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Abstract In this paper we present a data-driven approach for synthesizing optimal switching
controllers directly from experimental data, without the need of a global model of the dynamics
of the process. The set of controllers and the switching law are learned by using a coordinate
descent strategy: for a fixed switching law, the controllers are sequentially optimized by using
stochastic gradient descent iterations, while for fixed controllers the switching law is iteratively
refined by unsupervised learning. We report examples showing that the approach performs well
when applied to control processes characterized by hybrid or nonlinear dynamics, outperforming
control laws that are single-mode (no switching) or multi-mode but with the switching law
defined a priori.
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1. INTRODUCTION

Data-driven synthesis of control systems has recently
being investigated as an alternative to model-based control
design (Formentin et al., 2014). Data-driven techniques
have lately been employed to tackle nonlinear control
problems (Novara and Formentin, 2018) or constrained
control problems (Piga et al., 2018). In the case of switched
linear multiple-input multiple-output (MIMO) systems,
(Dai and Sznaier, 2018) synthesize a robust switching
controller from experimental data, without explicitly
identifying a model of the open-loop process. Nonetheless,
the method requires the knowledge of the model structure,
and therefore of the switching law.
In the robotics literature, contributions can be found
related to the synthesis of switching controllers ex-
ploiting experience gathered from process/environment
interactions, in the way that is typical of Reinforcement
Learning (RL), see (Recht, 2018). In particular, policy
search methods are employed, that rely upon optimizing
parameterized policies and can deal with continuous
action and state spaces (Desienroth et al., 2011). These
methods are mainly related to motion tasks, for instance
(Grudic et al., 2003) starts from an existing controller
and uses policy gradient techniques to synthesize a
switching controller online with improved performance,
while (Nagayoshi et al., 2010) uses two control laws, one
based on Q-learning and the other on actor-critic, to mimic
gross and fine motor skills respectively. However, in both
(Grudic et al., 2003) and (Nagayoshi et al., 2010) the
switching law is fixed and known a priori.
In this paper we extend the policy gradient approach
proposed in (Ferrarotti and Bemporad, 2019) to deal with
hybrid control policies, learning both the set of controllers
and the switching law directly from experimental data.
The parameterized controllers are learned by Stochastic
Gradient Descent (SGD) (Robbins and Monro, 1951),

while the switching law is iteratively refined. As in
(Ferrarotti and Bemporad, 2019), the proposed method
needs to compute simple local linear models, that have
a double purpose: first, they are used to approximate
the gradients required by SGD; second, they are used to
approximate the cost of using each of the controllers on a
specific region of the space, so to optimize the assignment
of areas of pertinence to the controllers. As a consequence,
the method is not completely model-free, but it does not
first identify a complete model of the open-loop system
to then design a control strategy, so it is not model-
based either. To the best of our knowledge, (Breschi and
Formentin, 2020) is the only other data-driven method
estimating a piecewise-affine controller together with the
switching law. Although completely model-free, it requires
as a critical part of the design phase the tuning of the
reference model for the desired closed-loop behaviour.
The paper is organized as follows. The problem of optimal
switching policy search is formulated in Section 2, followed
by the proposed algorithm in Section 3. In Section 4 the
method is tested on numerical examples and Section 5 is
dedicated to conclusions.
Notation: Let Rn be the set of real vectors of dimension
n. For each vector x belonging to Rn, xi indicates the i-th
element of the vector. Given a matrix A ∈ Rn×m we denote
its transpose by A′. We denote by I the identity matrix
and by ei its i-th column. Given a matrix Q ∈ Rn×n,
‖x‖2Q = x′Qx. SM,L is the set of all the sequences of M
elements of length L, and PM is the set of all the random
permutations of M elements. If S is a discrete set, |S| is
its cardinality.

