
Tight Error Analysis in Fixed-point Arithmetic?

Stella Simić1[0000−0002−5811−1091], Alberto Bemporad1[0000−0001−6761−0856],
Omar Inverso2[0000−0002−9348−1979], and Mirco Tribastone1[0000−0002−6018−5989]

1 IMT School for Advanced Studies, Lucca, Italy
stella.simic@imtlucca.it

2 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. We consider the problem of estimating the numerical accu-
racy of programs with operations in fixed-point arithmetic and variables
of arbitrary, mixed precision and possibly non-deterministic value. By
applying a set of parameterised rewrite rules, we transform the relevant
fragments of the program under consideration into sequences of oper-
ations in integer arithmetic over vectors of bits, thereby reducing the
problem as to whether the error enclosures in the initial program can
ever exceed a given order of magnitude to simple reachability queries on
the transformed program. We present a preliminary experimental evalu-
ation of our technique on a particularly complex industrial case study.

Keywords: fixed-point arithmetic · static analysis · numerical error
analysis · program transformation

1 Introduction

Numerical computation can be exceptionally troublesome in the presence of non-
integer arithmetics, which cannot be expected to be exact on a computer. In fact,
the finite representation of the operands can lead to undesirable conditions such
as rounding errors, underflow, numerical cancellation and the like. This numeri-
cal inaccuracy will in turn propagate, possibly non-linearly, through the variables
of the program. When the dependency between variables becomes particularly in-
tricate (e.g., in control software loops, simulators, neural networks, digital signal
processing applications, common arithmetic routines used in embedded systems,
and generally in any numerically-intensive piece of code), programmers must
thus exercise caution not to end up too far away from their intended result.

The analysis of the numerical accuracy of programs is of particular relevance
when its variables are subject to non-determinism or uncertainty (as often is the
case for the mentioned classes of programs), calling for formal methods to analyse
the property at hand as precisely as possible, while avoiding explicit low-level
representations which would quickly render the analysis hopelessly infeasible.

? Partially supported by MIUR projects PRIN 2017TWRCNB SEDUCE (Design-
ing Spatially Distributed Cyber-Physical Systems under Uncertainty) and PRIN
2017FTXR7S IT-MATTERS (Methods and Tools for Trustworthy Smart Systems).

2 S. Simić et al.

Fixed-point [31] arithmetic can be desirable in several applications because
it is cheaper than floating-point, provides a constant resolution over the en-
tire representation range, and allows to adjust the precision for more or less
computational accuracy. For instance, it has been shown that carefully tailored
fixed-point implementations of artificial neural networks and deep convolutional
networks can have greater efficiency or accuracy than their floating-point coun-
terparts [21, 25]. Programming in fixed-point arithmetic, however, does require
considerable expertise for choosing the appropriate precision for the variables,
for correctly aligning operands of different precision when needed, and for the
separate bookkeeping of the radix point, which is not explicitly represented.
Fixed-point arithmetics is natively supported in Ada, and the ISO/IEC has been
proposing language extensions [1] for the C programming language to support
the fixed-point data type, which have already been implemented in the GNU
compiler collection; similar efforts are being made for more modern languages,
sometimes in the form of external libraries. Yet, crucially, fixed-point arithmetic
is often not supported by the existing verification pipelines.

Here we aim at a tight error analysis in fixed-point arithmetic. Intuitively,
our approach is straightforward. For each fixed-point operation we re-compute
the same value in a greater precision, so that the error bound on a specific
computation can be estimated by computing the difference between the two
values; such errors are in turn propagated through the re-computations. If the
precision of the re-computed values is sufficient enough, this yields an accurate
error bound for each variable in the initial program, at any point of the program.

Rather than implementing the above error semantics as a static analysis, we
devise a set of rewrite rules to transform the relevant fragments of the initial
program into sequences of operations in integer arithmetics over vectors of bits,
with appropriate assertions to check a given bound on the error. This reduces the
problem as to whether the error enclosures in the initial program can ever exceed
a given order of magnitude to (possibly multiple) simple reachability queries on
the transformed program. The translated program can be analysed by any pro-
gram analyser that supports integer arithmetic over variables of mixed precision,
from bit-precise symbolic model checkers to abstraction-based machinery. The
non-fixed-point part of the program is unchanged, thus allowing standard safety
or liveness checks at the same time.

We evaluate our approach on an industrial case study related to the certifi-
cation of a real-time iterative quadratic programming (QP) solver for embedded
model predictive control applications. The solver is based on the Alternating
Direction Method of Multipliers (ADMM) [7], that we assume is implemented in
fixed-point arithmetics for running the controller at either a high sampling fre-
quency or on very simple electronic control modules. Certification of QP solvers
is of paramount importance in industrial control applications, if one needs to
guarantee that a control action of accurate enough quality is computed within
the imposed real-time constraint. Analytical bounds on convergence quality of
a gradient-projection method for QP in fixed-point arithmetic was established
in [28]. Certification algorithms for a dual active-set method and a block-pivoting

Tight Error Analysis in Fixed-point Arithmetic 3

algorithm for QP have been proposed in [8] and [9], respectively, based on poly-
hedral computations, that analyze the behavior of the solver in a parametric way,
determining exactly the maximum number of iterations (and, therefore, of flops)
the solver can make in the worst case, without taking care however of roundoff
errors and only considering changes of problem parameters in the linear term of
the cost function and in the right hand side of the constraints. To the best of
our knowledge, exact certification methods do not exist for ADMM, which is a
method gaining increasing popularity within the control, machine learning, and
financial engineering communities [29]. Our experiments show that it is possible
to successfully compute tight error bounds for different configurations of the case
study using a standard machine and bit-precise bounded model checking.

The rest of the paper is organized as follows. In Section 2 we briefly in-
troduce the semantics of operations over fixed-point variables. In section 3 we
derive the expressions for error propagation arising from the considered opera-
tions. Section 4 gives an overview of our workflow and illustrates the details of
the proposed program transformation. In Section 5 we show how our approach
performs on a case study and in Section 7 we report our findings and ideas for
future development. Section 6 gives an overview of the related work.

2 Fixed-Point Arithmetic

The precision or format of a fixed-point variable x is p.q when its integer and
fractional parts are represented using p and q binary digits, respectively. We
denote such a variable by x(p.q) = 〈ap−1, . . . , a0.a−1, . . . , a−q〉. Since the position
of the radix point is not part of the representation, the storage size for a fixed-
point variable is p+q, plus a sign bit in case of signed arithmetics. It is customary
to use a two’s complement representation with sign extension for signed values.

