet give a solid solution for
dealing with coupled constraints in a low-complexity
and non-conservative fashion. For a discussion on the
theoretical issues regarding non-centralised MPC
in general, the interested reader is referred to
(Camponogara 2000; Camponogara et al. 2002;
Keviczky et al. 2006; Alessio and Bemporad 2007;

Dunbar 2007; Richards and How 2007; Venkat et al.
2008) and the references therein.

The choice for DMPC, SC-DMPC and FC-MPC is
further motivated by our main research goal, which is
to study the correlation between the complexity and
usefulness of non-centralised MPC schemes and their
corresponding attainable performance. DMPC does
not require communication and therefore belongs to
the decentralised and simplest category of non-
centralised MPC. Although, specific implementations
of DMPC do exploit an exchange of information
between controllers, we will only consider the com-
pletely decentralised version in this article, to give an
indication of the performance that can be obtained
without communication. SC-DMPC and FC-MPC are
distributed MPC schemes, as they both employ
communication to increase the accuracy of their state
predictions. The FC-MPC technique requires commu-
nication between all local controllers and uses an
iterative procedure to compute the control action,
while the SC-DMPC scheme requires communication
between directly neighbouring subsystems only. As
such, SC-DMPC can be viewed as the outcome of a
trade-off between the complexity and performance
attainable by DMPC on the one hand, and FC-MPC
on the other.

The remainder of this article is organised as
follows. Section 2 introduces the (centralised) MPC
methodology along with the conditions that are
necessary to guarantee closed-loop stability. In
Section 3, we describe the non-centralised MPC
techniques from an engineering perspective, particu-
larly focusing on the details relevant for controller
implementation. Section 4 contains a simulation study
of the MPC algorithms under consideration, which is
based on a suitably constructed power network
example. The non-centralised MPC schemes are
compared with centralised MPC and with the classical
AGC method that is currently employed in real-life
power system control. Given the results of this
benchmark test, we discuss the suitability of the
considered methods for balancing/frequency control
in power networks. We finish by listing the main
conclusions in Section 5.

1.1 Nomenclature

LetR,Z and Zþ denote the field of real numbers, the set
of integers and the set of non-negative integers,
respectively. For an arbitrary sequence u¼ (u(0),
u(1), . . .), we use the notation u[k] to denote the
truncation of u at k2Zþ, i.e. u[k] :¼ (u(0),
u(1), . . . , u(k)) with k� 1. The operator col(�, . . . , �)
stacks its operands into a column vector and
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diag(M1, . . . ,Mn) denotes a block diagonal matrix with
matricesMi on the main diagonal. The notations A�B
andA�B denote thatA andB are Hermitian andA�B
is positive definite or positive semi-definite, respectively.

2. Centralised MPC

The basic principles of MPC are illustrated in Figure 1.
In MPC, the control action is computed by solving a
finite-horizon open-loop optimal control problem at
each sampling instant. The controller employs a model
to obtain a prediction of the state evolution over time,
given the current state of the controlled system. Only
the first sample of the optimising input sequence is
applied to the plant, after which the whole process is
repeated at the next time instant. This is the main
difference with classical control, which commonly uses
a pre-computed and fixed feedback law. The unique,
distinguishing feature of MPC lies in its ability to
compute the control input while explicitly taking input
and state constraints into account.

In this article, we consider systems that can be
accurately modelled using linear discrete-time state-
space representations of the form

xðtþ 1Þ ¼ AxðtÞ þ BuðtÞ, ð1Þ

where A2R
n�n, B2R

n�m, x(t)2R
n is the state

and u(t)2R
m is the control input at discrete-time

instant t2Zþ. Note that the number of states n in
power networks that consist of thousands of nodes/
buses can be very large, which corresponds to high-
dimensional A and B matrices.

Let the control input and the predicted state at time

instants tþ k2Zþ, given x(t), be denoted by �u(k)

and �xðkÞ, respectively. Moreover, let �u[N�1]¼ ( �u(0),

. . . , �u(N� 1)) be a sequence of control moves, where

N2Zþ is the prediction horizon. The optimal control

problem that the MPC controller solves each sampling

instant, is formally defined as follows.

Problem 2.1: At discrete-time instant t2Zþ let x(t)

and N� 1 be given, set �xð0Þ :¼ xðtÞ and solve

V�NðxÞ ¼ min
�u½N�1	
fVNðx, �u½N�1	Þ j �u½N�1	 2 UNðxÞg, ð2aÞ

where

VNðx, �u½N�1	Þ ¼ Fð �xðNÞÞ þ
XN�1
k¼0

‘ ð �xðkÞ, �uðkÞÞ

¼ �x>ðNÞP �xðNÞ

þ
XN�1
k¼0

�x>ðkÞQ �xðkÞ þ �u>ðkÞR �uðkÞ ð2bÞ

�xðkþ 1Þ ¼ A �xðkÞ þ B �uðkÞ, ð2cÞ

for k¼ 0, . . . ,N� 1.

The matrices Q¼Q>� 0 and R¼R>� 0 are

suitably chosen performance weights, i.e. tuning

parameters, whereas the matrix P¼P>� 0 that

weights the terminal state is usually computed off-line

in such a way that closed-loop stability is guaranteed

(Mayne et al. 2000).

Figure 1. A schematic illustration of model predictive control.

1164 R.M. Hermans et al.

D
ow

nl
oa

de
d 

by
 [

M
ar

sh
al

l U
ni

ve
rs

ity
] 

at
 0

0:
00

 0
4 

Se
pt

em
be

r 
20

13
 



The control problem defined by (2a) minimises the
quadratic cost function VN(x, �u[N�1]) over all input
sequences �u[N�1] in the set UN(x). We assume that
UN(x) can be defined by a finite number of linear
inequalities on u, such that the MPC optimisation
problem can be formulated as a quadratic program
(QP). The set of feasible input sequences is determined
by the constraints on the states and inputs,

UNðxÞ :¼
�

�u½N�1	 2 U
N
j �xðkÞ 2 X,

k ¼ 1, . . . ,N� 1, �xðNÞ 2 Xf

�
, ð3Þ

where U
N :¼U� � � ��U is the N-times Cartesian

product of U. The set of feasible inputs U is a compact
subset of R

m and X is a closed subset of R
n.