2. OPTIMAL SWITCHING POLICY SEARCH
PROBLEM

We consider a Markovian signal st ∈ Rns representing
the dynamics of a strictly causal plant P embedded in its



environment, evolving in time according to the (unknown)
model

st+1 = h(st, pt, ut, dt), (1)

where pt ∈ Rnp is a vector of measured exogenous signals,
ut ∈ Rnu a vector of decision variables (actions), and
dt ∈ Rnd a vector of unmeasured disturbances.
The cost of controlling the plant at instant t is represented
as a function ρ : Rns+np+nu → R called stage cost.
Given the values p0, d0, p1, d1, . . . and the initial condition
s0, the cost of applying a sequence of control actions
u0, u1, . . . over an infinite horizon is defined as

J∞(s0, {pl, dl, ul}
∞

l=0) =

∞∑
l=0

ρ(sl+1, pl, ul), (2)

that is the sum of the stage costs accumulated along
the trajectory of (sl, pl, ul, dl) satisfying (1) for all l.
Considering a deterministic policy π : Rns+np → Rnu that
associates an action ut = π(st, pt) to each st and pt, we
define the overall cost of π as

J(π) = ES0, {Pl,Dl}
∞
l=0

[J∞(π, S0, {Pl, Dl})], (3)

where the expectation of J∞ is taken with respect to the
random variables S0 and Pl, Dl, l = 0, 1, . . ., representing
the initial point of the trajectory and the value of signals
pl, dl at step l, respectively.
The optimal policy with respect to (3) is

π∗ = arg min
π∈F(Rns+np ,Rnu )

J(π), (4)

where F(Rns+np ,Rnu) is the set of functions of ns+np real
variables taking values in Rnu . Equation (4) represents a
general abstract optimal policy search (OPS) problem. In
order to find a computable solution to it, we make the
following approximations:

• we parametrize the policy π by a set H of parameters,
and denote by πH(st, pt) the corresponding policy;
• we consider a finite trajectory of length L for

evaluating the cost (2), shortening the sum of stage-
costs.

A method presented to solve problem (4) after applying
the above simplifications was proposed in (Ferrarotti
and Bemporad, 2019) and it is extended here to deal
with switching policy parameterizations. A switching (or
hybrid) parametric policy can be represented as

πcK(st, rt) =


πK1

(st, pt), if (st, pt) ∈ R1(c),
...

...

πKM (st, pt), if (st, pt) ∈ RM (c),

(5)

where M is a fixed number of policies and K =
{K1, . . . ,KM}, c = {c1, . . . , cM} the corresponding pa-
rameters. The regions R1(c), . . . RM (c) ∈ P(Rns+np) are
defined as the polyhedra obtained from the Voronoi
partition of the points c1, . . . , cM , using an opportune
distance or semi-distance d over Rns+np , i.e.,

Rj(c) = {x | (d(x, cj) = d(x, ch) and j < h) or

d(x, cj) < d(x, ch), ∀h 6= j, h = 1, ..,M } (6)

and Kj is the matrix of parameters that characterize the
policy over the j-th region Rj(c). Substituting (5) in the
cost of a trajectory of length L, we obtain

JL(K, c, s0, {pl, dl}L−1

l=0 ) =

L−1∑
l=0

ρ(sl+1, pl, π
c
K(sl, pl)), (7)

from which we derive the optimal switching policy search
(OSPS) problem

min
K,c

E
S0,

{Pl,Dl}
L−1

l=0

[JL(K, c, S0, {Pl, Dl}L−1
l=0 )] (8a)

with
Sl+1 = h(Sl, Pl, Dl) (8b)

and S0, Pl, Dl defined as in (3).
The method proposed in this work addresses problem (8)
by coordinate descent: starting from an initial guessK0, c0,
for t = 1, . . . , Nlearn we iterate

Kt = arg min
K

E
[
JL(K, ct−1, S0, {Pl, Dl}L−1

l=0 )
]

