
Learning affine predictors for MPC of nonlinear
systems via artificial neural networks ?

Daniele Masti ∗ Francesco Smarra ∗∗ Alessandro D’Innocenzo ∗∗
Alberto Bemporad ∗

∗ IMT School for Advanced Studies, Lucca, Italy
(e-mail: {daniele.masti, alberto.bemporad}@imtlucca.it).
∗∗ Università degli Studi dell’Aquila, L’Aquila, Italy

(e-mail: {francesco.smarra, alessandro.dinnocenzo}@univaq.it).

Abstract: Nonlinear model predictive control (MPC) problems can be well approximated by linear
time-varying (LTV) MPC formulations in which, at each sampling step, a quadratic programming (QP)
problem based on linear predictions is constructed and solved at runtime. To reduce the associated
computation burden, in this paper we explore and compare two methodologies for learning the entire
output prediction over the MPC horizon as a nonlinear function of the current state but affine with respect
to the sequence of future control moves to be optimized. Such a learning process is based on input/output
data collected from the process to be controlled. The approach is assessed in a simulation example
and compared to other similar techniques proposed in the literature, showing that it provides accurate
predictions of the future evolution of the process and good closed-loop performance of the resulting
MPC controller. Guidelines for tuning the proposed method to achieve a desired memory occupancy /
quality of fit tradeoff are also given.

Keywords: Model Predictive Control, Artificial Neural Networks, System Identification, Deep
Learning, Random Forests

1. INTRODUCTION

Designing a control law directly from experimental data has
always been a topic of central interest in the control systems
community. The classical approach is to first identify a model of
the open-loop process via system identification (Ljung, 1987)
from experimental data, validate it, and then proceed with the
design of a model-based controller. The main advantage of this
approach is that the identification and control design phases
are decoupled. However, unnecessary burden due to excessively
accurate system identification procedures might occur. In fact,
many control design techniques do not need a very accurate
model of the target process to synthesize the control law: for
instance when designing a Model Predictive Controller (MPC)
(Borrelli et al., 2017) there is no need of having a model
that predicts accurately the evolution of the output beyond the
prediction horizon. In other words, getting the best possible
accuracy of the model in fitting the available input/output data
is often not required for good closed-loop performance. In
addition, an accurate fit often comes at the price of an excessive
model complexity, that in turn makes model-based control laws
more complicate (or even impossible) to synthesize.

The separation between system identification and model-based
control design is also clear from the fact that, while in recent
years many state-of-the-art system identification techniques
focus on learning input-output models (see (Kocijan et al.,
2005; Wang, 2017; Pillonetto et al., 2014)), most of the existing

? This work was partially supported by the Italian Government under Cipe
resolution n.135 (Dec. 21, 2012), project INnovating City Planning through
Information and Communication Technologies (INCIPICT), and by the project
VALU3S (call: H2020-ECSEL-2019-2-RIA).

modern control and filtering techniques are based on state-
space models. Many authors have tried to bridge this gap, we
mention here the recent contribution (Masti and Bemporad,
2018) that proposed a method for learning a nonlinear state-
space model of desired order from input/output data, with
the goal of synthesizing state-feedback controllers such as
nonlinear MPC controllers.

Recently, model-free data-driven techniques were proposed to
completely bypass the phase of first identifying an open-loop
model of the process, such as using direct controller synthesis
methods (Piga et al., 2017), machine learning (Jain et al., 2017,
2018; Afram et al., 2017), policy-search (Ferrarotti and Be-
mporad, 2019), and reinforcement learning (Gros and Zanon,
2020). While very attractive in practice, the main drawbacks of
model-free methods are the need for large amounts of data to
synthesize optimal control laws and the different way one tunes
the controller compared to model-based control approaches.

Main contribution and related work.

