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Abstract: A method based on conceptual tools of predictive control is described for solving tracking problems
wherein pointwise-in-time input and/or state inequality constraints are present. It consists of adding to a
primal compensated system a nonlinear device called command governor (CG) whose action is based on the
current state, set-point and prescribed constraints. The overall system is proved to fulfill the constraints, be
asymptotically stable, and exhibit an offset-free tracking behaviour, provided that an admissibility condition on
the initial state is satisfied.
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1. INTRODUCTION

In recent years there have been substantial theoreti-
cal advancements in the field of feedback control of
dynamic systems with input and/or state-related con-
straints. The main goal of the present paper is to ad-
dress this issue by laying down guidelines for synthesiz-
ing command governors (CG) based on predictive con-
trol ideas (Keerthi and Gilbert, 1988). A CG is a non-
linear device which is added to a primal compensated
control system. The latter, in the absence of the CG, is
designed so as to perform satisfactorily in the absence
of constraints. Whenever necessary, the CG modifies
the input to the primal control system so as to avoid
violation of the constraints. Hence, the CG action is fi-
nalized to let the primal control system operate linearly
within a wider dynamic range than that which would
result with no CG. Preliminary studies along these lines
have already appeared in (Bemporad and Mosca, 1994,
1995). For CGs approached from different perspectives
see (Kapasouris, Athans and Stein, 1990) and (Gilbert,
Kolmanovsky and Tin Tan, 1995) Simulation examples
are presented so as to exhibit the results achievable by
the method in comparison with other CG strategies.

2. COMMAND GOVERNOR DESIGN

Consider the following linear time-invariant system



x(t + 1) = Φx(t) + Gg(t)
y(t) = Hx(t)
c(t) = Hcx(t) + Dg(t)

(1)

∗This work was partially supported by MURST.

In (1): t ∈ ZZ+ := {0, 1, . . .}; x(t) ∈ IRn is the state
vector; g(t) ∈ IRp the manipulable command input
which, if no constraints were present, would essentially
coincide with the output reference r(t) ∈ IRp; y(t) ∈
IRp the output which is required to track r(t); and
c(t) ∈ IRnc the constrained vector which has to fulfill
the pointwise-in-time set-membership constraint

c(t) ∈ C, ∀t ∈ ZZ+ (2)

with C ⊂ IRnc a prescribed constraint set. The problem
is to design a memoryless device

g(t) := g(x(t), r(t)) (3)

in such a way that, under suitable conditions, the con-
straints (2) are fulfilled and possibly y(t) ≈ r(t). It is
assumed that

(A.1.)




1. Φ is a stability matrix, i.e. all its
eigenvalues are in the open unit disk;

2. System (1) is offset-free, i.e.
H(I − Φ)−1G = Ip.

One important instance of (1) consists of a linear plant
under stabilizing linear state-feedback control. In this
way, the system is compensated so as to satisfy stabil-
ity and performance requirements, regardless of the pre-
scribed constraints. In order to enforce the constraints,
the CG (3) is added to the primal compensated system
(1).

It is convenient to adopt the following notations for
the equilibrium solution of (1) to a constant command



g(t) ≡ w


xw := (I − Φ)−1Gw
yw := Hxw

cw := Hcxw + Dw =
[
Hc(I − Φ)−1G + D

]
w

(4)
It is further assumed that:

(A.2.)




1. C is bounded;
2. C = {c ∈ IRnc : qj(c) ≤ 0, j ∈ nq}, with

nq := {1, 2, ..., nq} and qj : IRnc → IR
continuous and convex;

3. C has a non-empty interior.

(A.2) implies that C is compact and convex.
Consider a θ-parameterized family VΘ of sequences

VΘ = {v(·, θ) : θ ∈ Θ ⊂ IRnθ} , v(·, θ) := {v(k, θ)}∞k=0
(5)

with the property of closure w.r.t. left time-shifts, viz.
∀θ ∈ Θ, ∀k ∈ ZZ+, there exist θ̄ ∈ Θ such that

v(k + 1, θ) = v(k, θ̄) (6)