(9a)

ct = arg min
c

E[JL(Kt, c, S0, {Pl, Dl}L−1
l=0 )], (9b)

where, to simplify notation, we removed the random
variables from the expectations.
The solution of problem (9a) at iteration t is the best
set of control parameters Kt = {Kt

1, . . . ,K
t
M} to be

applied on the regions R1(ct−1), . . . , RM (ct−1), generated
by the centroids at instant t−1; we approach this problem
by optimizing sequentially each gain Kt

j via the method
proposed in (Ferrarotti and Bemporad, 2019).
Problem (9b), instead, aims at finding the optimal
centroids ct = {ct1, . . . , ctM} with respect to Kt, that
means the best switching law to apply in combination
with the most recently updated set of control parameters.
To approximate the solution of problem (9b), we sample
a mini-batch of initial states, exogenous signals, and dis-
turbance sequences from the mentioned random variables
and iteratively divide it into M clusters, based on which
of the M gains in Kt is most convenient to apply over
each sample. We calculate the barycenters of the assigned
clusters and we use the barycenters over the mini-batch
to recursively update the estimation of the barycenters
over all the space. A detailed description of the algorithm
proposed in this paper is provided in Section 3.
In the following we will consider for simplicity a linear
subparameterization over each subdomine Rj(c), that is

πKj (st, pt) = −K ′j
[
st
pt

]
j = 1, . . . ,M. (10)

The presented methodology can be applied independently
of the choice of πKj , that could also be nonlinear.
Moreover, the proposed method is completely general with
respect to the task that the plant P has to perform and to
the associated stage cost ρ. In this paper, we will focus on
an output-tracking task, i.e., we want to learn a switching
policy that makes the output yt of the plant P track a
reference signal rt, using input/output data only. To do
so, we consider a state st composed by a finite set of past
input and output values from P , no ≥ 1, ni ≥ 2, i.e.,

xt = [y′t . . . y
′
t−no+1 u

′
t−1 . . . u′t−ni+1]′, (11)

an integral term qt+1 = qt + (yt+1 − rt), and set

st =

[
xt
qt

]
, pt = rt. (12)

The stage cost we consider is

ρ(st+1, rt, ut) = ‖Cst+1 − rt‖2Qy + ‖ut‖2Ru+

+ ‖∆ut‖2R∆u
+ ‖qt+1‖2Qq

(13)

Matrix C = [ I 0 . . . 0 ] is such that yt+1 = Cst+1 and
∆ut = ut − ut−1. Here we assume ni ≥ 3, so ut−1 is
contained in xt+1, as defined in (11), and in st+1. In



case ni = 2, it is nonetheless possible to add ut−1 as
additional state in st. Matrices Qy, Ru, R∆u, Qq weight
the tracking error, the control effort, the input increment
and the integral action, respectively.

3. OSPS ALGORITHM

Algorithm 1 summarizes the proposed method for learning
an optimal switching policy (5) from input/output data.
The method can be applied either offline on a given
dataset of input/output collected from the process excited
in open loop, or online as new data are collected while
the learned policy is already in place. In both settings,
at every step t of the learning procedure the policy gains
Kt = {Kt

1, . . . ,K
t
M} are updated by approximating the

solution of (9a) via mini-batch SGD. The n-th iteration of
mini-batch SGD requires computing ∇JL(Kn−1, ct−1, wh)
for each element wh of the sampled mini-batch of data
{wh = (sh0 , {rhl , dhl }L−1

l=0 )}Nbh=1. Since dynamics (1) are
unknown, as in (Ferrarotti and Bemporad, 2019) for each
evaluation of ∇JL(Kn−1, ct−1, wh) we replace (1) with a
local linear model that approximates the behaviour of the
system in a neighborhood of the initial point sh0 , obtained
as described in Section 3.1. The sampling procedure of the
mini-batches is summarized in Section 3.2 together with
the gradient approximation and the gain update method.
Problem (9b) is solved after nK updates of the control
gain matrix Kt, as follows. First, we apply again the
sampling procedure to obtain a mini-batch {wk}Nbk=1 (see
Section 3.2). Then, we divide the sampled elements wk
into M subsets. The assignment of wk requires computing
the following quantities, for m = 1, . . . ,M ,