In this paper we explore a different way of approaching data-
driven control design, tailoring the system identification proce-
dure to the particular use one wants to make of the resulting
model for control design. In particular, to handle nonlinear
control problems within the linear time-varying (LTV) MPC
framework, such as the real-time iteration scheme (Diehl et al.,
2005), we explore how to fit the entire output prediction for
LTV-MPC over a horizon of T steps as a nonlinear function of
the current state (or, equivalently, past input/output pairs) and
as an affine function of future control moves. In this way, the
MPC problem can be solved via quadratic programming (QP)
in spite of the nonlinearity of the system. This approach has

been explored in various forms by many authors but, as a whole,
the literature on the topic is both scarse and scattered. In (Behl
et al., 2016; Smarra et al., 2018a), the authors proposed to learn
fixed-horizon affine models via regression trees (RT) and ran-
dom forests (RF) for nonlinear systems; in (Terzi et al., 2019)
an approach based on set-membership (SM) identification was
devised to learn robust predictor for linear systems. The au-
thors in (Liu and Kadirkamanathan, 1998) addressed instead the
problem of building an adaptive control scheme in which fixed-
horizon predictors based on Radial-Basis-Function (RBF) Ar-
tificial Neural Networks (ANNs) were learned online. Another
comparable approach is the one shown in Afram et al. (2017),
where the authors used an ANN to identify the dynamics of
the system and setup an associated MPC problem. However,
the resulting ANN model is nonlinear, so the MPC problem
requires a more complex nonlinear solution method, while our
approach requires only a quadratic programming solver, or even
admits a simple analytic solution in the absence of constraints.

In this work we investigate if ANN-based solutions can be com-
petitive with traditional machine learning approaches to learn
fixed short-term horizon predictors for receding horizon control
applications. To this end, we perform an in-depth comparison
between the RT/RF-based approaches presented in (Smarra
et al., 2018b, 2020) and modern reinterpretation of the idea
presented in (Liu and Kadirkamanathan, 1998). In particular,
with respect to this latter work, we focus on replacing the orig-
inal non-parametric single-layer RBF-ANN architecture with
a specifically tailored state-of-the-art deep-learning technique
and introduce a completely offline learning procedure in place
of the original online learning scheme.

Paper organization. After formulating the problem in Sec-
tion 2, in Section 3 we present a specifically deep-learning
based parametrization to learn a fixed-horizon affine model of
a non-linear process. In Section 4 we provide a background on
the methodology in (Smarra et al., 2018a), that will be used
in Section 5 to compare the proposed approach via numerical
simulations. Section 6 will provide guidelines for tuning the
proposed approach in practical problems, with attention to re-
ducing its computational requirements.

2. PROBLEM FORMULATION

Assume that we have collected data from a process described
by the following (usually unknown) nonlinear discrete-time
dynamical model

Σ =

{
xk+1 = fΣ(xk, uk)
yk = hΣ(xk)

(1)

where k ∈ N is the sampling step, xk ∈ Rnx the state of the
system, yk ∈ Rny the output vector, uk ∈ Rnu the input vector,
and fΣ : Rnu×nx → Rnx , hΣ : Rnx → Rny . In case there is
no clear definition of what the state vector xk should be, due
for example to physical insights, we assume that

xk =
[
y′k · · · y′k−δy u′k−1 · · · u′k−δu

]′
(2)

for some model-order integers δy, δu ≥ 0.

With the goal of synthesizing an MPC controller with predic-
tion horizon T ∈ N, we want to learn a mapping from xk
and uk, uk+1, . . . , uk+j−1 to yk+j , where j = 0, . . . , T is
the prediction step, from a dataset D = {(yk, uk, xk)}N−1

k=0

collected from Σ, or simply D = {(yk, uk)}N−1
k=0 in case xk

just collects past inputs and outputs as in (2).

In order to avoid the recursive modeling approach commonly
used in the literature (see for instance Afram et al. (2017)), we
focus ourselves on creating T predictors that depend only on
the available state measurements/estimations and on the inputs
to be optimized. More precisely, we want to identify maps
hj : Rnx× jnu → Rny , j = 1, . . . , T , each one taking xk
and uk, . . . , uk+j−1 as inputs, such that

yk+j = hj(xk, uk, . . . , uk+j−1), ∀ j = 1, . . . , T. (3)
We can rewrite (3) in the more compact form

YT =

 yk+1

...
yk+T

 = HT (xk, UT−1), (4)

whereHT : Rnx×Tnu → RTny has a block-triangular structure
due to (3) and UT−1 = [u′k . . . u

′
k+T−1]′.