Operations on fixed-point numbers are carried out much like on regular inte-
gers [31]. The sum or difference of two fixed-point numbers takes one extra bit in
the integer part to hold the result, e.g., z(p+1.q) = x(p.q) ± y(p.q), if the operands
are in the same format. If the formats differ, then format conversion of one or
both operands need to be carried out upfront to obtain the same format.

The product of two fixed-point numbers is also performed as in integer arith-
metics. In this case the two operands are not required to be in the same format.
The format to store the result uses the sum of the integer parts of the operands
plus one extra bit for its integer part and the sum of the fractional precisions of
the operands for the fractional part, i.e. z(p+p′+1.q+q′) = x(p.q)×y(p′.q′). Similarly,
a division operation does not require the operands to be in the same precision,
but it does require extending the dividend by the overall length of the divisor
before the actual integer division takes place. The result, if representable, re-
quires a precision equal to the sum of the integer part of the dividend and the
fractional part of the divisor plus one extra bit for its integer part, and a preci-
sion equal to the sum of the integer part of the divisor and the fractional part of
the dividend for its fractional part, i.e. z(p+q′+1.q+p′) = x(p.q+p′+q′)/y(p′.q′). The
result of a division operation is not representable in fixed-point if the fractional

4 S. Simić et al.

1 fixedpoint x(3.2), y(3.2), z(3.2);
2 x(3.2) = 7.510; // +111.10, 011110
3 y(3.2) = 0.510; // +000.10, 000010
4 z(3.2) = x(3.2) + y(3.2); // +0.0, +000.00, 000000

Listing 1: Overflow in fixed-point arithmetics.

part is periodic. Non-representable quotients need to be quantized to allow a
finite fixed-point representation.

An arithmetic right shift of a variable x(p.q) by a non-negative integer k,
for k ≤ p + q has the effect of trimming down the least significant k bits and
extending the variable by k sign bits while shifting the radix point by k positions
to the right. This results in a variable in the same precision of the operand,
x′(p.q) = x(p.q) k. An arithmetic left shift of variable x(p.q) by a non-negative
integer k trims down the most significant k bits and extends the fractional part
of the operand by k zeros, while shifting the dot by k positions to the right. This
produces a variable in the same precision as the operand, x′(p.q) = x(p.q) k.

It may be necessary to convert a variable x(p.q) to one with a different format
x′(p′.q′). While converting to a greater integer or fractional format does not usu-
ally cause problems, converting to a smaller one may cause errors because this
operation amounts to trimming down the representation starting from the most
significant digit, which may cause overflow, an example of which can be seen in
Listing 1. Here, variable z(3.2) in line 4 is not large enough to store the correct
result of adding the values of variables x(3.2) and y(3.2). Indeed, the correct result
(8.010) would require a variable with 4 integer bits to store this value.

1 fixedpoint x(3.2), y(3.2), z(3.2);
2 x(3.2) = 0.510; // +000.10, 000010
3 y(3.2) = * ; // assume +0.25, +000.01, 000001
4 z(3.2) = x(3.2) ∗ y(3.2); //+0.0, +000.00, 000000

Listing 2: A fixed-point program with a numerical error.

Assigning a variable to one with a lower fractional precision amounts to
trimming down the representation starting from the least significant digit and
may cause a numerical error. An example is shown in Listing 2, in which the
value of variable y(3.2) is non-deterministic, i.e. it symbolises any possible value
taken by y, provided it can be stored in the given precision. If we consider a run
of this program in which y(3.2) is assigned to the value 0.2510, the correct result
of multiplying x(3.2) and y(3.2), namely 0.12510, would require 3 fractional bits
of precision, such as (3.3). Hence, having to store the result in z(3.2) forces the
least significant bit to be dropped and the obtained result is 0.010.

Tight Error Analysis in Fixed-point Arithmetic 5

3 Error propagation in Fixed-Point Arithmetic

To track errors due to quantization and operations between operands which
themselves carry errors from previous computations, we need to express the
errors arising from the single operations in the program (Sect. 2). We denote
the error of a variable x(p.q) with x̄(p̄.q̄) and denote with M(x)(mx

i .m
x
f) the exact

value that would have been calculated, had all the operations leading to the
computation of x been carried out precisely. Using the identity M(x)(mx

i .m
x
f) =

x(p.q)+x̄(p̄.q̄) we will derive the expressions for the errors in arithmetic operations
as functions of the values of the operands and of their errors, as proposed in [23],
but adapted to our fixed-point semantics.

We assume that all error variables x̄ have the same format (ei.ef) and that it
is sufficiently large not to cause overflow or underflow (Sect. 4). We further as-
sume that the resulting variables of all computations have an adequate precision
to store the correct result (Sect. 2).

Addition/subtraction. Let x(p+1.q) = y(p.q) � z(p.q) for � ∈ {+,−}. Keeping in
mind that � introduces no error itself, since we guarantee a sufficient number of
bits for the result, the value of the error of x can be expressed as:

x̄(ei.ef) = M(x)(mx
i .mx

f
) − x(p+1.q) = (M(y)(my

i .m
y
f
) � M(z)(mz

i .m
z
f
))− (y(p.q) � z(p.q))

= (M(y)(my
i .m

y
f
) − y(p.q)) � (M(z)(mz

i .m
z
f
) − z(p.q)) = ȳ(ei.ef) � z̄(ei.ef).

(1)

Multiplication. Let x(p.q) = y(p′.q′)×z(p′′.q′′) with p = p′+p′′+1 and q = q′+q′′.
We derive the expression for the error of multiplication:

x̄(ei.ef) = M(x)(mx
i .mx

f
) − x(p.q) = (M(y)(my

i .m
y
f
) × M(z)(mz

i .m
z
f
))− x(p.q)

= [(ȳ(ei.ef) + y(p′.q′))× (z̄(ei.ef) + z(p′′.q′′))]− x(p.q)

= ȳ(ei.ef) × z̄(ei.ef) + ȳ(ei.ef) × z(p′′.q′′) +

+ y(p′.q′) × z̄(ei.ef) +(y(p′.q′) × z(p′′.q′′) − x(p.q))

= ȳ(ei.ef) × z̄(ei.ef) + ȳ(ei.ef) × z(p′′.q′′) + y(p′.q′) × z̄(ei.ef).