F (m, wk, K
t, ct−1) = ρ( sk1 , r

k
0 , πKt

m
(sk0 , r

k
0 ) )+

+ ĴL−1(Kt, ct−1, sk1 , {rkl , dkl }L−1

l=1 ) (14)

Each term F (m, wk, K
t, ct−1) is composed by the stage-

cost associated with the application of the m-th policy
πKt

m
while being in state (sk0 , r

k
0 ), plus the approximated

cost-to-go. The two terms are approximated using the local
linear model fitted in the neighborhood of sk0 , instead
of the unknown system dynamics (1). The cost-to-go is
obtained by simulating the remaining L − 1 steps of the
trajectory using the last updated switching law ct−1. After
calculating (14) for all m = 1, . . . ,M , we assign wk
to the m∗-th subset, with m∗ being the smallest index
corresponding to the most “convenient” gain Kt

m∗ to be
applied in wk with respect to cost F , that is

m∗ = min(arg min
m

F (m, wk, K
t, ct−1)).

After the above unsupervised learning procedure is exe-
cuted, for each of the M obtained subsets we calculate
the barycenters c(1) = {c(1)

1 , . . . , c(1)

M }. The above overall
process is iterated nc times: at every iteration i the most
updated version of the mini-batch barycenters c(i−1) is
employed in (14) to evaluate the cost-to-go. In this way, we
generate a sequence c(0) = ct−1, c(1), . . . , c(nc) that refines
the barycenters of the regions on the sampled mini-batch.
Finally, for m = 1, . . . ,M we recursively update the global
barycenters estimation as follows:

N t
m = N t−1

m + N̄m
nc ,

ctm =
1

N t
m

(N t−1
m ct−1

m + N̄m
nc c

(nc)
m ),

where N t
m and N̄m

k are the cardinality of the set of
states averaged to estimate ctm up to time t and in the
current sampled mini-batch at iteration k of the described
procedure, respectively.

3.1 Local model

In principle, evaluating the gradients to solve problem (9a)
and the cost-to-go for problem (9b) requires the unknown
dynamics (1). In order to avoid identifying first a full
model of (1) from data, we substitute it with a local model

yt = Θt · zt + dt (15)

with Θt ∈ Rny×nx , that is fitted in a neigborhood of the
initial state corresponding to the specific sampled value.
We use Kalman filtering (KF) for updating Θt, that is
modeled as a stochastic process Θt+1 = Θt + ξt, where
ξt is a Gaussian white noise with covariance Qk and
dt in (15) is a a Gaussian white noise with covariance
matrix Rk. The regressor vector is formed by past inputs
and outputs collected from the process, namely zt =
[ y′t−1 . . . y′t−no u

′
t−1 . . . u′t−ni ]′ with ni and no defined

in (12). Eventually, it will be enriched by an affine term,
i.e., we will set zt = [ y′t−1 . . . y′t−no u

′
t−1 . . . u′t−ni 1 ]′.

3.2 Optimization of feedback gains

To update the feedback gain matrix Kt at time t we apply
the following procedure. First, we follow the sampling
procedure described in (Ferrarotti and Bemporad, 2019)

to obtain a mini-batch {wh = (sh0 , {rhl , dhl }L−1
l=0 )}Nbh=1.