Suppose temporarily that v(·, θ) is used as an input to
(1) from the state x(t) at time 0. The latter will be
referred to as the event (0, x(t)). Assume that

c(·, x(t), θ) := {c(k, x(t), θ)}∞k=0 ⊂ C (7)

In (7), c(k, x(t), θ) denotes the c-response at time k
to v(·, θ) from the event (0, x(t)). If the inclusion
(7) is satisfied for some θ ∈ Θ, x(t) is said to be
admissible, (x(t), θ) an executable pair, and v(·, θ) a
virtual command sequence for the state x(t). Notice
that (6) ensures that (x(t), θ) is executable =⇒ ∃θ̄ ∈
Θ : (x(t + 1), θ̄) is executable, provided that x(t + 1) =
Φx(t) + Gv(0, θ). In fact, from (6) it follows that
c(k + 1, x(t), θ) = c(k, x(t + 1), θ̄). Then, any state
is admissible along the trajectory corresponding to a
virtual command sequence v(·, θ). Consequently, no
danger occurs of being trapped into a blind alley if
(1) is driven by a virtual command sequence or its
input switched from one to another virtual command
sequence.

For reasons which will appear clear soon, it is conve-
nient to introduce the following sets for a given δ > 0:

Cδ := {c ∈ C : Bδ(c) ⊂ C}, (8)
with Bδ(c) := {c̄ ∈ IRnc : ‖c − c̄‖ ≤ δ}

Wδ := {w ∈ IRp : cw ∈ Cδ} (9)

We shall assume that for a possibly vanishingly small
δ > 0

(A.3.)
{ Wδ is non-empty

From the foregoing definitions and (A.3), it follows that
Wδ is closed and convex. In the developments that
follow we shall consider the family VΘ where

v(k, θ) = γkµ + w, (10)

θ := [µ′ w′]′ ∈ Θ := IRp ×Wδ (11)

where γ ∈ [0, 1) and the prime denotes transpose. In
such a case, (6) is satisfied with

θ̄ = [γµ′ w′]′ . (12)

We consider next the c-response c(·, x, θ) to the com-
mand sequence (10)-(11). By straightforward manipu-
lations we find

c(k) := c(k, x, θ) (13)

= ĉ(k) + HcΦk [x − xµ+w] + c̃(k) (14)

ĉ(k) := γkcµ+w + (1 − γk)cw (15)

c̃(k) := (1 − γ)Hc

k−1∑
i=0

Φiγk−1−ixµ (16)

If in (13)-(16) x = xw̄ , w̄ ∈ Wδ, w ∈ Wδ and µ = w̄−w
we get c(k) = ĉ(k)+ c̃(k) with ĉ(k) = γkcw̄ +(1−γk)cw.
Thus, being C convex, ĉ(k) ∈ C. Hence, there are
µ ∈ IRp, ‖µ‖ > 0, such that c(k) ∈ C, ∀k ∈ ZZ+.
It follows that (xw̄ , [(w̄ − w)′ w′]′) is executable for
w̄, w ∈ Wδ, ‖w−w̄‖ > 0, and limk→∞ x(k) = xw. These
conclusions can be shown to hold true if the initial state
xw̄ is perturbed by any x̃, with ‖x̃‖ ≤ ε, for ε > 0
sufficiently small. From the foregoing considerations the
following viability property, as will be hereafter referred
to by adopting the terminology of Aubin (1991), easily
follows.

Proposition 1 (Viability property). Consider the sys-
tem (1) along with the family of command sequences
(10)-(11). Let the assumptions (A.1)-(A.3) be fulfilled
and the initial state x(0) of (1) be admissible. Then,
there exists a concatenation of a finite number of virtual
command sequences v(·, θi), θi = [µ′

i w′
i]

′
, θi ∈ Θ, with

finite switching times, capable of asymptotically driving
the system state from x(0) to xw, any w ∈ Wδ.