(2)

Division. Let x(p.q) = y(p′.q′)/z(p′′.q′′) with p = p′ + q′′ + 1 and q = p′′ + q′.
Division requires the fractional part of y to be zero-padded up to the length
of z (Sect. 2). We do not consider this format, as it has no impact on the
error equation. Moreover, the / operator may introduce quantization errors for
periodic quotients: if the quotient has precision (p.q), this yields an error e
(bounded by 2−q) with respect to the quotient of the exact ÷ operator:

x̄(ei.ef) = M(x)(mx
i .mx

f
) − x(p.q) = (M(y)(my

i .m
y
f
) ÷ M(z)(mz

i .m
z
f
))− x(p.q)

= (ȳ(ei.ef) + y(p′.q′))÷ (z̄(ei.ef) + z(p′′.q′′))− y(p′.q′)/z(p′′.q′′)

= (ȳ(ei.ef) + y(p′.q′))÷ (z̄(ei.ef) + z(p′′.q′′))−(y(p′.q′) ÷ z(p′′.q′′) − e)

= (z(p′′.q′′) × ȳ(ei.ef) − z̄(ei.ef) × y(p′.q′))

÷ [z(p′′.q′′) × (z̄(ei.ef) + z(p′′.q′′))] + e.

(3)

6 S. Simić et al.

Right shift. To compute the error due to a right shift x(p.q) = y(p.q) k, let us first
notice that the mathematical computation of this operation would only result in
shifting the radix point to the left (which is equivalent to dividing by 2k), and
would maintain the value of the underlying integer, since this operation would
be carried out in infinite precision without truncating any bits. Let denote
the operation that simply truncates the least significant bits and shortens the
variable. We will express as a composition of and a rescaling of the variable.
Let y′(p′.q′) = y(p.q) k, where (p′.q′) = (p.q−k) if k ≤ q and (p′.q′) = (p+q−k.0)
otherwise. The expression for the error is derived as follows:

x̄(ei.ef) = M(x)(mx
i .mx

f
) − x(p.q) = (M(y)(my

i .m
y
f
) k)− x(p.q)

= M(y)(my
i .m

y
f
) × 2−k − (y(p.q) k)× 2−k

= (M(y)(my
i .m

y
f
) − y

′
(p′.q′))× 2−k = (ȳ(ei.ef) + y(p.q) − y

′
(p′.q′))× 2−k.

(4)

Left shift. To derive the error of x(p.q) = y(p.q) k we introduce to denote
the extention of a variable by zero bits in its fractional part and express as
a composition of and a rescaling of the variable. Let y′(p.q+k) = y(p.q) k.
Notice that the values of y′(p.q+k) and y(p.q) coincide. Then we have:

x̄(ei.ef) = M(x)(mx
i .mx

f
) − x(p.q) = (M(y)(my

i .m
y
f
) k)− x(p.q)

= M(y)(my
i .m

y
f
) × 2k − (y(p.q) k)× 2k = (M(y)(my

i .m
y
f
) − y

′
(p.q+k))× 2k

= (M(y)(my
i .m

y
f
) − y(p.q))× 2k = ȳ(ei.ef) × 2k.

(5)

So far we have been under the assumption that the result of every operation
is stored in a sufficient precision. This allowed us to express the errors in terms of
the values of the operands and their errors, without additional error introduced
by the finite representation of the result (except for division). In general, we can
account for errors due to insufficient precision by storing the result in a long
enough temporary variable, and then performing a precision conversion. The
total error will then be the composition of the two computed errors.

Fractional precision conversion. Here we give the expression for the error due
to a fractional precision conversion x(p.q′) = y(p.q), for q′ ≤ q:

x̄(ei.ef) = M(x)(mx
i .mx

f
) − x(p.q) = M(y)(my

i .m
y
f
) − x(p.q)

= ȳ(ei.ef) + y(p.q) − x(p.q′) = (y(p.q) − x(p.q′)) + ȳ(ei.ef)

(6)

Integer precision conversion. In the case of an integer precision conversion
x(p′.q) = y(p.q), for p′ ≤ p, we do not give an expression for the error since
here an error would mean overflow, which we treat as undesired behavior.

4 Program analysis

The overall workflow of our approach is shown in Fig. 1. Given a fixed-point
program PFP and an error bound 2−f on its variables, we wish to know whether
any computation of PFP can ever exceed the given error bound.

Tight Error Analysis in Fixed-point Arithmetic 7

PFP P ′FP = JP Kebei,ef P ′′BV
ϕ out

adjust ei,ef or eb

Fig. 1: Analysis flow for programs over fixed-point arithmetics.

To that end, we first transform PFP into an expanded fixed-point program
P ′FP with additional statements for computing and propagating the error, and
assertions that the numerical errors do not exceed the given error bound. We
denote this transformation function with J·Kebei,ef , where ei, ef , and eb are pa-
rameters of the encoding that represent the integer and fractional precision of
the error variable and the maximum number of least significant non-zero digits
for the error variables, respectively. Notice that checking that numerical errors
do not exceed 2−f is equivalent to checking whether all but the last eb bits of
error variables are zero, for eb = ef − f . By construction, P ′FP will contain a
reachable assertion failure if and only if either PFP can exceed the given error
bound, or (ei, ef) is not a sufficient precision for an accurate error analysis, or
if overflow occurs.

However, the program is not ready for the analysis yet. We need to encode
P ′FP into a bit-vector program P ′′BV . This amounts to transforming all fixed-point
variables into bit-vectors whose length is the sum of their integer and fractional
parts, and on which operations are carried out as in integer arithmetics. P ′′BV

can then be analysed by any software verifier that supports integer arithmetic
over variables of mixed precision. For instance, a bounded model checker would
translate P ′′BV into a propositional formula and feed it to a SAT solver.

If an assertion failure is reached, stating that the chosen precision (ei.ef)
does not suffice to hold the error of a variable, we adjust these parameters (and,
consequently, eb) and re-encode. As a first choice for ei and ef we can perform
light-weight static analysis on the program and choose values s.t. that ei ≥ p,
ef ≥ q, where p and q are the integer and fractional precisions of any variable
in PFP , and ef ≥ k where k is the magnitude appearing in any right shift.

4.1 Input program

Let x(p.q) be a fixed-point variable , k a non-negative integer constant, ∗ a sym-
bolic value, and � ∈ {+,−,×, /} and ◦ ∈ { , } the arithmetic operations over
fixed-point variables. For the input program PFP we adopt a C-like syntax ex-
tended with an extra datatype fixedpoint for fixed-point variables:

v ::= x(p.q) | k | ∗
s = fixedpoint x(p.q) | (v = v) | (v = v � v) | (v = v ◦ k)

Assignment (=) of one variable to another can be across the same or different
formats. In the latter case it acts as an implicit format conversion operation. For

8 S. Simić et al.

assignment to a constant or non-deterministic value, we assume that value to be
in the same precision as the target variable. For binary operations, if one of the
two operands is a constant we assume the same precision of the other operand.
Without loss of generality, we assume that the operations do not occur in nested
expressions (e.g. x= z×y+w), and that ± is always performed on operands of
the same precision. Nested or mixed-precision operations can be accommodated
via intermediate assignments to temporary variables to hold the result of the
sub-expressions or adjust the precisions of the operands, respectively.