Consider now the following MPC problem at each step k
min
UT−1

(YT −RT)′WQ(YT −RT)+

(UT−1 − URT−1)′WR(UT−1 − URT−1) + δU ′ WS δU
s.t. :

ŶT = HT (xk, UT−1)
Ymin ≤ YT ≤ Ymax

Umin ≤ UT−1 ≤ Umax

δUmin ≤ δUT−1 ≤ δUmax

(5)
where WQ, WR, WS are weight matrices of appropriate di-
mensions, RT ∈ RTny is the reference signal to track, URT ∈
RTnu is a corresponding input reference (possibly URT = 0),
δU = [u′k − u′k−1, . . . , u

′
k+T−1 − u′k+T−2]′, and Ymin, Ymax,

Umin, Umax, δUmin, δUmax are vectors of lower and upper
bounds.

Problem (5) can be recast as a QP problem if we fit T ANN-
based affine predictors of the following form

YT = FT (xk, ŪT−1) +GT (xk, ŪT−1)UT−1 (6)
where ŪT−1 is a nominal input sequence, FT : Rnx×Tnu →
RTny and GT : Rnx×Tnu → RTny×Tnu .

The affine predictor (6) can be interpreted also as the first-order
Taylor approximation of the non-linear mapping in (4). In fact,
assuming that HT is at least of class C1, we get

HT (xk, UT−1) ≈HT (xk, ŪT−1)

+

T−1∑
j=0

∂HT

∂uk+j
(xk, ŪT−1)uk+j .

A simplified form of (6), obtained by fixing ŪT−1 a priori (for
example, equal to a steady-state nominal input, or zero), is the
following predictor

YT = FT (xk) +GT (xk)(UT−1 − ŪT−1) (7)
with FT : Rnx → RTny and GT : Rnx → RTny×Tnu .

3. TRAINING AFFINE PREDICTORS VIA ANNS

Given that the underlying system (1) generating the output
signals yt+k is Markovian, the components fj , gj of FT , GT
are not completely independent functions between different
prediction steps. Therefore, to regularize the training procedure
we impose the following recursive and causal structure

yk+j = fj(xk) + gj(xk)

[
Uj−1 − Ūj−1

yk+j−1

]
(8)

for j = 2, . . . , T . This is especially useful if we use ANN
techniques (Goodfellow et al., 2016) or deep kernel machines
(Suykens, 2017), that naturally benefit from stacking nonlinear
layers/components.

Note that the affine nature of the predictor is maintained in (8),
as the composition of affine functions remains affine. To sim-
plify the notation, in the rest of the paper we will consider
ŪT−1 ≡ 0.

The problem of learning the maps fj and gj in (8) can be posed
as the following optimization problem

arg min
{fj ,gj}Ti=1

N−T∑
k=max{δy,δu}

L(Ôk, Ok)

s.t.:
ŷk+j = fj(xk) + gj(xk) [U ′j−1, ŷ

′
k+j−1]′

ŷk+1 = f1(xk) + g1(xk)U0

Ok = [yk+1 · · · yk+T]
′

Ôk = [ŷk+1 · · · ŷk+T]
′

j = 2, . . . , T,

(9)

where the constraints in (9) impose the causal structure arising
from (8) and Uj−1 = [u′k, . . . , u

′
k+j−1]′. The loss function

L : RTny×Tny → R can be any loss function and can be
chosen based on the physical meaning of the predicted output,
for example using a cosine distance for an angular quantity or a
cross entropy for a categorical output signal.

The optimization problem (9) has two conflicting objectives,
due to trading off between short-term prediction accuracy and
the ability to carry useful information from prediction k + j to
prediction k + i, for i > j. Note that learning the maps fi, gi,
for i = 1, . . . , T can be either carried out sequentially (one time
step j at time) or in one shot. In this work we focus on the latter
method.