�

Hereafter, we shall address the problem of how to select
appropriate virtual command sequences, and when to
switch from one to another. To this end, consider the
quadratic selection index

J(x(t), r(t), θ) := ‖µ‖2
Ψµ

+ ‖w − r(t)‖2
Ψw

+
∞∑

k=0

‖y(k, x(t), θ) − w‖2
Ψy

(17)

where θ is as in (11), ‖x‖2
Ψ := x′Ψx, Ψµ = Ψ′

µ > 0,
Ψw = Ψ′

w > 0, Ψy = Ψ′
y ≥ 0, and y(k, x(t), θ) the

output response at time k to the command v(k, θ) =
γkµ + w from the event (0, x(t)). It is easy to see that
(17) has a unique unconstrained minimum θ(t) ∈ IR2p

for every x(t) ∈ IRn and r(t) ∈ IRp. Let V(x) be the set
of all θ ∈ Θ such that (x, θ) is executable

V(x) := {θ ∈ Θ : c(·, x, θ) ⊂ C} (18)



Assume that, for every t ∈ ZZ+, V (x(t)) is non-empty,
closed and convex. This implies that the following
minimizer exists unique

θ(t) := argmin
θ∈Θ

{J(x(t), r(t), θ) : c(·, x(t), θ) ⊂ C}
= arg min

θ∈V(x(t))
J(x(t), r(t), θ) (19)

Proposition 1 ensures that V (x(t)) is non-empty and
implies that V (x(t + 1)) is non-empty too if (x(t), θ) is
executable and x(t + 1) = Φx(t) + Gv(0, θ). Further,
the concatenation mechanism embedded in the viability
property of Proposition 1 naturally suggests that we can
select the actual CG action according to the following
receding horizon control strategy if θ(t) is as in (19):

g(t) = v(0, θ(t))

=
{

µ(t) + w(t), γ ∈ (0, 1)
w(t) γ = 0

(20)

We defer the proof that V (x(t)) is closed and convex
to Sect. 3. A question we wish to address now is
whether the foregoing CG yields an overall stable offset-
free control system. Assume that the reference is kept
constant, r(t) ≡ r for all t ≥ t∗, and V (x(t)) is non-
empty, closed and convex at each t ∈ ZZ+. Consider the
following candidate Lyapunov function

V (t) := J(x(t), r, θ(t)) (21)

If x(t + 1) = Φx(t) + Gv(0, θ(t)), it results that J(x(t +
1), r, [γµ′(t) w′(t)]′) ≥ V (t+1). In fact, (x(t+1),[γµ′(t)
w′(t)]′) is executable, but [γµ′(t) w′(t)]′ need not be the
minimizer for J(x(t + 1), r, θ). It follows that along the
trajectories of the system

V (t)−V (t+1) ≥ (1−γ2)‖µ(t)‖2
Ψµ

+‖y(t)−w(t)‖2
Ψy

≥ 0
(22)

Hence, V (t), being nonnegative monotonically non in-
creasing, has a finite limit V (∞) as t → ∞. This implies
limt→∞ [V (t) − V (t + 1)] = 0, and by (22)

lim
t→∞µ(t) = 0p (23)

lim
t→∞ ‖y(t) − w(t)‖Ψy = 0 (24)

The asymptotic properties of w(t) and y(t) can be
further characterized by taking into account the uniform
boundedness of x(t) and assuming the existence and
uniqueness of θ(t), ∀t ZZ+. In such a case, the output
of the system controlled by the CG converges to the
closest admissible approximation to the reference.