To summarize the sampling procedure, we consider the
dataset Xt of states xt defined as in (11), recorded and
stored during the evolution of the plant 1 . We randomly
sample N0 states {xγt(i)}

N0
i=1 from Xt, and perturb them by

a (small) normally distributed white noise vi with variance

σ2
v . We combine the sampled states with Nq samples qj0

from a normally distributed random variable with zero
mean and variance σ2

q . Hence, we set

si,j0 =

[
xγt(i) + vi

qj0

]
i = 1, . . . , N0, j = 1, . . . , Nq

Each reference trajectory rkl is assumed constant between
0 and L − 1, and we choose Nr constant reference
values randomly from the interval [rmin, rmax] of references
of interest. A number Nd of disturbance samples dvl
are randomly generated for l = 0, . . . , L − 1, v =
1, . . . , Nd, from a given interval [−dmax, dmax]. All the
possible combinations of the sampled states, references and
disturbances are built; each of them will be an element
wh = wh(i,j,k,v) of the mini-batch of cardinality Nb =
N0Nq NrNd.
After sampling, we assign each wh to one of the regions
{Rm(ct−1) | m = 1, . . . ,M}, based on the distance of
(sh0 , r

h
0 ) from the centroids as defined in (6). In this way, we

obtain M sub-batches Rtm of samples of the mini-batch all
belonging to the same region Rm(ct−1) for m = 1, . . . ,M .
The sub-batches are non overlapping, because the regions
generated by the Voronoi partition associated to ct−1

1 In the online setting Xt is the set of all the states xt visited by
the plant up to the current instant t. In the offline setting, instead,
at every iteration t we sample from a set XN containing N states
obtained from a previous open-loop data collection phase.



Algorithm 1 Optimal switching policy search

Input: Initial policy {K0, c0}, number Nlearn of steps.
Online setting : model Θ0, training reference {rt}Nlearn

t=0 .
Offline setting : set {XN ,ΘN} of states and local
models.

Output: Optimal switching policy {Klearn, clearn}.
1: for t = 1, 2, ..., Nlearn do
2: online setting : acquire yt. Recursively update Θt;

- Policy update:

3: |Rtm| = 0 m = 1, . . . ,M ;
4: for h = 1, 2, ..., Nb do
5: sample wh = (sh0 , {rhl , dhl }L−1

l=0 ) (see Sec.3.2);

6: compute jh = min arg minj d([sh, rh]′, ct−1
j )

7: add wh to Rtjh and |Rtjh | = |R
t
jh |+ 1;

8: end for
9: K(0) = Kt−1;

10: take a random permutation ξt ∈ PM ;
11: for m = 1, 2, ...,M do
12: for j = 1, 2, ..., |Rtξ(m)| do
13: approximate ∇Kξ(m)

ĴL(K(m−1), ct−1, wj);
14: end for
15: discard the approximations as described in

Section 3.3. Update |Rtξ(m)| accordingly;

16: update D(K(m-1)

ξ(m) ) as in (16)

17: update K(m)

ξ(m) ← K(m−1)

ξ(m) − αtD(K(m−1)

ξ(m) );
18: end for

- Centroid update:
19: if rem(t, nK) = 0 then

20: sample {wk = (sk0 , {rkl , dkl }L−1
l=0 )}Nbk=1 (see Sec.3.2);

21: c(0) = ct−1

22: for i = 1, 2, ..., nc do
23: Wm = 0, N̄m

i = 0 m = 1, . . . ,M ;
24: for k = 1, 2, ..., Nb do
25: mk = min(arg minm F (m,wk,K

t, c(i−1));

26: N̄mk

i = N̄mk

i + 1, Wmk = Wmk + wk;
27: end for
28: for m = 1, 2, ...,M do

29: c
(i)
m = Wm/N̄

m
i ;

30: end for
31: end for
32: for m = 1, 2, ...,M do
33: N t

m = N t−1
m + N̄m

nc ;

34: ctm = 1
Ntm

(N t−1
m ct−1

m + N̄m
nc c

(nc)
m );

35: end for
36: else
37: ct = ct−1;
38: end if

39: online setting : apply ut ← −(Kt
σct (st,rt)

)′
[
st
rt

]
;

40: end for
41: {Klearn, clearn} ← {KNlearn

, cNlearn
};