The unconventional structure (8) restricts the pool of function
approximators that can be employed to parameterize fj and gj .
We exploit the nature of ANNs of being direct acyclic computa-
tional graphs to build into the topology of the network itself the
constraints structure of (9). In this way, we reduce the learning
procedure to a regression problem while retaining the capability
of easily accessing the outputs of fi, gi as intermediate results
of the single sub-components of the network. A schematic of
the considered network is reported in Figure 1.

Choosing ANNs is also convenient for their flexibility to be
trained with a wide class of loss functions (which allows one
to easily add, for instance, regularizers or additional objectives)
and to their theoretical property of being universal approxima-
tors (Barron, 1993), as well as to the large availability of well-
maintained and mature frameworks for their training (Abadi
et al., 2015; Seide and Agarwal, 2016).

ANN structure. The topology of the ANN used in this work
closely follows the structure highlighted in (8). In particular, all
the components fi are grouped in a single stand-alone network,
while each component gi is instead a separate entity. In this
work, we restrict our analysis to a densely connected feed-
forward topology for each subnetwork, but in principle this is
not mandatory. Each sub-network is thus composed by a series
of nonlinear hidden layers and a final linear output layer with
appropriate output shape. As in this work we analyze output

signals in RTny , we rely on the well known mean absolute error
(MAE) figure as the loss function L:

L(Y, Ŷ) =
1

Tny
‖Y − Ŷ ‖1 (10)

Fig. 1. ANN structure for predictions affine in the input.

4. SWITCHING AFFINE RT AND RF PREDICTORS

In this section we briefly recall the approach proposed in
(Smarra et al., 2018b), recently experimentally validated in
(Bünning et al., 2020), to create a switching affine modeling
framework based on regression trees (RTs) and random forests
(RFs), that can be used in the MPC formulation (5). For
simplifying reading, we limit the discussion to scalar outputs
(ny = 1), although the approach can be easily extended for
ny > 1 as illustrated in (Smarra et al., 2018b).

We partition the original dataset D in 2 disjoint sets: Dc =
{uk}Nk=1, of data associated with input variables, and Dnc =
{xk}Nk=1 related to the remaining variables. As done in Sec-
tion 3, the idea is to create T different predictors to predict
yk+j , and to derive a modeling framework in order to setup
an MPC problem that leads to a QP.

We create T regression trees Tj , j = 1, . . . , T, by applying
the CART algorithm to the dataset Dnc (see (Breiman et al.,
1984; Smarra et al., 2018b) for more details). In particular, for
each tree Tj , the CART algorithm partitions the set Dnc into
subsets Dnc,i,j , i = 1, . . . , |Tj |, j = 1, . . . , T , where |Tj | is
the number of regions of the partition associated with Tj (i.e.,
the number of leaves of Tj). Then, using the control data in Dc,
we associate to each leaf i of each tree Tj , corresponding to the
partition Dnc,i,j , the following affine model

xk+j = Aijxk +

j−1∑
α=0

Bij ,αuk+α + fij , ∀ij , ∀j, (11)

where matrices A′ij , B′ij ,α and f ′ij are in turn structured as

Aij =


a1 a2 · · · aδy+1+δu
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 0

 fij =


f
0
0
...
0



Bij ,α =

 b1,α 0 · · · 0
...

...
...

bnu,α 0 · · · 0


′

.

(12)

The coefficients of matrices Aij , Bij ,α and fij are obtained by
fitting the set of samples

{(xk+j , uk, . . . , uk+j−1) : xk ∈ Dnc,i,j} (13)
via least squares as defined in Problem 2 of (Smarra et al.,
2018b). In particular, in order to consider the same information
as in (8), we will constrain the parameters related to the input
auto-regressive terms to be zero, i.e. aδy+2, . . . , aδy+1+δu = 0.