Asymptotic stability of the MPC-controlled system
can be guaranteed a priori by constraining the terminal
state �xðNÞ to an appropriately chosen terminal set
Xf
X and by using a specific terminal weight P
(Mayne et al. 2000). The set Xf must be positively
invariant (see Blanchini (1994)) and should satisfy the
following property:

Xf 
 O1 :¼
�
x 2 R

n
j KðAþ BK Þkx 2 U

and ðAþ BK Þkx 2 X, k ¼ 0, . . . ,1
�
, ð4Þ

where the pair {P,K } is obtained as the solution of the
unconstrained infinite horizon LQR problem (Mayne
et al. 2000), i.e.

P ¼ ðAþ BK Þ>PðAþ BK Þ þ K>RKþQ, ð5aÞ

K ¼ �ðRþ B>PBÞ�1B>PA: ð5bÞ

After solving Problem 2.1, the controller applies the
first element of the optimal input sequence �u�½N�1	 to
the system, i.e. u(t) :¼ �u*(0), and discards the rest of the
sequence. At the next time instant, the state of the
system is measured and the procedure described above
is repeated. This so-called receding horizon strategy
introduces a closed-loop feedback mechanism to
increase robustness.

3. Non-centralised MPC

As explained in Section 1, a centralised implementation
of MPC is not well-suited for control of power
networks due to the complexity and size of these
systems. In this section, we describe three less complex
non-centralised MPC techniques that are more appro-
priate for power system control. We start by introdu-
cing the basic notions and definitions used in the
description of these algorithms.

Consider a power network that is represented by
the directed graph G¼ (S, E), with a finite number of

vertices S ¼ {&1, . . . , &M} and a set of directed edges
E 
 {(&i, &j)2S �S j i 6¼ j}. We can model the dynamics
of the power network by assigning a dynamical system
to each vertex &i2S, with the dynamics governed by,

xiðkþ 1Þ ¼ fiðxiðkÞ, uiðkÞ, viðxN i
ðkÞÞÞ, ð6Þ

for k2Zþ and i2I :¼ {1, . . . ,M}. Here, xi 2 Xi 
 R
ni ,

ui 2 Ui 
 R
mi are the state and control input of the ith

subsystem. We assume that the feasible input and state
sets, Ui and Xi respectively, are polytopic, such that
they can be described by a finite number of affine
inequalities. With each edge (&i, &j)2E, we associate a
function vij : R

nj ! R
ni that defines the interconnection

signal vij(xj(k)) between subsystem j and i. We use
N i :¼ {j j (&i, &j)2E} to denote the set of indices
corresponding to the neighbours of subsystem i. The
term neighbour of system i defines any system in
the network whose dynamics appear explicitly (via the
function vij(�)) in the state equation that describes the
dynamics of subsystem i. If system j is a neighbour
of system i, in general this does not necessarily imply
the reverse. Moreover, let xN i

ðkÞ :¼ colðfxj ðkÞgj2N i
Þ

be the vector that collects all the state vectors of
the neighbours of system i and viðxN i

Þ :¼
colðfvijðxj ðkÞÞÞgj2N i

Þ be the vector-valued interconnec-
tion signals that enter system i.

3.1 Decentralised MPC

The DMPC technique (Alessio and Bemporad 2007)
exploits the fact that many large-scale systems, such as
power networks, consist of several subsystems (or
control areas) that are only loosely coupled. As a
consequence, these systems can be modelled by sparse
state-space representations. In DMPC, the global
state-space model is approximated via a state and
input matrix partitioning that defines a set of M
decoupled prediction models. Correspondingly, the
DMPC controller equals the ensemble of M local
MPC controllers that are independently designed for
each subsystem.

Let the large-scale system that is to be controlled be
described by the discrete-time state-space model given
in (1). The division into M subsystems employed in
DMPC is based on an explicit transformation
via suitably defined matrices Wi and Zi, i2I :¼
{1, . . . ,M}. These matrices collect the states and
inputs assigned to subsystem i:

xi ¼W>i x, ui ¼ Z>i u, ð7aÞ

where xi 2 R
ni and ui 2 R

mi . The corresponding local,
decoupled prediction models are given by

�xiðkþ 1Þ ¼ Ai �xiðkÞ þ Bi �uiðkÞ ð7bÞ
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Ai ¼W>i AWi, Bi ¼W>i BZi, ð7cÞ

for i2I , where Ai 2 R
ni�ni , Bi 2 R

ni�mi .
Note that Wi and Zi are such that, by (7a), each

element of x is assigned to one or more xi and each

element of u is assigned to one or more ui. This means

that overlapping subsystems are allowed. However, in

this article, we will consider DMPC with non-over-

lapping partitions only, i.e. we restrict our attention to

the cases where each element of x is assigned to a

unique xi and each element of u is assigned to a unique

ui. Although DMPC performance is expected to

improve with increasing subsystem overlap, the use

of non-overlapping partitions is attractive as this

requires no communication between subsystems. For

more information about the construction of the

partitioning matrices, and for details on handling

overlapping inputs in particular, the reader is referred

to Alessio and Bemporad (2007).
In contrast to centralised MPC, the DMPC control

scheme assigns a controller to each subsystem i, which

solves the following finite-horizon problem, at each

sampling instant:

Problem 3.1 (DMPC): At discrete-time instant t2Zþ

let xi(t) and N� 1 be given, set �xið0Þ :¼ xiðtÞ and solve

V�i,NðxiÞ ¼ min
�ui, ½N�1	
fVi,Nðxi, �ui, ½N�1	Þ j �ui, ½N�1	 2 Ui,NðxiÞg,

ð8aÞ

where

Vi,Nðxi, �ui, ½N�1	Þ

¼ Fið �xiðNÞÞ þ
XN�1
k¼0

‘ið �xiðkÞ, �uiðkÞÞ

¼ �x>i ðNÞPi �xiðNÞ

þ
XN�1
k¼0

�x>i ðkÞQi �xiðkÞ þ �u>i ðkÞRi �uiðkÞ ð8bÞ

�xiðkþ 1Þ ¼ Ai �xiðkÞ þ Bi �uiðkÞ, k ¼ 0, . . . ,N� 1,

ð8cÞ

where the penalty matrices used in each cost function,

given the weights of a centralised controller, are Qi ¼

W>i QWi ¼ Q>i � 0, Ri ¼ Z>i RZi ¼ R>i � 0 and Pi,

which will be specified below.