Besides fixed-point specific features, the input program PFP can contain
any standard C-like elements such as scalars, arrays, loops, etc. For simplicity,
however, in the rest of the section we assume that all function calls have been
inlined, and main is the only function defined. Finally, we include verification-
oriented primitives for symbolic initialisation (x = ∗) and assertion checking
(assert(condition)) to express safety properties of interest, in form of predi-
cates over the variables of the program.

4.2 Program transformation

Here we describe the process of encoding the input program into a modified
fixed-point program. We will denote with x′ a temporary variable that does
not belong to the initial program, but is introduced during the encoding. The
purpose of such variables is to store the actual result of an operation without
overflow or numerical error, thus they will always be given sufficient precision.
Variables denoted with x̄ will be introduced to represent the error that arises
from the computation of x. All other variables introduced by the translation will
be denoted by letters of the alphabet not appearing in PFP . We point out here
that our chosen quantization mode is truncation, but other rounding modes may
be considered with slight adjustments.

Error variables are themselves fixed-point variables, but their manipulation
is more involved. If we were to treat error variables as we do program variables,
by keeping track of the errors arising from their computation, we would incur
a recursive definition and have to compute errors of higher degree. Hence, we
denote with ⊕, 	, ⊗ and � the four arithmetic operations on error variables
and with c1, c2 and d three functions needed for the manipulation of error
components and we define their macros in Figure 5, discussed later.

Figures 2-5 display the translation rules for function J·Kebei,ef , for which we
omit the parameters for simplicity. First, we consider all statements of the input
program containing operations in which the format of the result variable is dif-
ferent from the one needed to hold the correct result. These are the statements
that appear in the left-hand side of the first 8 rules of Fig. 2. For each of them,
we declare an auxiliary variable, designed to hold the exact result of the con-
sidered operation, we introduce an additional statement assigning the result of
said operation to the new variable and finally we introduce a statement to con-
vert the new result variable to the original one. The last rule of Fig. 2 concerns
precision conversion, involving both the integer and fractional part. We trans-
late it by declaring an auxiliary variable and dividing the integer and fractional

Tight Error Analysis in Fixed-point Arithmetic 9

conversions into two separate steps. We point out here that all newly declared
variables introduced by the encoding are implicitly initialized to 0.

range
Jx(p.q) = y(p′.q′) k;K

[k ≤ p′, k ≤ q′]
[p 6= p′ − k ∨ q 6= q′]

→
Jfixedpoint x′(p′−k.q′);K
Jx′(p′−k.q′) = y(p′.q′) k;K
Jx(p.q) = x′(p′−k.q′);K

Jx(p.q) = y(p′.q′) k;K
[k > p′, k ≤ q′]

[p 6= 0 ∨ q 6= q′]
→

Jfixedpoint x′(0.q′);K
Jx′(0.q′) = y(p′.q′) k;K
Jx(p.q) = x′(0.q′);K

Jx(p.q) = y(p′.q′) k;K
[k > q′]

[p 6= p′ − k ∨ q 6= q′]
→

Jfixedpoint x′(p′−k.q′);K
Jx′(p′−k.q′) = y(p′.q′) k;K
Jx(p.q) = x′(p′−k.q′);K

Jx(p.q) = y(p′.q′) k;K
[p 6= p′ + k ∨ q 6= q′]

→
Jfixedpoint x′(p′+k.q′);K
Jx′(p′+k.q′) = y(p′.q′) k;K
Jx(p.q) = x′(p′+k.q′);K

Jx(p.q) = y(p′.q′)+z(p′.q′);K
[p 6= p′ + 1 ∨ q 6= q′]

→
Jfixedpoint x′(p′+1.q′);K
Jx′(p+1.q) = y(p′.q′)+z(p′.q′);K
Jx(p.q) = x′(p′+1.q′);K

Jx(p.q) = y(p′.q′)−z(p′.q′);K
[p 6= p′ + 1 ∨ q 6= q′]

→
Jfixedpoint x′(p′+1.q′);K
Jx′(p+1.q) = y(p′.q′)−z(p′.q′);K
Jx(p.q) = x′(p′+1.q′);K

Jx(p.q) = y(p′.q′)×z(p′′.q′′);K
[p 6= p′ + p′′ + 1 ∨ q 6= q′ + q′′]

→
Jfixedpoint x′(p′+p′′+1.q′+q′′);K
Jx′(p′+p′′+1.q′+q′′) = y(p′.q′)×z(p′′.q′′);K
Jx(p.q) = x′(p′+p′′+1.q′+q′′);K

Jx(p.q) = y(p′.q′)/z(p′′.q′′);K
[p 6= p′ + q′′ + 1 ∨ q 6= p′′ + q′]

→
Jfixedpoint x′(p′+q′′+1.p′′+q′);K
Jx′(p′+q′′+1.p′′+q′) = y(p′.q′)/z(p′′.q′′);K
Jx(p.q) = x′(p′+q′′+1.p′′+q′);K

Jx(p.q) = y(p′.q′);K
[p 6= p′ ∧ q 6= q′]

→
Jfixedpoint x′

(p.q′);K
Jx′

(p.q′) = y(p′.q′);K
Jx(p.q) = x′

(p.q′);K

Fig. 2: Rewrite function J·K: first set of rules to be applied.

When declaring a fixed-point variable z in the original program, by rule
declaration in Fig. 3, in the translated program this will be accompanied by
a declaration of an extra variable z̄ representing the error in the computation of
z. The group of rules assignment describes assignment to a constant, a non-
deterministic value, or another variable in the same precision. In particular, *
indicates any possible value representable in the precision of the target variable.
In both cases, the error variable x̄ will have value zero, as no error is generated

10 S. Simić et al.

by such an assignment. When a variable y is assigned to another variable x with
the same precision, the error of the former is propagated unchanged to the latter.

The integer precision cast rules handle assignments between variables
with different integer precisions. When assigning a variable to one with greater
integer precision, the old variable is lengthened (by sign extension or zeros,
depending on the representation), so there is no loss of precision and no error is
introduced by this operation. Hence, the error of the new variable is equal to that
of the previous one. The case of an assignment to lower integer precision may
result in overflow. For this kind of assignment we introduce an assertion to check
that the values of the old and the new variable are equal. The error of the new
variable coincides with the error of the old variable, as this assignment entails
no additional error, once the assertion is checked. The assertion statement may
be left out of the encoding if we do not wish to check for overflow.

The fractional precision cast rules encode statements for fractional
conversion. The first rule handles the case of assignment of a variable y to one
with a greater fractional precision x. This translates to extending y by a number
of bits equal to the difference in precision. We indicate this operation with an
internal operator , already introduced in Section 3. As this operation introduces
no error, the error variable of the result will be equal to that of the operand.