Proposition 2 Consider the system (1) controlled by
the CG (19)-(20). Assume that (A.1)-(A.3) are satis-
fied. Let x(0) be admissible and V(x(t)) closed and con-
vex at each t ∈ ZZ+. Let r(t) ≡ r, ∀t ≥ t∗ ∈ ZZ+. Then,

the prescribed constraints are satisfied at every t ∈ ZZ+,
and

limt→∞ w(t) = limt→∞ y(t) = limt→∞ g(t) = wr(25)
wr := argminw∈Wδ

‖w − r‖2
Ψw

(26)

Proof. See (Bemporad, Casavola and Mosca, 1995). �

3. SOLVABILITY AND COMPUTABILITY

It remains to find existence conditions for the minimizer
(19). Further, even if solvability is guaranteed, (19) em-
bodies an infinite number of constraints. For practical
implementation, we must find out if and how these con-
straints can be reduced to a finite number of constraints
whose time locations be determinable off-line. To this
end, it is convenient to introduce some extra notation.
We express the response of (1) from an event (0, x) to
the command sequence (10)-(11) as follows


z(k + 1) = Az(k), with z(0) =
[

x
θ

]
∈ IRn ×Θ,

c(k) := c(k, x, θ)
= Ecz(k)

(27)
where

A =


 Φ G G

0p×n γIp 0p×p

0p×n 0p×p Ip


 , Ec = [Hc 0p×p D]

(28)
For i ∈ ZZ1 := {1, 2, 3, ...}, consider the following sets

Zi := {z ∈ IRn ×Θ : qj(EcA
k−1z) ≤ 0,

j ∈ nq, k ∈ i}. (29)

Z :=
∞⋂

i=0

Zi (30)

Zi are the sets of initial states z with w ∈ Wδ which
give rise to evolutions fulfilling the constraints over the
first i-th time steps k = 0, 1, ..., i− 1, while Z is the set
of all executable pairs (x, θ). Zi+1 ⊂ Zi, ∀i ∈ ZZ1, and
under (A.2), all the Zi’s, and hence Z, are closed and
convex. Moreover, Zi = Zi+1 =⇒ Zi = Z and, by the
viability property of Proposition 1, Z is non-empty.

Consider next the “slice” of Z along x introduced in
(18)

V(x) := {θ ∈ Θ :
[

x
θ

]
∈ Z}. (31)

If x is admissible for some θ ∈ Θ, V(x) is non-empty.
In addition, it is closed being the intersection of two
closed sets, V(x) = Z ⋂ {{x} × Θ}. V(x) is also convex
because the “slicer” operator is convexity-preserving.
Then, existence and uniqueness of the minimizer (19)
follows, provided that the initial state of (1) be admis-
sible.



Proposition 3 Let (A.1)-(A.4) be fulfilled and (x(0), θ)
executable for some θ ∈ Θ. Thus, the optimization
problem (19) is equivalent to the following convex con-
strained optimization problem

θ(t) =
[

µ(t)
w(t)

]
:= arg min

θ∈V(x(t))
J(x(t), r(t), θ), ∀t ∈ ZZ+

(32)
This is uniquely solvable at each t ∈ ZZ+, being V(x)
non-empty, closed and convex.

Proof. The viability property of Proposition 1 ensures
that V(x(t)) is non-empty. Existence and uniqueness of
θ(t) follow because J is quadratic in θ, and V(x(t)) is
also closed and convex.

�

Practical implementation of the CG requires an effec-
tive way to solve the optimization problem (32). No-
tice in fact that there might be no algorithmic proce-
dure capable of computing the exact minimizer, un-
less Z is finitely determinable. In what follows, we
shall show that only a finite number of pointwise-in-
time constraints suffices to determine Z. To this end,
let (Ao, Eco), with Ao ∈ IRno×no , no ≤ n + 2p, be an
observable subsystem obtained via a canonical observ-
ability decomposition of (A, Ec). Then

c(k) = EcoA
k
ozo(0) (33)

with zo = Poz, Po defined by the observability decom-
position. Consequently, define the following sets

Zo
i := {Poz ∈ IRno : z ∈ Zi}, Zo :=

∞⋂
i=0

Zo
i (34)

It is easy to see that Zo
i and Zo own the same properties

shown to hold for Zi and, respectively, Z. In particular,
they are non-empty, closed and convex. Moreover, the
following result holds.