The approach discussed above for RTs can be easily extended
to the case of RFs (Breiman, 2001). The idea behind RFs is to
extend the RT concept by growing multiple trees, considering
different random subsets of the dataset to train each tree. The
prediction is given by averaging the response of all the trees in
the forest. At the price of an increased computational burden,
the pros of this approach are the reduction of the overall
variance of the prediction error and the mitigation of overfitting.

In our context, we create T RFsFj , j = 1, . . . , T , with |Fj | the
number of trees of forest Fj . We can derive a model as in (11)
by solving the least squares problem introduced above for each
leaf Dij ,τ of each tree Tτ , τ = 1, . . . , |Fj |, of each forest Fj .
In this way, we obtain a vector of parameters for the matrices
in (12) associated to each leaf Dij ,τ . The final model as in (11)
can be obtained for each forest Fj by averaging the coefficients
of all the matrices associated with Dij ,τ .

It can be shown that for both RT and RF models (11) is
a switching affine representation of (1), where the switching
signal follows the partitioning imposed by the tree structures,
and each leaf represents an operating mode (see Smarra et al.
(2018b) for details).

5. SIMULATION RESULTS

5.1 Benchmark problem setup

Let the system Σ in (1) generating the data be the following
discrete-time approximation of the well-known nonlinear two-
tank system (Schoukens and Noël, 2017) x1,k+1 = x1,k − k1

√
x1,k + k2uk

x2,k+1 = x2,k + k3
√
x1,k − k4

√
x2,k

yk = x2,k

(14)

with k1 = 0.5, k2 = 0.4, k3 = 0.2, and k4 = 0.3 and where
xi,k represents the i-th component of xk ∈ R2

+. On this system
we analyze the performance of the affine model over an horizon
of T = 10. To do so, we collect a training dataset D of N =
10000 samples by exciting (14) with a sequence of step signals
of length 7 steps, each of random amplitude extracted from
the univariate Gaussian distribution Gu v N (µu, σ

2
u), with

µu = σu = 2. The testing dataset is generated similarly and
consist of 1000 samples. Both datasets have been normalized
using the empirical mean and standard deviation computed on
the training set. White zero-mean Gaussian noise with σw =
0.02 is superimposed on input/output signals.

Since we employ an early-stopping strategy as termination
criterion for the training process of the ANN, 5% of the training
dataset is used as a validation set to check the stopping criterion.
Each computational node of the ANN is composed of two
rectified linear units (ReLU) (Nair and Hinton, 2010) layers
with 20 neurons each, followed by a final linear output layer.

As state xk we choose past input/output values as in (2) with
δy = δu = 6. The predictors are written in Python using
Keras (Chollet et al., 2015) with Tensorflow as back-end, using
AMSgrad (Sashank J. Reddi, 2018) for optimizing the weights.
The total training procedure was carried out in around a minute

Prediction step eFIT eNRMSE

1 0.957 0.99
2 0.957 0.99
3 0.95 0.989
4 0.948 0.988
5 0.94 0.986
6 0.928 0.983
7 0.914 0.98
8 0.9 0.977
9 0.88 0.972

10 0.858 0.967

Table 1. Accuracy of the affine ANN predictors for
the benchmark (14)

on a Intel Core I5-6200U CPU machine with 16GB of RAM
and required a negligible amount of memory.

5.2 Fitting performance

We first investigate the accuracy of the affine predictors as
in (8) on the test set for the prediction horizon T = 10. Fitting
performance over the horizon is computed in terms of FIT and
NRMSE figures, defined as follows:

eFIT = max

{
0, 1− ‖ŷ − y‖2‖y − ȳ‖2

}
(15)

eNRMSE = max

{
0, 1− ‖ŷ − y‖2√ST (max(y)−min(y))

}
(16)

where ŷ is the vector stacking the estimates of the true values
vector y, ȳ is the mean of y, and ST is the number of elements
in y.

The results, reported in Table 1, show a very good prediction
capability, that clearly decreases over the horizon as expected.
This behavior can be also linked to the specific affine form
of the predictors that is not able to correctly reproduce the
nonlinear effect of past inputs on future outputs. This is not
a severe limitation, due to the receding-horizon mechanism of
MPC.