The conversion of a variable y to one with a lower fractional precision x

translates to a declaration of 4 new variables, the assignment of x to the trimmed-
down value of y (here we use operator introduced earlier) and a number of
statements to compute the error. First, x and y are aligned in order to perform
subtraction. This operation can be carried out error-free and stored in t, since
the value of y′ does not exceed that of y by construction. The value of t is
then stored in a new variable ¯̄y by extending it to obtain the usual precision
for error variables. The total error x̄ is the sum of ȳ and ¯̄y, as derived in Eq. 6,
where ¯̄y corresponds to y− x. Finally, we check whether the absolute value of x̄
exceeds the given error bound by cutting off the last eb bits and checking if the
remaining bits are all zero. We use here our internal operator abs that computes
the absolute value of the underlying integer and returns its properly scaled value.

Rule addition/subtraction translates x(p′+1.q′) = y(p′.q′)±z(p′.q′) into the
same statement plus a statement for the computation of the error of x. Notice
that the expression for the error, namely the sum/difference of the errors of the
operands, is the one derived in Eq. 1. We use the special operator ± instead of
± since computations between error variables are carried out differently than
those between program variables. Finally, as for fractional precision conversion,
we check if the obtained error exceeds the error bound. Similarly, in rule mul-
tiplication, the translation of x(p′+p′′+1.q′+q′′) = y(p′.q′) × z(p′′.q′′) introduces a
new statement for the computation of the error of x, whose expression is derived
in Eq. 2. As before, we use operators ⊕ and ⊗ instead of the usual ones. Finally,
we check the error bound as before.

Tight Error Analysis in Fixed-point Arithmetic 11

declaration
Jfixedpoint z(p.q);K → fixedpoint z(p.q), z(ei.ef);

assignment

Jx(p.q) = k;K →
x(p.q) = k;
x̄(ei.ef) = 0;

Jx(p.q) = ∗;K →
x(p.q) = ∗;
x̄(ei.ef) = 0;

Jx(p.q) = y(p.q);K →
x(p.q) = y(p.q);
x̄(ei.ef) = ȳ(ei.ef);

integer precision cast
Jx(p.q) = y(p′.q);K

[p > p′]
→

x(p.q) = y(p′.q);
x̄(ei.ef) = ȳ(ei.ef);

Jx(p.q) = y(p′.q);K
[p < p′]

→
x(p.q) = y(p′.q);
assert(y(p′.q) = x(p.q));
x̄(ei.ef) = ȳ(ei.ef);

fractional precision cast
Jx(p.q) = y(p.q′)K

[q > q′]
→

x(p.q) = y(p.q′) q− q′;
x̄(ei.ef) = ȳ(ei.ef);

Jx(p.q) = y(p.q′);K
[q < q′, q′ ≤ ef]

→

fixedpoint y′
(p.q′),

¯̄y(ei.ef), s(ei.ef), t(p.q′);
x(p.q) = y(p.q′) q′ − q;
y′
(p.q′) = x(p.q) q′ − q;
t(p.q′) = y(p.q′) − y′

(p.q′);
¯̄y(ei.ef) = t(p.q′) ef − q′;
x̄(ei.ef) = ȳ(ei.ef) ⊕ ¯̄y(ei.ef);
s(ei.ef) = abs(x̄(ei.ef));
assert((s(ei.ef) eb) = 0);

addition/subtraction

Jx(p.q) = y(p′.q′)±z(p′.q′);K
[p = p′ + 1 ∧ q = q′]

→

fixedpoint s(ei.ef);
x(p.q) = y(p′.q′)±z(p′.q′);
x̄(ei.ef) = ȳ(ei.ef) ± z̄(ei.ef);
s(ei.ef) = abs(x̄(ei.ef));
assert((s(ei.ef) eb) = 0);

multiplication

fixedpoint s(ei.ef);
Jx(p.q) = y(p′.q′)×z(p′′.q′′);K

[p = p′ + p′′ + 1 ∧ q = q′ + q′′]

→

fixedpoint s(ei.ef);
x(p.q) = y(p′.q′)×z(p′′.q′′);
x̄(ei.ef) = (ȳ(ei.ef) ⊗ z̄(ei.ef))⊕

(y(p′.q′) ⊗ z̄(ei.ef))⊕
(z(p′′.q′′) ⊗ ȳ(ei.ef));

s(ei.ef) = abs(x̄(ei.ef));
assert((s(ei.ef) eb) = 0);

division

Jx(p.q) = y(p′.q′) / z(p′′.q′′);K
[p = p′ + q′′ + 1 ∧ q = p′′ + q′]

→

assert(z(p′′.q′′) 6= 0);

fixedpoint t(p′.q′+p′′+q′′), t
′
(p′′+p+1.q′′+q);

fixedpoint v(q.0), ~x(0.q), u(ei.ef), s(ei.ef);
t(p′.q′+p′′+q′′) = y(p′.q′) p′′ + q′′;
x(p.q) = t(p′.q′+p′′+q′′)/z(p′′.q′′);
t′(p′′+p+1.q′′+q) = z(p′′.q′′)×x(p.q);
v(q.0) = 1− (t(p′.q′+p′′+q′′) = t′(p′′+p+1.q′′+q));
~x(0.q) ≡ v(q.0);
u(ei.ef) = c1(~x(0.q));
x̄(ei.ef) = [(ȳ(ei.ef) ⊗ z(p′′.q′′))	

(t(p′.q′+p′′+q′′) ⊗ z̄(ei.ef))]�
[z(p′′.q′′) ⊗ (z(p′′.q′′) ⊕ z̄(ei.ef))]⊕ u(ei.ef);

s(ei.ef) = abs(x̄(ei.ef));
assert((s(ei.ef) eb) = 0);

Fig. 3: Rewrite function J·K for declarations, assignments, precision conversions and +,
-, × and / operations.