42: end.

are disjoint, and possibly empty (in case that the mini-
batch does not contain any element belonging to a certain
region). They satisfy |Rt1|+ · · ·+ |RtM | = Nb.
Then, we start with the sequential update of the feedback
gains as follows. First, we take K(0) = Kt−1 and select a

random permutation of M elements ξt ∈ PM . Then, for
m = 1, . . . ,M :

• we approximate the gradient in Kξ(m) of ĴL, evaluated
in (K(m−1), ct−1, w), for all w = wh(i,j,k,v) ∈ Rtξ(m).

Function ĴL approximates (7) by using the local
model Θγt(i), estimated at the time instant γt(i) in
which the state xγt(i) was visited by the process. We
use finite differences with precision ε to estimate each
component of the gradient. For i = 1, . . . , (ns + np)
we define the set of gains K(ε, i)ξ(m), varying K(m−1)

of a quantity ε in the i-th element of the ξ(m)-th gain,
i.e., we set

K(ε, i)ξ(m) = {K(m−1)

1 , . . . ,K(m−1)

ξ(m) + ε ei, . . . ,K
(m−1)

M }
and calculate

1

ε

(
ĴL(K(ε, i)ξ(m), ct−1, w)− ĴL(K(m−1), ct−1, w)

)
.

• To avoid issues of lack of differentiability, as mo-
tivated in Section 3.3, we remove w from Rtξ(m)

and discard the associated gradient estimates if
the sequence of regions visited by simulating the
policy K(m−1) differs from the sequence of regions
visited by simulating the policy K(ε, i)ξ(m) for some
i ∈ {1, . . . , (ns + np)}. Then |Rtξ(m)| is decreased

accordingly.
• The update direction for SGD is calculated as follows:

D(K(m−1)

ξ(m) ) =

∑
w∈Rt

ξ(m)

∇Kξ(m)
ĴL(K(m−1), ct−1, w)

|Rtξ(m)|
(16)

• Finally, the policy update performed by the SGD
algorithm with learning rate αt, using (16) is

K(m)

ξ(m) = K(m−1)

ξ(m) − αtD(K(m−1)

ξ(m) ). (17)

3.3 Batch reduction

Consider Jcw(K) = ĴL(K, c, w), where c and w are fixed.
Let us introduce the function σc : Rns+np → {1, . . . ,M},

σc(s, r) = min(arg min
i∈{1,...,M}

d(
[
s
r

]
, ci)),

that assigns each state and reference to the corresponding
region index, with respect to the centroids c. Define
Σ(K, c, w) = {σc(sl, rl) | l = 0, . . . , L− 1} as the sequence
of indices of the regions R1(c), . . . , RM (c) visited following
a trajectory of length L induced by K, given initial state,
reference trajectory, and disturbances indicated by w.
Σ(K, c, w) is an ordered sequence of length L, composed
by indices belonging to {1, . . . ,M}. Merging σc with (7)
we can write the function in (7) as

Jcw(K) =



L−1∑
l=0

ρ(sl+1, rl,−K ′χ1(l)

[ sl
rl

]
), if K ∈ RK1

...
...

L−1∑
l=0

ρ(sl+1, rl,−K ′χn(l)

[ sl
rl

]
), if K ∈ RKn

where SM,L = {χ1, . . . , χn} is the set of all the possible
sequences of M objects of length L, having cardinality
n = ML and RKj is the set of gains K that, given w and
c, is characterized by the sequence Σ(K, c, w) = {χj(l) |