5.3 Performance comparison between ANN, RT, and RF

In this section we provide a comparison with the methodology
introduced in (Smarra et al., 2018b) that we recalled in Section
4. Using data generated through the benchmark example (14),
we built a model as in (8) as shown in Sections 3 and 5.1, and
model (11), considering both RT and RF approaches. Validation
results on the test set of 900 samples are shown in Figure 2 and
Figure 3, where we compare the predicted trajectories over the
horizon at k + 1 and k + 10.

Figure 4 reports eNRMSE over the horizon for the three ap-
proaches. It is apparent that on the considered benchmark prob-
lem ANN and RF performance are overall quite close, and both
outperform RT.

0 100 200 300 400 500 600 700 800 900

k

-4

-2

0

2

4

Ground truth Neural Network Reg. Tree Rand. Forest

Fig. 2. Output prediction at k + 1

0 100 200 300 400 500 600 700 800 900

k

-4

-2

0

2

4

Ground truth Neural Network Reg. Tree Rand. Forest

Fig. 3. Output prediction at k + 10

1 2 3 4 5 6 7 8 9 10

Horizon

94

96

98

100

(1
-N

R
M

S
E

)*
1

0
0

 [
%

]

Neural Network Reg. Tree Rand. Forest

Fig. 4. Normalized root mean square error (NRMSE) over the
prediction horizon

0 50 100 150 200 250 300 350

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

controlled system

reference to track

control action

Fig. 5. Illustrative example of the performance of the LTV
MPC for system (14) using ANN-based affine models via
dynamic parametrization. x axis is for time steps, y is for
the magnitude of the signals. All signals are in normalized
units

5.4 Evaluating MPC closed-loop performance

We explore now the effect of using the learned affine predictors
in a LTV-MPC control law in closed loop with (14). The LTV-
MPC controller solves the QP problem (5) at each step, with
HT affine in the inputs as defined in (7). We set WQ = 1,
WR = WS = 0.01, URT−1 = 0 and impose the constraint
−1.5 ≤ uk+j ≤ 1.5, ∀j = 0, . . . , T −1 with T = 5. Quantities
are in normalized units.

The resulting performance of the controller in tracking a unit
step superimposed to a sine sweep signal is reported in Figure
5. Despite predictions are only approximate, the controller pro-
vides satisfactory closed-loop performance. Regarding compu-
tation time, the evaluation of the affine predictors GT and FT
and solving the QP problem (carried out by the general purpose
solver based on (Kraft, 1988)) required ≤ 0.05 seconds on
the same reference machine. Since the constructed LTV-MPC
problem maps into a box-constrained least-squares problem,
the efficient solution method proposed in (Saraf and Bemporad,
2019) could be used here for example to speed up computations
even further.

6. COMPLEXITY REDUCTION

In the example presented in the Section 5.2, the ANN has
≈ 9000 parameters. Evaluating the network over the whole test
set on the same machine used for training takes less than a sec-
ond in total for the whole prediction horizon. For comparison,
we fitted a nonlinear autoregressive model with exogenous in-
puts (NLARX) with comparable prediction performance, com-
posed by two hidden layers NNs (each one composed of 20
neurons), by using MATLAB System Identification Toolbox
(Ljung, 2001; Beale et al., 2018). Such NLARX model requires
less than 1

10 of the coefficients of the affine ANN predictor. This
is not surprising, as we fit an entire horizon of predictions rather
than a recursive model, and because neither in the design of the
ANNs nor in the training process we took any action aimed at
reducing the number of network parameters. Although storage
requirement is already quite small in our approach, we discus
next how to reduce memory occupancy of the ANN predictors,
and therefore of the resulting MPC setup.

6.1 Memory occupancy vs. quality of fit tradeoff

It is well known in the literature that the addition of L1-
penalties (a.k.a. the shrinkage operator) in an optimization
problem induces sparse solutions (Tibshirani, 1996). When the
optimization problem arises from fitting a model, L1-penalties
also reduces possible overfitting issues.