12 S. Simić et al.

left shift

Jx(p.q) = y(p′.q′) k;K
[p = p′ + k, q = q′]

→

fixedpoint y′(p′.q′+k), x̂(ei+k.ef−k);
y′(p′.q′+k) = y(p′.q′) k;
x(p′+k.q′) ≡ y′(p′.q′+k);
x̂(ei+k.ef−k) ≡ ȳ(ei.ef);
x̄(ei.ef) = c1(x̂(ei+k.ef−k));

right shift

Jx(p.q) = y(p′.q′) k;K
[k ≤ p′, k ≤ q′]

[p = p′ − k, q = q′]
→

fixedpoint y′(p′.q′−k), s(ei.ef);
y′(p′.q′−k) = y(p′.q′) k;
x(p′−k.q′) ≡ y′(p′.q′−k);
x̄(ei.ef) = d(y(p′.q′), y

′
(p′.q′−k), k);

s(ei.ef) = abs(x̄(ei.ef));
assert((s(ei.ef) eb) = 0);

Jx(p.q) = y(p′.q′) k;K
[k > p′, k ≤ q′]
[p = 0, q = q′]

→

fixedpoint y′(p′.q′−k), x
′
(p′.q′), y

′′
(p′+k.q′−k), s(ei.ef);

y′(p′.q′−k) = y(p′.q′) k;
y′′(p′+k.q′−k) = y′(p′.q′−k);
x′(p′.q′) ≡ y′′(p′+k.q′−k);
x(0.q′) = x′(p′.q′);
x̄(ei.ef) = d(y(p′.q′), y

′
(p′.q′−k), k);

s(ei.ef) = abs(x̄(ei.ef));
assert((s(ei.ef) eb) = 0);

Jx(p.q) = y(p′.q′) k;K
[k > q′]

[p = p′ − k, q = q′]
→

fixedpoint y′(p′+q′−k.0), s(ei.ef);
y′(p′+q′−k.0) = y(p′.q′) k;
x(p′−k.q′) ≡ y′(p′+q′−k.0);
x̄(ei.ef) = d(y(p′.q′), y

′
(p′+q′−k.0), k);

s(ei.ef) = abs(x̄(ei.ef));
assert((s(ei.ef) eb) = 0);

Fig. 4: Rewrite function J·K for left and right shift operations.

A statement x(p′+q′′+1.q′+q′′) = y(p′.q′)/z(p′′.q′′) is translated by rule division
as follows. The dividend is extended to a new variable t, division is performed
between the obtained variable and the original divisor and the result is stored in
x. The encoding then introduces an extra variable t′, assigned to the product of
x and z. If t′ coincides with t then the quotient is representable and no quanti-
zation error is introduced, otherwise an error bounded by 2−q (the resolution of
x) is introduced. Variable v is introduced to contain the value 0 if the result is
representable and 1 otherwise. This value is rescaled in a new variable ~x, which
will remain 0 if v = 0 and will be 2−q if v = 1. This variable is then converted
to format (ei.ef) by function c1 and added to the overall error x̄, as derived in
Eq. 3. Again, we check the error bound condition.

In rule left shift in Fig. 4 we translate x(p′+k.q′) = y(p′.q′) k by first
padding y with k zeros in its fractional part and storing the result in a new
variable y′ (we use our internal operator to indicate this). We then change the
format of y′ by moving the radix point by k positions to the right. To indicate
this we use an internal operator ≡ and store the result in x. Since no bits are
lost, the error due to the shift is a rescaling of the error of y, as derived in Eq. 5,
and a conversion of its format to (ei.ef) by function c1, defined later.

Tight Error Analysis in Fixed-point Arithmetic 13

When right-shifting a variable y(p′.q′) by k bits, the required format of the
result x(p.q) may vary, based on k and the format of y. Indeed, this operation
translates into a cut of the least significant k bits, possibly removing bits even
from the integer part if k > q′ (third rule), plus the rescaling of the obtained
variable, moving the radix point by k positions to the left, possibly exceeding
the integer part of the variable if k > p′ (second rule). We only allow right
shifting by a number of bits less or equal to the overall length of the variable
(this condition is checked by performing light-weight static analysis on the input
program). The computation of the error, as derived in Eq. 4, is expanded in the
definition of d, defined in Fig. 5 and the obtained error is checked against the
error bound.

Fig. 5 defines the operators used for manipulating error components in our
encoding. Function d is used to compute the error in the right-shift rules in Fig. 4.
Esentially, it computes the difference between the exact value of the shifted
variable and the one obtained by trimming it, scales this value appropriately
and stores it in the chosen precision for error variables, as shown in Eq. 4. The
sum and difference of error components computed in d are again the specialised
ones for error variables.

Functions c1 and c2 convert a variable in any precision to one in the chosen
precision for error components. c1, used when the fractional part of the argument
is shorter than ef, reaches an assertion failure if the integer part of the argument
is too large to be stored in ei bits (error overflow). c2 may reach either an
assertion failure for error underflow, if the fractional part of the argument can
not be stored in ef bits, or an assertion failure for error overflow.

The operator ± computes the exact result of a sum/difference of two variables
by assigning it an extra bit and then relies on c2 to convert this result to the
desired precision. Similarly, the operator ⊗ first computes the exact product
and then converts it to the desired format. To perform �, the dividend needs
to be extended by the length of the divisor and the quotient is computed. In
case of non-representable quotients an extra error term is computed and added
to the already computed quotient, and the resulting variable is converted to the
desired precision. Notice that these operations differ from the ones on program
variables in that they do not compute errors due to lack of precision. Indeed,
they are tailored to reach an assertion failure when the computed exact (when
representable) results can not be stored in the designated error variables. Should
this happen during the verification phase, new values for error precisions can be
chosen and the process repeated.

In the case that the control flow of the input program depends on condi-
tions regarding variables with inexact values, our encoding may be extended
to model the error arising from incorrect branching and loops. Following the
ideas described above, the error of an incorrect branching choice is translated
into a doubling of the conditional block of statements under examination and
the values of the output variables are compared. In the first block, the original
conditional statement is maintained, while the second considers the conditional
statement on the exact values of the variables appearing in it.

14 S. Simić et al.

Jx(ei.ef) =

d(y(p′.q′), y
′
(mi.mf), k)K;

→

fixedpoint t(ei.ef), t
′
(ei.ef), u(ei.ef);

fixedpoint u′(ei.ef), t
′′
(ei−k.ef+k);

u(ei.ef) = c1(y(p′.q′));
t(ei.ef) = u(ei.ef) ⊕ ȳ(ei.ef);
u′(ei.ef) = c1(y

′
(mi.mf));

t′(ei.ef) = t(ei.ef) 	 u′(ei.ef);
t′′(ei−k.ef+k) ≡ t′(ei.ef);
x(ei.ef) = c2(t

′′
(ei−k.ef+k));

Jx(ei.ef) =

c1(y(mi.mf)); K
[mf < ef]

→

fixedpoint t′(mi.ef);
t′(mi.ef) = y(mi.mf) ef − mf;
x(ei.ef) = t′(mi.ef);
assert(x(ei.ef) = t′(mi.ef));

Jx(ei.ef) =

c2(y(mi.mf)); K
[mf ≥ ef]

→

fixedpoint t′(mi.ef), t
′′
(mi.mf);

t′(mi.ef) = y(mi.mf) mf − ef;
t′′(mi.mf) = t′(mi.ef) mf − ef;
assert(t′′(mi.mf) = y(mi.mf));
x(ei.ef) = t′(mi.ef);
assert(x(ei.ef) = t′(mi.ef));