Proposition 4 Let (A.1)-(A.4) be fulfilled. Then, Zo
i ,

∀i ≥ no is compact and convex. Moreover, there exists
an integer io ≥ no such that Zio = Z.

Proof. See (Bemporad, Casavola and Mosca). �

It follows that Zo, and hence Z as well, is finitely
determinable, that is it suffices to check the constraints
over the initial io-th time steps in order to ensure
constraint fulfillment over ZZ+. Consequently, problem
(32) is equivalent to the following finite dimensional
convex constrained optimization problem at each t ∈
ZZ+:

θ(t) := arg minθ∈Θ J(x(t), r(t), θ)
subject to qj(c(i − 1, x(t), θ) ≤ 0, j ∈ nq, i ∈ io

(35)
A modification of the Gilbert and Tin Tan algorithm
(1991), as detailed in (Bemporad, Casavola and Mosca,
1995) can be used to find io = mini≥no{i | Zo

i = Zo}.

In conclusion, we have found that our initial optimiza-
tion problem having an infinite number of constraints is
equivalent to a convex constrained optimization prob-
lem with a finite number of constraints.

Theorem 1 (Main result) Let (A.1)-(A.3) be fulfilled.
Consider the system (1) with the CG (19)-(20), and let
x(0) be admissible. Then:

i. The J-minimizer (32) uniquely exists at each t ∈
ZZ+ and can be obtained by solving a convex con-
strained optimization problem with inequality con-
straints qj(c(i − 1, x(t), θ)) ≤ 0, j ∈ nq, limited to
a finite number io of time-steps, viz. i = 1, ..., io;

ii. The integer io can be computed off-line from the
outset;

iii. The overall system satisfies the constraints, is asymp-
totically stable and off-set free in that the conclu-
sions of Proposition 2 hold.

4. COMPARISON WITH OTHER CG SCHEMES

The present CG design methodology, hereafter referred
to as BCM96, is general enough to encompass other CG
strategies as special cases, even if obtained from different
perspectives. In particular, in this section we compare
the BCM96 and the GKT95 (Gilbert, Kolmanovsky
and Tin Tan, 1995) governors, in terms of available
design knobs, computational complexity and robustness
of the constraint enforcement mechanisms against state
disturbances.

In GKT95 the actual command g(t) is obtained as
follows

g(t) = g(t − 1) + K [r(t − 1) − g(t − 1)] (36)

where K ∈ [0, 1] is maximized under the constraint that
the state remains within a specific admissible set. This
scheme can be embedded in BCM96. In fact, at each
time t ∈ ZZ+, (36) can be reformulated as finding the
smallest β = 1 − K ∈ [0, 1] such that the constant
command sequence (γ = 0)

v(k, β) = β [w(t − 1) − r(t − 1)] + r(t − 1) (37)

is virtual. This is equivalent to minimize the functional

J(µ, w) = β2 (38)

and imposing the additional specifications that w is as
the R.H.S. of (37). In contrast with BCM96, this for-
mulation does not take into account the tracking perfor-
mance, and there are no design knobs for modifying the
dynamics of the overall closed-loop system. Further,
each command trajectory increases toward its desired
value by the same fraction β. Consequently, especially
in a MIMO context, slower transients can be expected.
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Figure 1: Example 1. Response for different Ψy

On the other hand, only a scalar optimization has to be
performed in GKT95, reducing remarkably the related
computational burden.

Example 1 - Consider the following SISO non-minimum
phase plant

y(t) =
−0.8935z + 1.0237

z2 − 1.5402z + 0.6703
g(t) (39)

The task of the CG is to govern the command input so
that −0.5 ≤ y(t) ≤ 1.2. Let δ = 0.05. Accordingly,
c(t) = y(t), C = [−0.5, 1.2] and Wδ = [−0.45, 1.15].
The unit step responses of (39) subjects to the GKT95
and BCM96 governors are reported in Fig. 1, where
γ = 0.99, Ψµ = 1 and Ψw = 10 were chosen for
BCM96 whereas GKT95 was implemented as previously
described except for r(t) instead of r(t−1) in (37), for a
better comparison. As expected because of γ ≈ 1, for
Ψy = 0 the BCM96 and GKT95 responses are identical.
However, the BCM96 responses can be modified by
acting on the design knobs, e.g. by modifying Ψy as
in Fig. 1.