Accordingly, to reduce the memory occupancy of the resulting
ANNs, we modify the cost function in problem (9) as follows:

arg min
{fj ,gj}Tk=1

N−T∑
k=max{δy,δu}

L(Ôk, Ok) + λL1(Θ) (17)

where Θ is the overall set of non-bias weights θf1 , θ
g
1 , . . . , θ

f
T , θ

g
T

characterizing the ANNs associated with the predictors fj and
gj , j = 1, . . . , T , respectively, and

L1(Θ) =

T∑
j=1

‖θfj ‖1 + ‖θgj ‖1 (18)

The scalar hyper-parameter λ ≥ 0, decides the tradeoff between
quality of fit and number of nonzero weights. Table 2 reports a
realization of quality of fit, computed over all T = 10 steps,
and of number of coefficients with absolute value ≥ 10−3 for
different choices of λ. In this test all the remaining coefficients
not satisfying such condition were manually set to zero after the
training process for all but the λ = 0 case.

λ eFIT NZ weights

0.01 0.853 325
0.005 0.864 350
0.001 0.901 560

0.0005 0.911 902
0 0.917 9001

Table 2. Illustrative example of the number of
nonzero (NZ) weights and prediction fit obtained

for different choices of λ.

7. CONCLUSIONS

In this work we developed an approach for learning an affine
parameterization of output predictions from data via artificial

neural networks, conceived for efficiently formulating and solv-
ing LTV-MPC problems for nonlinear systems. We showed in
numerical simulations that good performance, both in terms of
capturing the dynamics of a nonlinear process and of closed-
loop behavior, is achieved, with light computational load. We
also showed that memory occupancy of the solution can be
traded off with prediction accuracy by simply introducing L1-
penalties during the training phase.

Experimental tests on embedded platforms on real application
use cases will be performed in future work.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., et al., 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems.

Afram, A., Janabi-Sharifi, F., Fung, A. S., Raahemifar, K.,
2017. Artificial neural network (ANN) based model predic-
tive control (MPC) and optimization of HVAC systems: A
state of the art review and case study of a residential HVAC
system. Energy and Buildings 141, 96–113.

Barron, A. R., May 1993. Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transactions on
Information Theory 39 (3), 930–945.

Beale, M. H., Hagan, M. T., Demuth, H. B., 2018. Deep
Learning Toolbox – User’s Guide. The Mathworks, Inc.

Behl, M., Smarra, F., Mangharam, R., 2016. Dr-advisor: A
data-driven demand response recommender system. Applied
Energy 170, 30–46.

Borrelli, F., Bemporad, A., Morari, M., 2017. Predictive Con-
trol for Linear and Hybrid Systems. Cambridge University
Press.

Breiman, L., 2001. Random forests. Machine learning 45 (1),
5–32.

Breiman, L., Friedman, J., Stone, C. J., Olshen, R. A., 1984.
Classification and regression trees. CRC press.

Bünning, F., Huber, B., Heer, P., Aboudonia, A., Lygeros, J.,
2020. Experimental demonstration of data predictive control
for energy optimization and thermal comfort in buildings.
Energy and Buildings 211, 109792.

Chollet, F., et al., 2015. Keras. https://keras.io.
Diehl, M., Bock, H., Schlöder, J., 2005. A real-time itera-

tion scheme for nonlinear optimization in optimal feedback
control. SIAM Journal on Control and Optimization 43 (5),
1714–1736.

Ferrarotti, L., Bemporad, A., 2019. Synthesis of optimal feed-
back controllers from data via stochastic gradient descent. In:
Proc. of European Control Conference. Naples, Italy.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning.
MIT Press.

Gros, S., Zanon, M., 2020. Data-driven economic NMPC using
reinforcement learning. IEEE Transactions on Automatic
Control 65 (2), 636–648.

Jain, A., Smarra, F., Behl, M., Mangharam, R., 2018. Data-
driven model predictive control with regression trees-An ap-
plication to building energy management. ACM Transactions
on Cyber-Physical Systems 2 (1), 4.