Table 1. Parameters

ny nu ni no Qk Rk L

PWL 1 1 2 2 10 · I 0.01 10

NL 2 1 2 1 10 · I 0.1 10

N0 Nr Nq rmin rmax σq σv
PWL 50 10 5 −10 10 10 0.01

NL 50 5 2 −π π 10 0.1

l = 0, . . . , L − 1}. The regions RKj are disjoint and their

union is equal to the whole space Rns+np of gains. In the
interior of each region RKj , function Jcw is continuous and
differentiable for all values of K, being the composition of
continuous and differentiable functions, while this is not
granted for the values of K belonging on the border ∂RKj
of the region.
At the t-th iteration of the proposed algorithm we approx-

imate ∇Kξ(m)
ĴL(K(m−1), ct−1, w) = ∇Kξ(m)

Jc
t−1

w (K(m−1)),
using finite differences with fixed precision ε, unless the
function is not differentiable in K(m−1). If K(m−1) belongs
to RKj , we check the sequence Σ(K(ε, i)ξ(m), ct−1, w) of
regions visited by K(ε, i)ξ(m): if it is not equal to χ(j),
then K(ε, i)ξ(m) does not belong to the same region RKj
of K(m−1) for the fixed ε. The gain K(ε, i)ξ(m) is defined
by adding ε to a specific element of K(m−1), which implies
that moving away from K(m−1) by a distance ε leads to
reaching a different region. Given that ε is “small”, then
there is a high chance of K(m−1) laying on ∂RKj .
For this reason, we choose to use only the gradients related
to those samples w such that K(m−1) and K(ε, i)ξ(m) belong
to the same region for i = 1, . . . , (ns + np), for a given ε.

4. NUMERICAL RESULTS

We analyze the ability of our Algorithm 1 in synthesizing
optimal switching controllers in offline setting on two
simple examples: a piecewise-linear (PWL) plant and a
nonlinear (NL) one. The parameters of the model of
the KF, and of the mini-batch sampling are reported in
Table 1. We design the local model (15) by neglecting the
dependence on the disturbances dt; in the first example we
use a linear local model while in the second one we take
an affine one. We update the gains using the AMSGrad
algorithm 2 (Reddi and Kumar, 2018), a faster variant of
SGD. Together with the performance of the presented
method, alternating nK = 10 steps of gain update
with a step containing nc = 10 iterations of centroid
optimization, as a comparison we show the behaviour of
the method in case we just optimize the gains, maintaining
the centroids unaltered. Both cases (fixed and optimized
centroids) are compared to learning a single controller,
synthesized using the same technique as in (Ferrarotti and
Bemporad, 2019) (corresponding to setting M = 1) on the
same dataset. Closed-loop performance is measured using
the sum of stage costs defined in (13), with Qq = 0.

Example 1 Let the plant P in (1) be the (unknown)
single-input single-output (SISO) PWL system

xt+1 = 0.8
[

cosαt − sinαt
sinαt cosαt

]
xt + [ 0

1 ]ut, yt = [ 0 1 ]xt (18)

2 AMSGrad is tuned as follows: in the PWL example we take
β1 = 0.5, and β2 = 0.6, while in the NL one β1 = 0.8 and β2 = 0.6.
We take α = 0.1.
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Figure 1. PWL example (offline learning): validation
tracking tasks: task A (upper plot) and task B (lower
plot).

Table 2. PWL example (offline learning)

centroids task A task B

M = 1 11679.54 3065.04
M = 2 fixed 179.55 80.49
M = 2 optimized 155.81 71.96

and αt = π
3 if xt1 > 0 and αt = −π3 otherwise (Bemporad

and Morari, 1999, Example 4.1). We assume that there
is no disturbance dt affecting P and we parameterize the
control increment ∆ut, i.e., ut = ut−1 + πcK(st, rt). After
choosing stage-cost weights Qy = 1, R∆u = Qq = 0.01,
Ru = 0, we fix M = 2 and synthesize a switching controller
for reference tracking. The policy gains are initialized
with K0