For values of γ close to 0, the features of BCM96 and
GKT95 differ remarkably. In particular, from Figs. 2
and 3 the robustness of BCM96 against state pertur-
bation results superior. Fig. 2 and Fig. 3 report re-
spectively the plant output y(t) and the command g(t)
for both governors, with γ = 0.1 and Ψy = 0, the
remaining design knobs being as for the simulations
reported in Fig. 1. In those figures, the equilibrium
state [7.6848 7.6848]′, corresponding to the admissi-
ble constant reference r = 1, is perturbed at time in-
stants 10 and 40 respectively by [1.0198 − 0.2944]′ and
[1.1551 1.3152]′. Observe that, for both perturbations,
GKT95 remains inactive whereas BCM96 is capable to
compensate them, though after one time step at time in-
stant 10. The reason results clear by examining Figs. 4
and 5, which report respectively the admissible state
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Figure 2: Example 1. Robustness against state perturbations.
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Figure 3: Example 1. Commands for Fig. 2.

and the 1-step recoverable state sets for both governors,
the latter being the set of all states that give rise to ad-
missible c-sequences except possibly for the first sample
c(0). Notice that in the example at hand c(0) does not
depend on µ and w since there is one step delay between
c(t) and g(t). In both those figures, the “cross” and the
“dot” indicate the state before and, respectively, after
the perturbations, with the perturbations of Figs. 5 and
4 corresponding respectively to the ones occurring at
time instants 10 and 40. Then, the explanation is that
the state after the perturbation at time 10 (40) remains
1-step recoverable (admissible) for BCM96 whereas it is
not such for GKT95. It is worth pointing out that the
above sets do not depend on Ψµ, Ψw and Ψy but are in-
stead strongly dependent on γ and δ. In fact, in Figs. 4
and 5 the same sets are also depicted (dashed line) for
γ = 0.99 that are approximately comprised within the
other two sets.
Example 2 - In order to investigate the limit of the
scalar optimization underlying the GKT95 scheme with
respect to the vectorial one of the BCM96 governor, con-
sider the following MIMO plant.

Φ =


 −0.6 −0.6 0

0.6 0.9 0

−0.3 −0.1 0.7


 , G =


 1 0.4

−1 0.5

2 1


 ,
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H =

[
−0.8244 −0.5073 0.1902

2.6341 1.3902 −0.1463

]

Also in this case the task of the CG is to bound the
plant outputs so that −0.05 ≤ y1(t), y2(t) ≤ 1.2. Let
δ = 0.001 and γ = 0.9. Accordingly, c(t) = y(t),
C = [−0.05, 1.2], Wδ = [−0.049, 1.199], Ψy = 02 and
Ψµ = Ψw = I2. Fig. 6 depicts the output y1 and
y2 corresponding to a step reference respectively for:
(upper-left) the ungoverned case (no CG action) and
(lower) the governed case where the continuous and the
dashed lines represent the BCM96 and, respectively, the
GKT95 actions. In the upper-right figure is represented
the plot (g1 vs g2) of the command actions for both
the BCM96 (continuous line) and the GKT95 (dashed
line) governors. As expected, in the GKT95 schemes
the commands g1 and g2 increase by the same quantity
toward the desired set-point value (1, 1) whereas this is
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Figure 6: Example 2. Output and command responses.

not the case for BCM96.

5. CONCLUSIONS

The CG problem, viz. the one of on-line designing a
command input in such a way that a primal compen-
sated control system can operate in a stable way with
satisfactory tracking performance and no constraint vi-
olation, has been addressed by exploiting some ideas
originating from predictive control.

REFERENCES

Aubin, J.P. “Viability Theory”, Birkhäuser, Boston, 1991.
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