Problem 3.1 minimises the local quadratic cost over

input sequences in the set

Ui,NðxiÞ :¼ f�ui, ½N�1	 2 U
N
i g, ð9Þ

where U
N
i :¼ Ui � � � � �Ui is the N-times Cartesian

product of the set of feasible local inputs. We assume

that Ui,N is a polytope, i.e. it can be described by a

finite number of affine inequalities, such that we can
formulate Problem 3.1 as a QP.

When all M controllers have calculated the optimal
local control action sequence �u�i, ½N�1	, the ensemble of
all local inputs, i.e.

uðtÞ ¼ colð �u�1ð0Þ, . . . , �u�i ð0Þ, . . . , �u�Mð0ÞÞ, ð10Þ

is applied to the global system (1) and the whole
procedure is repeated at the next time instant.

Unlike centralised MPC, the DMPC algorithm
does not take (coupled) state constraints into account.
However, note that in the case of frequency control in
power networks, state constraints such as bounds on
tie-line flows can be essential to guarantee safe
operation.

Moreover, as described in Section 2, one can
specifically design centralised MPC to provide an a
priori guarantee for closed-loop stability, based on a
terminal penalty and terminal state conditions.
However, these conditions only apply in the case of
centralised MPC. Non-centralised predictive control-
lers, such as DMPC, exploit modified stabilisation
conditions, that possibly yield a weaker guarantee for
closed-loop stability. In DMPC, an a priori guarantee
of stability for each decoupled subsystem can be
obtained by defining the terminal penalty matrix Pi

for each subsystem i as

Pi ¼ ðAi þ BiKiÞ
>PiðAi þ BiKiÞ þ K>i RiKi þQi,

ð11aÞ

Ki ¼ �ðRi þ B>i PiBiÞ
�1B>i PiAi, ð11bÞ

and constraining the terminal state �xiðNÞ to an
invariant (polytopic) terminal set

Xfi 
 fx 2 R
ni j KiðAi þ BiKiÞ

kx 2 Ui

and ðAi þ BiKiÞ
kx 2 Xi, k ¼ 0, . . . ,1g, ð12Þ

where Xi is the set of feasible local states. If Ki� 0, as
in Alessio and Bemporad (2007), then (11a) reduces to
the Lyapunov equation. Note that because Qi� 0, this
implies that each subsystem has to be open-loop stable,
i.e. that all eigenvalues of Ai must be within the unit
circle.

Nonetheless, observe that condition (11) only
implies closed-loop stability under the assumption
that the subsystems are indeed decoupled. Still, it is
possible to provide a posteriori verifiable stability
conditions for the network under coupled operation,
as shown in Alessio and Bemporad (2007). More
precisely, the proposed stability test checks stability of
the entire system (1) in closed loop with (10), if the
matrices Pi are chosen according to (11a). This a
posteriori stability test checks whether the sum of all
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cost functions is a Lyapunov function for the overall

system, and is based on the explicit form of each MPC

controller (Bemporad, Morari, Dua, and Pistikopoulos
2002). Under certain conditions, this reduces to a

positive semi-definiteness check of a square n� n

matrix. However, this test has to be carried out on a
centralised level, which partly cancels out the attractive

features of DMPC’s decentralised structure.
The main attractive feature of the DMPC scheme is

that each local controller has to solve relatively small

and simple optimisation problems, corresponding to
low computational requirements per subsystem.

However, it is important to observe that the DMPC

cost function of subsystem i solely depends on the local
states and inputs xi(t) and �ui,[N�1], respectively. This is

a consequence of the fact that the DMPC prediction

model (7) approximates the real system by ignoring the
dynamic coupling between subsystems and uses only

local state information to initialise the optimisation
problem. Therefore, (10) will, in general, not be

optimal with respect to the centralised MPC optimisa-

tion problem (2) unless x� xi and u� ui, for all i. If the
dynamic coupling between the subsystems in (1) is

strong, the prediction mismatch can be large, resulting
in a significant loss of performance compared with that

attained by a centralised controller.

3.2 Stability-constrained distributed MPC

The SC-DMPC scheme (Camponogara et al. 2002) is a
distributed predictive control method, in which each

local controller exploits communication with neigh-
bouring subsystems to improve the accuracy of its local

state predictions. As such, SC-DMPC is expected to

outperform decentralised control schemes that neglect
dynamic coupling and that do not exploit communica-

tion at all.
The SC-DMPC scheme requires that the dynamics

of the system to be controlled are given by (1), with

state-space matrices that have the structure:

A ¼

A11 . . . A1M

..

. . .
. ..

.

AM1 . . . AMM

2
64

3
75, B ¼

B11 . . . 0

..

. . .
. ..

.

0 . . . BMM

2
64

3
75,

ð13Þ

where A2R
n�n, B2R

n�m, Aii 2 R
ni�ni , Aij 2 R

ni�nj ,
Bii 2 R

ni�mi , x2R
n and u2R

m. Note that B is block

diagonal, such that input ui only affects subsystem i

directly. Correspondingly, the neighbours of subsystem
i are those systems for which Aij 6¼ 0, j 6¼ i. The set of

neighbours of system i is denoted by N i¼ {j2Ij j 6¼ i,
Aij 6¼ 0}.