Jain, A., Smarra, F., Mangharam, R., 2017. Data predictive con-
trol using regression trees and ensemble learning. In: Deci-
sion and Control (CDC), 2017 IEEE 56th Annual Conference
on. IEEE, pp. 4446–4451.

Kocijan, J., Girard, A., Banko, B., Murray-Smith, R., 2005. Dy-
namic systems identification with gaussian processes. Math-

ematical and Computer Modelling of Dynamical Systems
11 (4), 411–424.

Kraft, D., 1988. A software package for sequential quadratic
programming. Forschungsbericht- Deutsche Forschungs-
und Versuchsanstalt fur Luft- und Raumfahrt.

Liu, G., Kadirkamanathan, V., 1998. Predictive control for non-
linear systems using neural networks. International Journal
of Control 71 (6), 1119–1132.

Ljung, L., 1987. System identification: theory for the user.
Prentice-Hall.

Ljung, L., 2001. System Identification Toolbox for MATLAB –
User’s Guide. The Mathworks, Inc.

Masti, D., Bemporad, A., 2018. Learning nonlinear state-space
models using deep autoencoders. In: Proc. 57th IEEE Conf.
on Decision and Control. Miami Beach, FL, USA, pp. 3862–
3867.

Nair, V., Hinton, G. E., 2010. Rectified linear units improve
restricted boltzmann machines. In: Int. Conf. on Machine
Learning (ICML). Omnipress, pp. 807–814.

Piga, D., Formentin, S., Bemporad, A., 2017. Direct data-
driven control of constrained systems. IEEE Transactions on
Control Systems Technology 26 (4), 1422–1429.

Pillonetto, G., Dinuzzo, F., Chen, T., Nicolao, G. D., Ljung,
L., 2014. Kernel methods in system identification, machine
learning and function estimation: A survey. Automatica
50 (3), 657 – 682.

Saraf, N., Bemporad, A., 2019. A bounded-variable least-
squares solver based on stable QR updates. IEEE Transac-
tions on Automatic Control.

Sashank J. Reddi, Satyen Kale, S. K., 2018. On the convergence
of Adam and beyond. Int. Conf. on Learning Representa-
tions.

Schoukens, M., Noël, J. P., 2017. Three benchmarks addressing
open challenges in nonlinear system identification. IFAC-
PapersOnLine 50 (1), 446–451.

Seide, F., Agarwal, A., 2016. CNTK: Microsoft’s open-source
deep-learning toolkit. In: 22nd ACM SIGKDD International
Conf. on Knowledge Discovery and Data Mining. KDD ’16.
ACM, New York, NY, USA, pp. 2135–2135.

Smarra, F., Di Girolamo, G. D., De Iuliis, V., Jain, A., Mang-
haram, R., D’Innocenzo, A., 2020. Data-driven switching
modeling for mpc using regression trees and random forests.
Nonlinear Analysis: Hybrid Systems 36.

Smarra, F., Jain, A., de Rubeis, T., Ambrosini, D., D’Innocenzo,
A., Mangharam, R., 2018a. Data-driven model predictive
control using random forests for building energy optimiza-
tion and climate control. Applied Energy 226.

Smarra, F., Jain, A., Mangharam, R., D’Innocenzo, A., 2018b.
Data-driven switched affine modeling for model predictive
control. In: IFAC Conference on Analysis and Design of
Hybrid Systems (ADHS’18). IFAC, pp. 199–204.

Suykens, J. A., 2017. Deep restricted kernel machines using
conjugate feature duality. Neural computation 29 (8), 2123–
2163.

Terzi, E., Fagiano, L., Farina, M., Scattolini, R., 2019.
Learning-based predictive control for linear systems: A uni-
tary approach. Automatica 108, 108473.

Tibshirani, R., 1996. Regression Shrinkage and Selection via
the Lasso. Journal of the Royal Statistical Society: Series B
(Methodological) 58 (1), 267–288.

Wang, Y., 2017. A new concept using LSTM neural networks
for dynamic system identification. In: 2017 American Con-
trol Conference (ACC). IEEE, pp. 5324–5329.