Jx(ei.ef) =

l(ei.ef) ± r(ei.ef); K →
fixedpoint s(ei+1.ef);
s(ei+1.ef) = l(ei.ef) ± r(ei.ef);
x(ei.ef) = c2(s(ei+1.ef));

Jx(ei.ef) =

l(mi.mf) ⊗ r(ni.nf); K →
fixedpoint p(mi+ni+1.mf+nf);
p(mi+ni+1.mf+nf) = l(mi.mf) × r(ni.nf);
x(ei.ef) = c2(p(mi+ni+1.mf+nf));

Jx(ei.ef) =

l(mi.mf) � r(ni.nf)K;
→

fixedpoint q(mi+nf+1.ni+mf), v(ni+mf .0);
fixedpoint l′(mi.mf+n), u(0.ni+mf);
fixedpoint l′′(mi+n+2.mf+n), q

′
(mi+nf+2.ni+mf);

l′(mi.mf+n) = l(mi.mf) n;
q(mi+nf+1.ni+mf) = l′(mi.mf+n)÷r(ni.nf);

l′′(mi+n+2.mf+n) = q(mi+nf+1.ni+mf) × r(ni.nf);
v(ni+mf .0) = 1− (l′′(mi+n+2.mf+n) = l′(mi.mf+n));
u(0.ni+mf) ≡ v(ni+mf .0);
q′(mi+nf+2.ni+mf) = q(mi+nf+1.ni+mf) + u(0.ni+mf);
x(ei.ef) = c2(q

′
(mi+nf+2.ni+mf));

n = ni + nf

Fig. 5: Rewrite function J·K: expansions for d, c1, c2, ⊕,	, ⊗ and �.

Notice that our encoding always assures an exact computation of all repre-
sentable values and gives an over-approximation only for the errors arising from
the computation of quotients. To assure this accuracy, we either make sure an
assertion failure is reached if a variable is too short to contain the value it is
supposed to, or we assign e large enough precision to hold the result.

Tight Error Analysis in Fixed-point Arithmetic 15

1 2 3 4
0

2−18

2−16

2−14

2−12

2−10

2−8

2−6

2−4

2−2

‖

No. of iterations
M
ax

er
ro
r
bo

un
d

7.8
7.12
7.16
7.20

Fig. 6: Maximum absolute error enclosures

5 Experimental Evaluation

We evaluate our approach on an industrial case study of a real-time iterative
quadratic programming (QP) solver based on the Alternating Direction Method
of Multipliers (ADMM) [7] for embedded control. We consider the case where
some of the coefficients of the problem are nondeterministic, to reflect the fact
that they may vary at run time, to model changes of estimates produced from
measurements and of the set-point signals to track. We studied 16 different con-
figurations of this program by setting the precision to (7.8), (7.12), (7.16), and
(7.20) for all the variables except for the 8 non-deterministic variables repre-
senting the uncertain parameters, which we restricted to a precision of (3.4)
(using a signed bit-vector of 8 bits). Thus, each program configuration has
28·8 = 264 ≈ 1.85 · 1019 different possible assignments. For each such config-
uration we considered up to 1,2,3, and 4 iterations of the ADMM algorithm. For
i iterations the number of arithmetic operations amounted to 38 + i ∗ 111, of
which 10 + i ∗ 61 sums/subtractions and 15 + i ∗ 42 multiplications.

In order to work out tight upper and lower bounds on the error on the output
variables of the program, we analysed each configuration repeatedly, considering
different error bounds starting from 20 and going down in steps of 2−2, stopping
as soon as a pass is followed by a fail, or when even the last check (ef − f = 0,
see Sect. 4) succeeds. In the first case, we have successfully found upper and
lower bounds; in the second case, we have that the error is exactly zero.

The experimental results are summarised in Figure 6, where we report the
maximum error upper and lower bounds obtained with our approach. In one
iteration, the analysis of the program with precision (7.8) fails with error bound
2−8 and succeeds with 2−6; for all the other precisions, the analysis always
succeeds, so the error is exactly zero. Larger intervals than 2−2 are reported
when the check of a specific error bound was taking too long for a specific
configuration (time-out was set to 6 days but generally did not exceed 24h).

For the analysis we used a SAT-based bounded model checker, namely CBMC
5.4 [10], which relies on MiniSat 2.2.1 [13] for propositional satisfiability checking;
for the program rewriting part we used CSeq [15]. For all the experiments we

16 S. Simić et al.

used a dedicated machine equipped with 128GB of physical memory and a dual
Xeon E5-2687W 8-core CPU clocked at 3.10GHz with hyper-threading disabled,
running 64-bit GNU/Linux with kernel 4.9.95.

6 Related Work

A large body of work on numerical error analysis leverages traditional static
analyses and representations, e.g., based on interval arithmetic or affine arith-
metic [30]; abstraction-based techniques, originally proposed for program syn-
thesis, are [12], [11] and [23]. Different tools based on abstract interpretation
are currently available for estimating errors arising from finite-precision com-
putations [6, 16], while an open source library allows users to experiment with
different abstract domains [26]. Probabilistic error analysis based on abstraction
for floating-point computations has been studied in [14,22].

In general, abstraction-based techniques manipulate abstract objects that
over-approximate the state of the program (i.e., either its variables or the error
enclosures thereof) rather than representing it precisely. For this reason they are
relatively lightweight, and can scale up to large programs. However, the approx-
imation can become too coarse over long computations, and yield loose error
enclosures. Bounded model checking has been used for under-approximate anal-
ysis of properties in finite-precision implementations of numerical programs [2,5,
18, 20]. Under-approximation and over-approximation are somehow orthogonal:
bounded model checking approaches can be bit-precise, but are usually more
resource intensive.

Interactive theorem provers are also a valid tool for reasoning about numerical
accuracy of finite precision computations. Specifically, fixed-point arithmetic is
addressed in [3] while [17] and [4] reason about floating-point arithmetic.

Our approach allows a separation of concerns from the underlying verification
technique. The bit-vector program on its own provides a tight representation of
the propagated numerical error, but the program can be analysed by any ver-
ification tool that supports bit-vectors of arbitrary sizes. Therefore, a more or
less accurate error analysis can be carried out. For instance, if the priority is
on certifying large error bounds, one could try to analyse our encodings us-
ing an abstraction-based technique for over-approximation; if the priority is on
analysing the sources of numerical errors, then using a bit-precise approach such
as bounded model checking would be advisable.

Numerical properties, such as numerical accuracy and stability are of great
interest to the embedded systems community. Examples of works dealing with
the accuracy of finite-precision computations are [27] and [24], which tackle the
problem of controller accuracy, [14] gives probabilistic error bounds in the field
of DSP, while [18] uses bounded model checking to certify unattackability of
sensors in a cyber-physical system.