Let N� 1 be a fixed prediction horizon. At all

discrete-time instants t2Zþ, each SC-DMPC control-

ler solves the following optimisation problem:

Problem 3.2 (SC-DMPC): At discrete-time instant

t2Zþ, let xi(t) and �xNj ðkÞ :¼ vijðxjðkÞÞ for

k¼ 1, . . . ,N� 1 and all j2N i be given. Set
�xið0Þ :¼ xiðtÞ and solve

V�i,NðxiÞ ¼ min
�ui, ½N�1	
fVi,Nðxi, �ui, ½N�1	Þ j �ui, ½N�1	 2 Ui,NðxiÞg,

ð14aÞ

where

Vi,Nðxi, �ui, ½N�1	Þ

¼ Fið �xiðNÞÞ þ
XN�1
k¼0

‘ið �xiðkÞ, �uiðkÞÞ

¼ �x>i ðNÞPi �xiðNÞ

þ
XN�1
k¼0

�x>i ðkÞQi �xiðkÞ þ �u>i ðkÞRi �uiðkÞ ð14bÞ

�xiðkþ 1Þ ¼ Aii �xiðkÞ þ Bii �uiðkÞ þ
X
j2N i

Aij �x
N
j ðkÞ, ð14cÞ

for k¼ 0, . . . ,N� 1.

The weight matrices used in the cost function,

Qi� 0, Ri� 0 and Pi� 0, can be chosen based on a

corresponding centralised problem, in a way that is

analogous to the DMPC approach. Moreover, note

that the SC-DMPC controllers take the dynamic

coupling with their neighbours into account by

including the state predictions of these subsystems,

denoted by �xNj ðkÞ, in their local model. However, as

the state predictions of the neighbours are yet to be

determined at instant t, the shifted predictions of the

previous time instant t� 1 are used instead:

�xNj ðkÞ :¼ �x�j ðkþ 1jt� 1Þ, k ¼ 0, . . . ,N� 1, ð15Þ

where �x�j ðkþ 1jt� 1Þ denotes the predicted state for

time tþ k, which is computed at subsystem j given the

local state measurement xj(t� 1).
Problem 3.2 minimises the cost over input

sequences in the set

Ui,NðxiÞ :¼ f�ui, ½N�1	 2 U
N
i j k �xið1Þk

2
2 � l̂ig, ð16Þ

where

l̂i :¼ max
�
k �xið1jt� 1Þk22, k �xið0Þk

2
2

�
� �ikx

1
i ð0Þk

2
2,

ð17Þ
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with tuning parameter 05�i5 1, and

�xið1jt� 1Þ :¼ Aii �xið0Þ þ Bii �uið0Þ þ
X
j2N i

Aij �x
N
j ð0Þ,

ð18aÞ

�xið0Þ :¼ xiðt� 1Þ, �uið0Þ :¼ �u�i ðt� 1Þ: ð18bÞ

Here, x1i ð0Þ is obtained from x(t) via a similarity
transformation that is based on the controllable
companion form (Camponogara et al. 2002). It is
shown in Camponogara et al. (2002), that any
ui,[N�1]2Ui,N(xi) stabilises the local, decoupled closed-
loop system. This is a result of the contractive
constraint on the state used in the definition of
Ui,N(xi).

When all M controllers have calculated their
optimal local control input sequences �u�i, ½N�1	, the
collection of all local inputs, i.e.

uðtÞ ¼ colð �u�1ð0Þ, . . . , �u�i ð0Þ, . . . , �u�Mð0ÞÞ, ð19Þ

is applied to the global system. Subsequently, all
neighbouring controllers exchange their shifted state
predictions, after which the whole procedure is
repeated at the next time instant.

Except for local-state contraction constraint (16),
the SC-DMPC scheme does not take state constraints
into account. In Camponogara et al. (2002), it is
proven that the construction of Ui,N(xi), based on a
controllable companion form, ensures the existence of
control actions that satisfy (16). In addition, it is
proven that (19) comprises a feasible solution for the
overall system. This is the case even though the
attained prediction mismatch of SC-DMPC will not
be zero due to the delayed and possibly inaccurate
coupling information. Still, the fact that SC-DMPC
lacks the possibility to include physical constraints that
span multiple subsystems limits its applicability for
control of power networks.

As observed above, the contraction constraint
guarantees stability if the subsystems are decoupled,
since it enforces a strict decrease of the 2-norm of
subsequent one-step-ahead subsystem state predic-
tions. However, to conclude stability of the overall
system, additional conditions on stability of a suitably
defined full-state matrix A in a controllable companion
form are required. More details on feasibility and
stability of the SC-DMPC scheme can be found in
Camponogara et al. (2002).

SC-DMPC relies on a communication network to
exchange information between neighbouring control-
lers, in contrast to DMPC. However, note that certain
large-scale systems, such as power networks, consist of
subsystems that are only loosely coupled, such that the
number of neighbours per subsystem is small and the

extent of communication is limited. Because

SC-DMPC controllers communicate with direct neigh-

bours only, the graph of the required communication

network coincides with the interconnection graph G of

the underlying system. For control of power networks,

this implies that control areas that are not directly

physically coupled do not require a communication

link. Because tie-lines are always equipped with a

parallel communication link, this is an attractive

feature of the SC-DMPC scheme compared to control

methods that require global communication, such as

centralised MPC.

3.3 FC-based MPC

The DMPC and SC-DMPC controllers described in

the previous sections solve locally different optimisa-

tion problems. Such competitive strategies converge to

Nash equilibria at best. Nash equilibria do not

necessarily coincide with the global (Pareto) optimum

attained by a centralised control scheme. Moreover,

there are examples where these Nash equilibria are

unstable, such that competitive optimisation algo-

rithms are divergent (Camponogara 2000). The

FC-MPC method (Venkat 2006; Venkat et al. 2008)

on the other hand, cooperatively solves a global

optimisation problem, thus, ensuring that the resulting

equilibrium is stable and Pareto optimal. This is an

attractive feature of FC-MPC over the DMPC and SC-

DMPC schemes, although this comes at the cost of

more extensive communication requirements.
Let the system to be controlled be of the form given

in (1). In FC-MPC, a controller is assigned to each

subsystem i2I . Because these controllers are able

to optimise the global cost over their own local-

manipulated variables (i.e. local control inputs) only,

an iterative procedure that involves optimisation and

communication is used to obtain the globally optimal

solution. A convenient choice for a global objective that

measures the systemwide impact of local control actions

is a strict convex combination of local cost functions,

i.e. V
p
Nð�Þ ¼

PM
i¼1 wiVi,Nð�Þ,w1 4 0,

PM
i¼1 wi ¼ 1. Now,

we can define the FC-MPC optimisation problem of

each controller i as:

Problem 3.3 (FC-MPC): At time t2Zþ and iteration

p2Zþ, let �uj,½N�1	 for j 6¼ i and a fixed prediction

horizon N� 1 be given, set �xpð0Þ :¼ xðtÞ and solve

V
p�
i,Nðx, �u

p
i, ½N�1	Þ ¼ min

�u
p
i, ½N�1	

fV
p
Nðx, �u

p
i, ½N�1	Þ j �u

p
i, ½N�1	 2Ui,NðxÞg,

ð20aÞ
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where

V
p
Nðx, �u

p
i, ½N�1	Þ

¼ Fð �xpðNÞÞ þ
XN�1
k¼0

‘ ð �xpðkÞ, �u
p
i ðkÞÞ

¼ �xp>ðNÞP �xpðNÞ

þ
XN�1
k¼0

�xp>ðkÞQ �xpðkÞ þ �u
p>
i ðkÞRi �u

p
i ðkÞ, ð20bÞ

�xpðkþ 1Þ ¼ A �xpðkÞ þ B colð �u
p
1ðkÞ, . . . , �u

p
i ðkÞ, . . . , �u

p
MðkÞÞ,

ð20cÞ

for k¼ 1, . . . ,N� 1.

The FC-MPC controller of subsystem i minimises

the global cost function V
p
Nð�Þ over the polytopic set of

feasible local input sequences �u
p
i, ½N�1	 2 Ui,NðxÞ, which

is defined as

Ui,NðxÞ :¼ f�u
p
i, ½N�1	 2 U

N
i g: ð21Þ

The terminal penalty matrix P used in (20b) is the

solution of the unconstrained infinite horizon LQR

problem,

P ¼ ðAþ BK Þ>PðAþ BK Þ þ K>RKþQ, ð22aÞ

K ¼ �ðRþ B>PBÞ�1B>PA: ð22bÞ

Note that in Venkat et al. (2008), attention is restricted

to open-loop stable systems, such that K is chosen

equal to zero, yielding the stability condition

P¼A>PAþQ.
Given the parameters "4 0, wi2R(0,1) and

pmax2Zþ, at each discrete time instant t, the optimal

control action is calculated in each controller via the

following iterative procedure:

Algorithm 1 (FC-MPC):

. Initialise the iteration counter p :¼ 0.

. Measure the current local state xi(k) and

exchange this information with all other

controllers;
. Initialise the local input sequence

�u0i, ½N�1	ðkÞ :¼ �u
�p�
i, ½N�1	ðkþ 1jt� 1Þ for

k¼ 1, . . . ,N� 1 and i¼ 1, . . . ,M;

while (�i4 " & p� pmax)

. Solve Problem 3.3 and let �u
p,�
i, ½N�1	ðkÞ be the

local optimiser;
. Set

u
p,�
i, ½N�1	ðkÞ :¼ wi �u

p,�
i, ½N�1	ðkÞ þ ð1� wiÞ�u

p�1,�
i, ½N�1	ðkÞ.

. Set �i ¼ k�u
p,�
i, ½N�1	 � �u

p�1,�
i, ½N�1	k;

. Exchange the local optimising input sequence

u
p,�
i, ½N�1	ðkÞ with all other controllers;

. The iteration counter is increased by one:

p :¼ pþ 1;

end

. Set �pðtÞ :¼ p.

Whenever the stop criterion is satisfied in all nodes

for some p ¼ �p � pmax, the first element of the

calculated control sequence is applied to the subsys-

tem, i.e.

uðtÞ ¼ colð �u
�p
1ð0Þ, . . . , �u

�p
i ð0Þ, . . . , �u

�p
Mð0ÞÞ: ð23Þ

Then, the procedure is repeated at the next time instant

kþ 1.
The FC-MPC algorithm starts by initialising the

current state and the global input trajectory, using the

shifted optimal input sequence of the previous time

instant t� 1 as the initial guess. Based on this

information, each controller computes the new opti-

mising control input. A weighted average of the

current optimiser and the input computed at the

previous iteration p� 1 is used as the next estimate of

the control input. This is required to ensure conver-

gence over iterates (Venkat 2006).
FC-MPC takes only local input constraints, thus

no state constraints, into account. As a consequence,

existence of a feasible sequence for Problem 3.3 is

guaranteed. It is possible to prove convergence of the

iterative procedure, and to prove that FC-MPC

control is globally stabilising. In fact, only a single

iteration of the algorithm is required to guarantee

closed-loop stability (Venkat 2006).
Both centralised MPC and FC-MPC require

knowledge of the global state in order to guarantee

Pareto optimal performance, implying reliance on

extensive communication. However, note that in the

FC-MPC scheme, this information has to be commu-

nicated to a possibly large number of local controllers,

whereas in the case of centralised MPC, this informa-

tion is required at one location only. In both cases, the

communication distances can be very large, due to the

large geographical scale of power systems. Moreover,

note that the implementations of the centralised MPC,

SC-DMPC and DMPC with overlapping subsystems

utilise the communication network only once per

discrete-time sample, whereas the FC-MPC scheme,

in general, requires information exchange for each

iteration. However, it is proven in Venkat et al. (2008)

that the FC-MPC algorithm can be terminated prior to

convergence, without compromising feasibility or

closed-loop stability. We can therefore conclude that
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the iterative nature of the FC-MPC scheme is not
necessarily a drawback compared to other, non-
iterative communication-based algorithms.

4. Benchmark test

The balancing or load-frequency control problem in
electrical power networks provides a suitable bench-
mark test for the assessment and comparison of the
non-centralised MPC schemes studied in this article.
Before presenting the simulation results, we describe
the test setup in the next subsection.