1 and K0
2 randomly generated from a normally

distributed vector with mean zero and standard deviation
0.001. For the optimization of the centroids, it is noticeable
that in this plant the switching law is based on the first
state xt1 , a piece of information that we assume not to
know, and we do not even measure xt1 . We consider regions
in Rns+ps defined using the semidistance d(x, y) = ‖x1 −
y1‖2. Based on the definition of st given in (12), this means
that we base the controller switching law on the output yt
of the plant P . The initial centroids c0 are picked randomly
in [ rmin, rmax ]. The learning procedure is executed for
Nlearn = 7000 iterations over a dataset of cardinality N =
5000 collected in open-loop from the plant. The behaviour
of the resulting policy {Koff

learn, c
off

learn } in validation, while
performing two different tracking tasks (indicated as task
A and task B) is shown in Figure 1, and the cost of both
tasks is compared in Table 2 with the cost of applying
a single control law, and with the cost of a switching
controller synthesized with fixed centroids [−4, 0.5].

Example 2 To test our approach on a simple nonlinear
system, we consider the inverted pendulum, consisting of
a mass m̄ = 1 kg rotating by an angle θ at a fixed distance
` = 0.5 m from the central joint, subject to earth gravity
g = 9.81 m/s2 and experiencing a viscous friction governed
by the viscosity coefficient β = 0.5 Nms. The physical
model of the inverted pendulum dynamics, when subject
to the action of the torque u, is the nonlinear ordinary
differential equation (ODE)



Table 3. NL example (offline learning)

task C task D

centroids fixed optimized fixed optimized
M = 1 511.60 // 1097.62 //
M = 2 401.29 367.43 988.18 966.80

`2 m̄θ̈ = m̄ g ` sin θ − βθ̇ + u.

We simulate the inverted pendulum using the ODE solver
ode45 from MATLAB ODE Toolbox with sampling time
Ts = 0.05 seconds to obtain yt = [θt, θ̇t]

′, where θt and

θ̇t are the angular position and velocity at time instant t.
To simulate noisy measurements, additive Gaussian white
noise with standard deviation σn = 0.01 is added on both
signals. The control objective is to optimally make θt track
the set point rt. The considered stage-cost weights are

Qy = [ 1 0
0 0 ] , Ru = 0.01, R∆u = 0, Qq = [ 0.01 0

0 0 ] ,

where we weight the control input norm ut to penalize the
torque amplitude. The centroid optimization in Rns+np is
realized with respect to the semidistance

d(x, y) = ‖
[

cos(x1)
sin(x1)

]
−
[

cos(y1)
sin(y1)

]
‖

2
,

i.e., we define the switching law as a function of the
angular position θt. As for the PWL case, we generate
the initial policy gains K0 randomly from a normally
distributed vector with mean zero and standard deviation
0.001. We consider M = 2 control modes and synthesize a
switching controller, performing Nlearn = 7000 iterations
of the proposed method, using a dataset of cardinality
N = 5900, collected in open-loop from the plant. The
centroids are initialized as c0 = [ 0, π ] and the same values
are used as centroids in the fixed-centroid case. The results
in validation on two different tracking tasks (indicated as
task C and task D) of 3000 steps presented in Table 3 show
that both the switching controllers with M = 2 modes
outperform the single controller. In particular, the policy
{Koff

(2), c
off
(2) }, obtained by the procedure with centroids

optimization, results to be the best of the three, showing
the importance of learning the partition. In Figure 2 the
validation tasks C and D are shown, together with the
behaviour in validation of the synthesized controller with
M = 2 modes.

5. CONCLUSIONS

We have presented an approach to synthesize optimal
switching feedback controllers that learns both the set
of control laws and the switching law directly from ex-
perimental data, without requiring a system identification
phase of the open-loop process. Simple local linear models
are recursively updated with the purpose of approximating
both the local optimization direction for the controllers
parameters, and the cost of each controller on different
areas of the space, so as to optimize the assignment
of control domains to control laws. Current research is
devoted to extending the approach in several directions,
including the investigation of stability conditions for the
method and the use of more general parameterizations of
both the control laws and the switching law.
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