Tight Error Analysis in Fixed-point Arithmetic 17

7 Conclusion

We have presented a technique for error analysis under fixed-point arithmetic via
reachability in integer programs over bit-vectors. It allows the use of standard
verification machinery for integer programs, and the seamless integration of error
analysis with standard safety and liveness checks. Preliminary experiments show
that it is possible to successfully calculate accurate error bounds for different
configurations of an industrial case study using a bit-precise bounded model
checker and a standard workstation.

In the near future, we plan to optimise our encoding, for example by avoid-
ing redundant intermediate computations, and to experiment with parallel or
distributed SAT-based analysis [19]. We also plan to evaluate whether verifica-
tion techniques based on more structured encodings of the bit-vector program
can improve performance. In that respect, it would be interesting to compare
word-level encodings such as SMT against our current SAT-based workflow.

Our current approach considers fixed-point arithmetic as a syntactic exten-
sion of a standard C-like language. However, it would be interesting to focus on
programs that only use fixed-point arithmetics, for which it would be possible
to have a direct SMT encoding in the bit-vector theory, for instance. Under this
assumption, we are currently working on a direct encoding for abstract interpre-
tation (via Crab [26]) to evaluate the efficacy of the different abstract domains
on the analysis of our bit-vector programs, and in particular on the accuracy of
the error bound that such techniques can certificate.

A very difficult problem can arise in programs in which numerical error alters
the control flow. For example, reachability (and thus safety) may be altered by
numerically inaccurate results. We will be considering future extensions of our
approach to take into account this problem.

References

1. Programming languages — C— Extensions to support embedded processors. EEE,
New York (1987), iSO/IEC Technical Report 18037:2008(E)

2. Abreu, R.B., Cordeiro, L.C., Filho, E.B.L.: Verifying fixed-point digital filters using
smt-based bounded model checking. CoRR abs/1305.2892 (2013)

3. Akbarpour, B., Tahar, S., Dekdouk, A.: Formalization of fixed-point arithmetic in
HOL. Formal Methods Syst. Des. 27(1-2), 173–200 (2005)

4. Ayad, A., Marché, C.: Multi-prover verification of floating-point programs. In: IJ-
CAR. LNCS, vol. 6173, pp. 127–141. Springer (2010)

5. de Bessa, I.V., Ismail, H.I., Cordeiro, L.C., Filho, J.E.C.: Verification of delta
form realization in fixed-point digital controllers using bounded model checking.
In: SBESC. pp. 49–54. IEEE (2014)

6. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. CoRR (2007)

7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foun-
dations and Trends in Machine Learning 3(1), 1–122 (2011)

18 S. Simić et al.

8. Cimini, G., Bemporad, A.: Exact complexity certification of active-set methods for
quadratic programming 62(12), 6094–6109 (2017)

9. Cimini, G., Bemporad, A.: Complexity and convergence certification of a block
principal pivoting method for box-constrained quadratic programs. Automatica
100, 29–37 (2019)

10. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ansi-c programs. In:
TACAS. pp. 168–176 (2004)

11. Darulova, E., Kuncak, V.: Sound compilation of reals. In: POPL. ACM (2014)
12. Darulova, E., Kuncak, V., Majumdar, R., Saha, I.: Synthesis of fixed-point pro-

grams. In: EMSOFT. pp. 22:1–22:10. IEEE (2013)
13. Eén, N., Sörensson, N.: An extensible sat-solver. In: SAT. LNCS, vol. 2919, pp.

502–518. Springer (2003)
14. Fang, C.F., Rutenbar, R.A., Chen, T.: Fast, accurate static analysis for fixed-point

finite-precision effects in DSP designs. In: ICCAD. pp. 275–282. IEEE/ACM (2003)
15. Fischer, B., Inverso, O., Parlato, G.: Cseq: A concurrency pre-processor for sequen-

tial C verification tools. In: ASE. pp. 710–713. IEEE (2013)
16. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: VM-

CAI. LNCS, vol. 6538, pp. 232–247. Springer (2011)
17. Harrison, J.: Floating-point verification using theorem proving. In: SFM. LNCS,

vol. 3965, pp. 211–242. Springer (2006)
18. Inverso, O., Bemporad, A., Tribastone, M.: Sat-based synthesis of spoofing attacks

in cyber-physical control systems. In: ICCPS. pp. 1–9. IEEE / ACM (2018)
19. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking of

multi-threaded programs. In: PPoPP. pp. 202–216. ACM (2020)
20. Ivancic, F., Ganai, M.K., Sankaranarayanan, S., Gupta, A.: Numerical stability

analysis of floating-point computations using software model checking. In: MEM-
OCODE. pp. 49–58. IEEE (2010)

21. Lin, D.D., Talathi, S.S., Annapureddy, V.S.: Fixed point quantization of deep
convolutional networks. In: ICML. JMLR Workshop and Conference Proceedings,
vol. 48, pp. 2849–2858. JMLR.org (2016)

22. Lohar, D., Prokop, M., Darulova, E.: Sound probabilistic numerical error analysis.
In: IFM. LNCS, vol. 11918, pp. 322–340. Springer (2019)

23. Martel, M., Najahi, A., Revy, G.: Toward the synthesis of fixed-point code for ma-
trix inversion based on cholesky decomposition. In: DASIP. pp. 1–8. IEEE (2014)

24. Martinez, A.A., Majumdar, R., Saha, I., Tabuada, P.: Automatic verification of
control system implementations. In: EMSOFT. pp. 9–18. ACM (2010)

25. Moussa, M., Areibi, S., Nichols, K.: On the Arithmetic Precision for Implementing
Back-Propagation Networks on FPGA: A Case Study. Springer US (2006)

26. Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Signedness-agnostic
program analysis: Precise integer bounds for low-level code. In: APLAS. LNCS,
vol. 7705, pp. 115–130. Springer (2012)

27. Pajic, M., Park, J., Lee, I., Pappas, G.J., Sokolsky, O.: Automatic verification of
linear controller software. In: EMSOFT. pp. 217–226. IEEE (2015)

28. Patrinos, P., Guiggiani, A., Bemporad, A.: A dual gradient-projection algorithm
for model predictive control in fixed-point arithmetic. Automatica (2015)

29. Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: An operator
splitting solver for quadratic programs. Mathematical Programming Computation
(2020), http://arxiv.org/abs/1711.08013

30. Stol, J., De Figueiredo, L.H.: Self-validated numerical methods and applications.
In: Monograph for 21st Brazilian Mathematics Colloquium, IMPA. Citeseer (1997)

31. Yates, R.: Fixed-point arithmetic: An introduction. Digital Signal Labs (2009)