4.1 Test network and simulation scenario

Our simulations were performed on the power network
setup given in Venkat et al. (2008). A schematic
representation of this test system is depicted in
Figure 2. The system consists of four control areas,
and the linearised dynamics of each area are given by
the following standard model (Kundur 1994):

dD!i

dt
¼

1

Ji

�
DPMi

�DiD!i�
X
j2N i

DPij
tie�DPLi

�
, ð24aÞ

dDPMi

dt
¼

1

�Ti

ðDPVi
� DPMi

Þ, ð24bÞ

dDPVi

dt
¼

1

�Gi

�
DPrefi � DPVi

�
1

ri
D!i

�
, ð24cÞ

dDPij
tie

dt
¼ bijðD!i � D!j Þ, ð24dÞ

DPji
tie ¼ �DP

ij
tie: ð24eÞ

Here, (24a)–(24c) describe the dynamics of a generator
(or the lumped equivalent of multiple generators in a
control area), whereas the dynamics of a transmission
line connecting two generators/control areas are
modelled by (24d) and (24e). These ‘building blocks’
are schematically depicted in Figure 3. Note that the
control input to subsystem i is the signal DPrefi , which
represents the change in the reference value for the
power production in that area. The exogenous
disturbance input DPLi

represents the aggregated
change of the power demand in control area i.

In our benchmark test, we compared the perfor-
mance of the described non-centralised control
schemes with the results attained using a conventional
AGC controller. The classical AGC method used in the
current power networks consists of local proportional-
integral feedback controllers that drive the frequency
D!i and the transmission-line power flow deviations
DPij

tie to zero. The feedback controller for area i is
described by

dDPrefi

dt
¼ �Ki

�
BiD!i þ

X
j2N i

DPij
tie

�
, ð25Þ

(a)

(b)

Figure 3. Block diagrams that model the linearised dynamics of a generator (a) and a tie-line (b).

Figure 2. Schematic representation of a power network consisting of four control areas.
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with tuning parameters Ki and Bi. The interested reader

is referred to Kundur (1994) and Jaleeli et al. (1992) for

a more detailed discussion on classical AGC.
The simulation scenario used to assess the closed-

loop performance of the described control methods

was the following. For t5 10, the network was in

steady-state with frequency and tie-line flow deviations

equal to zero, and DPLi
¼ 0 for i¼ 1, . . . , 4. For t� 10,

control area 2 was subjected to a step disturbance of

DPL2
¼ 0:25, while a simultaneous step disturbance of

DPL3
¼ �0:25 affected control area 3.

For all control techniques, we used identical model

and simulation parameter values, which are listed in

the Appendix. The optimisation problems for all the

assessed MPC schemes were formulated as QPs of the

form

min
v

v>Hvþ f>v, ð26aÞ

subject to Aineqv � Bineq, ð26bÞ

with v 2 R
nv , positive definite H 2 R

nv�nv , f 2 R
nv ,

Aineq 2 R
nc�nv and Bineq 2 R

nc . All QPs were evaluated

using Matlab’s quadprog solver. Note that we

employed the 1-norm in (16) to allow for a linear

formulation of this contraction constraint, and thus, to

enable a QP-based implementation of SC-DMPC. The

number of iterations of the FC-MPC algorithm was

fixed to 2. In all non-centralised schemes, the global

prediction model was partitioned according to the

physical control area structure, which is a natural

choice to obtain a low extent of coupling between the

local models.
Finally, note that so far, we assumed that the

prediction models for the various methods do not

explicitly account for exogenous disturbances, e.g.

aggregated load changes DPLi
. However, in the

simulations, we used local state perturbed models of

the form

�xðkþ 1Þ ¼ A �xðkÞ þ B �uðkÞ þ �d0, k ¼ 0, . . . ,N� 1,

where �d0 :¼ �dðtÞ is an estimate of a constant additive

disturbance, e.g. the aggregated load DPLi
, given the

measured and predicted state for discrete-time instant

t. The inclusion of this disturbance model makes the

state predictions more accurate, as constant load

disturbances can be compensated for, whereas the

stability and feasibility properties of the non-centra-

lised algorithms discussed in Section 3 are preserved.

The interested reader is referred to Muske and

Badgwell (2002) and Pannocchia and Rawlings (2003)

for further details on disturbance estimation and zero-

offset tracking in MPC.

4.2 Simulation results

The main simulation results are given in Figures 4
and 5. Figure 4 shows the closed-loop trajectories for
centralised MPC and classical AGC control, whereas

the results obtained with the non-centralised MPC
schemes are given in Figure 5. Both figures show the
trajectories of network frequency deviation D!2 and
tie-line power flow deviation DP23

tie, together with the

control inputs applied to subsystems 2 and 3, i.e. DPref2

and DPref3 , respectively.
Table 1 lists the settling times1 of the penalised

states, i.e. the states for which the corresponding
elements in Qi are nonzero (see the Appendix), and the
global performance cost over 200 samples, namely the
value of

P200
t¼0 xðtÞ

>QxðtÞ þ uðtÞ>RuðtÞ.
The results show that for this particular scenario,

the centralised MPC scheme outperforms all the other

simulated control methods. By contrast, the classical
AGC structure is characterised by the worst perfor-
mance in terms of cost, settling time and overshoot; all
the assessed non-centralised MPC schemes perform

better than AGC. Moreover, note that the perfor-
mance of the non-centralised control techniques
appears to be directly correlated with the extent of
inter-subsystem communication. The observed differ-
ence in the DMPC and SC-DMPC performance costs

is relatively small, however, which is surprising given
their significantly different communication require-
ments. Finally, note that the FC-MPC performance is
almost identical to that of the centralised MPC
controller, in spite of the fact that the number of FC-

MPC iterations was fixed to only 2.
The computational complexity of each predictive

control scheme can be expressed in terms of the
dimensions of the corresponding local optimisation
problems. The computational burden for the control
hardware depends on the number of manipulated
variables nv and the number of inequality constraints

nc. These values are listed in Table 2, for the considered
simulation and for the general case (with prediction
horizon N, number of local control inputs mi and
number of local states ni). Table 2 shows that the
complexity of the local DMPC, SC-DMPC and

FC-MPC controllers is independent of the number of
subsystems present in the network, whereas this is not
the case for the centralised MPC controller, where the
optimisation problem scales quadratically with the

total number of system inputs
P

i mi. This is a key
motivation for research in the field of non-centralised
predictive power network control, as scalability is an
important aspect in light of the large and expanding
character of today’s power system.

Note that computational complexity can also be
assessed by measuring the worst-case time that is

International Journal of Control 1171

D
ow

nl
oa

de
d 

by
 [

M
ar

sh
al

l U
ni

ve
rs

ity
] 

at
 0

0:
00

 0
4 

Se
pt

em
be

r 
20

13
 



required for computing the optimal input sequence of
controller i. These values, obtained for a simulation on a
3.48 GB RAM, 2.66 GHz Pentium-E PC, are shown in
Figure 6.

The results show that DMPC and SC-DMPC are
preferred from a computational point of view, because
these techniques require significantly less computa-
tional effort compared to centralised MPC. The
computational burdens of DMPC and SC-DMPC are
comparable, as their optimisation problems are almost
equally sized, except for the additional contraction
constraints in SC-DMPC. The FC-MPC algorithm
requires about twice as much computational time than
SC-DMPC and DMPC if the maximum number of
iterations is set to 2, because the local QPs that FC-
MPC solves per iteration have dimensions that are
comparable with those of the SC-DMPC and DMPC
optimisation problems. Thus, although in this simula-
tion, the FC-MPC controller needs less computational
effort than centralised MPC to compute a control
action, from a complexity point of view, FC-MPC is
only advantageous as long as its number of iterations
is small.

The simulation results are summarised in Figure 7,
which indicates that performance is positively

correlated with the extent of communication and the
complexity of the prediction models/optimisation
problems that underlie the control scheme.

4.3 Assessment

The results obtained in Section 3 and 4.2 indicate that
there are two important aspects that determine the
performance of a non-centralised MPC technique:

. Prediction accuracy with respect to the centra-
lised model. A model that ignores the dynamic
coupling between subsystems introduces a
prediction error, i.e. a mismatch between the
predicted (local) state trajectories and the state
trajectories that would result from applying
the ensemble of local inputs to the full
network of interconnected systems. That is,
the prediction error at time k2Zþ of the
prediction horizon is given by

"ðkÞ ¼ Ak �xð0Þ þ
Xk�1
�¼0

Ak�1��B

�u1ð�Þ

..

.

�uMð�Þ

2
664

3
775�

�x1ðkÞ

..

.

�xMðkÞ

2
664

3
775:

ð27Þ

Figure 4. Simulation results of the centralised MPC control and classical AGC control schemes.
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MPC controllers can exchange their local state
predictions to use them as a measure for the
dynamic coupling, and exploit this for increas-
ing the prediction accuracy. Accurate predic-
tions are important, as solving a control
problem that is based on inexact predictions
results in non-optimal closed-loop perfor-
mance. Precise predictions are required also
for state constraint handling, as a constrained
optimal control action associated with inaccu-
rate local predictions can be non-feasible for
the actual coupled system.

Figure 5. Simulation results of the non-centralised MPC control techniques.

Table 1. Performance in terms of settling time and cost.

Settling time (s)

Cost!1 !2 !3 !4 P12
tie P23

tie P34
tie

AGC 164 165 175 175 235 353 187 530.62
MPC 58 48 45 43 56 55 66 176.59
FC-MPC (2 iterations) 50 48 45 44 56 55 65 182.44
DMPC 64 63 65 72 72 98 79 270.73
SC-DMPC 88 114 105 105 138 158 50 260.13

Table 2. Dimensions of the local quadratic programs.

Technique

Size of A (nv� nc)

Example General case

Centralised MPC 400� 200 2N
P

i mi�N
P

i mi

FC-MPC 100� 50 2N mi�N mi

SC-DMPC 108� 50 2(N miþ ni)�N mi

DMPC 100� 50 2N mi�N mi
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. Optimality with respect to the centralised

solution. The performance of a non-centralised

control scheme depends on more than the

prediction accuracy alone. Even if the predic-

tion mismatch "(k) is zero for all k, the

solution of a non-centralised control problem

using local objectives will differ from the

global optimiser. Schemes that rely on local

control laws that seek to minimise their own

objective function only, will induce a Nash

equilibrium at best. Such an equilibrium is, in

general, not equal to the centralised, i.e.

Pareto optimal solution.

Hence, obtaining accurate predictions and globally

optimal performance inevitably leads to the require-

ment of a full-prediction model that exploits global

state information and objectives. However, the large

scale of real-life power networks prohibits a non-

centralised implementation of MPC that requires

communication with a large number of subsystems in

the network. It is therefore, questionable whether

global or Pareto optimality of the non-centralised

MPC control action is a feasible goal in current

power networks. Future advances in communication
technology and increasing processing power might
bring this goal closer to realisation. Currently, how-
ever, communication with a small number of neigh-
bouring subsystems is more realistic and relatively easy
to implement, as transmission lines are usually
equipped with communication links.

Moreover, although a completely decentralised
implementation of MPC is usually outperformed by
distributed methods, it may still perform better than
conventional AGC. Hence, there is room for a
tradeoff: one can use decentralised MPC if the
corresponding performance is acceptable, and in this
way avoid communication between neighbouring
control areas, or use distributed MPC with limited
communication to improve performance by attaining
higher prediction accuracy.

Even if global performance is not a major concern
in power networks, control schemes for supply-
demand matching should always be able to ensure
stable and reliable operation of the grid. Due to the
liberalisation of the power market, efficient use of
resources is becoming increasingly important and the
system tends to be pushed towards its physical

Figure 6. Computation times of all the assessed control algorithms.

(a) (b)

Figure 7. (a) Qualitative comparison of control performance versus communication requirements and (b) Qualitative
comparison of control performance versus complexity.
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constraints and stability boundaries. In this respect, the
non-centralised algorithms considered in this article all
have the same flaw: they lack the ability of taking
coupled state constraints into account, whereas ulti-
mately, constraint handling for preventing outages was
one of the most important reasons for using MPC.
Coupled constraints can only be satisfied if the
prediction of all the constrained states coincides with
the predicted state trajectory of the centralised MPC
scheme. This shows that network-wide communication
among the subsystems is crucial to obtain globally
feasible state predictions. Note, however, that this does
not necessarily require the use of a global communica-
tion network, as state information can also be
distributed via iterative communication among neigh-
bouring subsystems only.

Other important issues that are not yet solved by
non-centralised control algorithms for power network
control include the following:

. Power networks are generally characterised by
non-linear and hybrid dynamics. The state-
space model (1) used in this article to represent
the network dynamics is obtained via linear-
isation, such that it is only accurate for
relatively small power and frequency fluctua-
tions. The models used in the assessed algo-
rithms do not capture saturation or switching
effects that are often associated with larger
disturbances. Moreover, due to the ongoing
liberalisation of the electricity market, power
generation control tends to become price-
based (Jokić 2007; Jokić et al. 2007). This
trend comes with the introduction of hybrid
dynamics. These observations suggest a need
for more advanced, nonlinear models, thus
further complicating the application of non-
centralised predictive control.

. Distributed control methods should be robust
against the typical disturbances that are
associated with communication over large
networks, such as varying time delays and
information loss. Stability must be guaranteed
even in the presence of delayed or interrupted
communications.

5. Conclusions and future research

MPC is a promising technique for real-time control of
future power networks that are characterised by highly
fluctuating power flows, tight-constraint margins and a
strong demand for efficient, profitable operation. Since
power networks are too large for centralised control to
be feasible, this article assessed a number of non-
centralised MPC schemes that differ in the level of

decentralisation, communication requirements and
complexity. Based on our investigations and analysis
of the non-centralised algorithms, the following con-
clusions can be drawn.

The large scale of power networks appears to
prohibit the application of non-centralised MPC
schemes that require extensive communication among
large number of subsystems. Thus, globally optimal
performing non-centralised MPC may not be a feasible
goal for power networks. Other implementations that
rely on short-distance communication among neigh-
bouring subsystems only are more realistic, however.

A completely decentralised implementation of
MPC seems to outperform conventional AGC,
whereas it offers lower complexity and a higher
extent of decentralisation in comparison to alternative
non-centralised predictive methods. Decentralised
MPC is appropriate when acceptable performance
can be achieved without any knowledge of the state of
neighbouring subsystems, which is typically the case
when the physical coupling between subsystems is
weak. Distributed MPC can be employed to increase
prediction accuracy, and thus, to improve closed-loop
performance, in networks with strong system interac-
tions, but only if the corresponding extent of commu-
nication is feasible in practice.

An important unsolved problem for existing non-
centralised MPC schemes originates from coupled state
constraints. It is challenging to enforce such con-
straints, in closed-loop, based on incomplete, local
state measurements and predictions only. This issue is
of paramount significance to power systems, where
coupled state constraints, such as bounds on transmis-
sion-line power flows, are inherent and of growing
importance.

To summarise, non-centralised MPC techniques
are viable for power system control if they are scalable,
can exploit communication among a small number of
subsystems to improve state trajectory predictions, are
able to deal with coupled state constraints, and
guarantee closed-loop stability. Currently, the control
systems community is actively searching for ways of
achieving these objectives. In terms of guaranteeing
stability under local state feedback, we refer the
interested reader to refer recent publications on
dissipativity-based, decentralised stabilisation (see,
e.g. Jokić and Lazar (2009), Hermans, Lazar, Jokić,
and Gielen (2011) and the references therein).
Promising directions for state-constraint satisfaction
under non-centralised predictive control are considered
in, e.g. Doan, Keviczky, and Schutter (2011a,b), where
methods are studied for improving convergence of
distributed, iterative optimisation schemes. Even so,
this article showed that there are still many obstacles
that need to be overcome before non-centralised MPC
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can be successfully applied for frequency control in
practice.
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Note

1. With ‘settling time’, we mean the time required for a
state transient to settle within an error band of 5.10�4

around the steady-state value.
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Appendix: List of parameter values

Table A1 lists the parameter values used in our simulation.

Table A1. Simulation parameters.

Sampling period 1 s
Simulation time 200 s
Prediction horizon N 50
Iterations (FC-MPC) 2
State of subsystem 1 x1¼ col(DPV1, DPM1, D!1)
State of subsystem 2 x2¼ col(D�12, DPV2, DPM2, D!2)
State of subsystem 3 x3¼ col(D�23, DPV3, DPM3, D!3)
State of subsystem 4 x4¼ col(D�34, DPV4, DPM4, D!4)
Disturbance DPL1

0, 8t
Disturbance DPL2

0 for t5 10, þ0.25 for t� 10
Disturbance DPL3

0 for t5 10, �0.25 for t� 10
Disturbance DPL4

0, 8t
Constraint on �0:5 � DPrefi � 0:5
DPrefi , i ¼ 1, . . . , 4
Generator damping: 3, 0.275, 2, 2.75
D1, D2, D3, D4

Generator inertia: 4, 40, 35, 10
J1, J2, J3, J4
Speed regulation: 0.12, 0.28, 0.16, 0.12
r1, r2, r3, r4
Governor time constant: 4, 25, 15, 5
�G1, �G2, �G3, �G4
Turbine time constant: 5, 10, 20, 10
�T1, �T2, �T3, �T4
Tie-line gain: 2.54, 1.5, 2.5
b12, b23, b34
AGC gain 1: 0.01, 0.02, 0.03, 0.01
K1, K2, K3, K4

AGC gain 2: 36.33, 14.56, 27.00, 36.08
B1, B2, B3, B4

Q1, Q2 100 � diag(0, 0, 5), 100 � diag(5, 0, 0, 5)
Q3, Q4 100 � diag(5, 0, 0, 5), 100 � diag(5, 0, 0, 5)
R1, R2, R3, R4 1, 1, 1, 1
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