Learning Approximate Semi-Explicit Hybrid MPC
with an Application to Microgrids ***

Daniele Masti * Tomas Pippia ** Alberto Bemporad * Bart De Schutter **

* IMT School for Advanced Studies, Lucca, Italy (e-mail:
daniele.masti@imtlucca.it, alberto.bemporad@imtlucca.it).
** Delft University of Technology, Delft, The Netherlands (e-mail:
t.m.pippia @ tudelft.nl, b.deschutter @ tudelft.nl)

Abstract: We present a semi-explicit formulation of model predictive controllers for hybrid systems
with feasibility guarantees. The key idea is to use a machine-learning approach to learn a compact
predictor of the integer/binary components of optimal solutions of the multiparametric mixed-integer
linear optimization problem associated with the controller, so that, on-line, only a linear programming
problem must be solved. In this scheme, feasibility is ensured by a simple rule-based engine that
corrects the binary configuration only when necessary. The performance of the approach is assessed
on a well known benchmark for which explicit controllers based on domain-specific knowledge are
already available. Simulation results show how our proposed method considerably lowers computation

time without deteriorating closed-loop performance.

Keywords: Model Predictive Control, Machine Learning, Mixed-Integer Optimization, Modeling and

Simulation of Power Systems

1. INTRODUCTION

In recent years Model Predictive Control (MPC) has become
one of the leading optimal control techniques in industry
(Mayne, 2014) due to its innate ability to handle constraints
and due to its flexibility in terms of applicable cost functions
(Diehl et al., 2010). This flexibility comes however at a price:
MPC requires solving a constrained optimization problem on-
line at each control step. Although this issue has become less
and less problematic in recent years thanks to the advancements
in both computational capabilities of the hardware and solver
technology, nonlinear MPC formulations on embedded hard-
ware have been anyway mostly relegated to the control of either
laboratory or very slowly changing systems. This is unfortunate
as for some systems, such as the ones involving both logical and
dynamical elements, MPC is often one of the few applicable
general-purpose control techniques.

When MPC is used to control such “hybrid” dynamical sys-
tems (Bemporad and Morari, 1999), however, the optimization
problem that must be solved at each control step becomes of
mixed-integer nature and thus combinatorial (Morrison et al.,
2016). In order to solve this kind of problems, most solvers
rely on the so-called Branch and Bound (B&B) approach to
efficiently explore the set of combinations of non-continuous
variables. While such schemes are usually very efficient, B&B
strategies cannot completely avoid the worst-case scenario in
which all the combinations of binary variables must be tested.
For this reason, solving this kind of problems is usually deemed
infeasible in embedded applications as the hardware require-
ments needed to guarantee that a solution will eventually be

* This work has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sktodowska—Curie grant
agreement No 675318 (INCITE).

**D. Masti and T. Pippia have contributed equally to this work.

found within strict real-time constraints may be excessive. On
top of this, we also note that the industry-grade state-of-the-
art commercial B&B solvers only provide libraries for desktop
applications.

Explicit (hybrid) MPC was proposed as a way to avoid solving
the optimization problem on-line (Borrelli et al., 2005; Alessio
and Bemporad, 2006). In practice, however, this approach is
limited to simple use cases due to the possible explosion of
both computation time and memory requirements, which can
rapidly grow as the number of binary variables and constraints
increase, up to the point where using an explicit controller may
well become more expensive than using an implicit one (Cimini
and Bemporad, 2017).

A different and more practical approach to soften the compu-
tational requirements of a predictive controller is to relax the
requirement for exact solutions to the original control problem.
Indeed many authors have explored this topic and proposed
solutions such as:

e approximating/learning the explicit control law (Karg and
Lucia, 2018; Maddalena et al., 2019);

e using especially crafted on-line optimization schemes that
do not aim to fully solve the problem at each step to get
acceptable closed-loop control performance (Gros et al.,
2020; Diehl et al., 2005; Axehill et al., 2014);

e cxploiting the domain knowledge of the designer to for-
mulate a rule-based decision engine to either speed up the
solver (Di Cairano et al., 2012) or to directly find a sub-
optimal but feasible configuration (Pippia et al., 2019).

Some authors have instead explored the idea of heuristically
provide a good initial guess to warm start to the mixed integer
solver (Ingimundarson et al., 2007; Bemporad and Naik, 2018)
and then fully solve the problem to optimality. Recent works
extended this concept by proposing machine-learning (ML) ap-

proaches (Bertsimas and Stellato, 2018; Masti and Bemporad,
2019) that can learn from a collection of previously solved
examples to provide warm starts also in situations where other
heuristic approaches would usually fail. The principal limita-
tion of those approaches is that they either cannot guarantee
that a feasible solution will be always found within affordable
time bounds or that they require deep understanding of the
control problem, i.e., domain knowledge. However, if we aim at
finding a feasible solution in broad sense, then there are many
applications in which this can be done. This idea has led to
interesting results such as the ones presented in (Jun et al.,
2019). Consider for example the electric dispatch problem in
a microgrid connected to the utility grid: it is trivial that a
suboptimal but possible solution is simply to shut down every
generator and buy all the required power from the grid.

In this context, we explore the possibility of lightening the
computational requirements of hybrid MPC controllers applied
to microgrid operations by merging the two aforementioned
approaches: we use ML techniques to learn a map from the
realizations of the parameters of the optimization problem to
the corresponding optimal binary solutions and, in case the
predictor fails to provide a feasible solution, resort to simple
rules arising from the problem structure to correct otherwise
infeasible guesses. The resulting binary configuration is then
used to reduce the original mixed-integer linear programming
(MILP) problem to a linear program (LP). This in turn al-
lows the user to discard the mixed-integer solver altogether
and possibly even ensure that a solution will be found within
polynomial time (Nesterov and Nemirovskii, 1994). The valid-
ity of this approach is assessed on a grid-connected microgrid
power dispatch problem benchmark. The reason why we focus
on this application is because, to the best of our knowledge,
it is the only field in which domain knowledge based explicit
controllers are available as benchmark.

We note that our approach is not restricted to the considered
test case. Indeed, the choice of the benchmark is due to the
fact that, to the best of the authors’ knowledge, it is one of the
few explicit rule-based controllers we can use to compare our
method against.

The paper is organized as follows: in Section 2 we recall the
structure of the problem and a well known model usually em-
ployed to parametrize the associated predictive controller. Sec-
tion 3 is devoted to present the employed learning architecture.
In Section 4 we provide experimental results and a comparison
with domain knowledge based techniques. Lastly, in Section 5
we draw some conclusions and present suggestions for future
work.

2. BENCHMARK DESCRIPTION

In this section we briefly recall the problem of power dispatch-
ing in a microgrid environment, i.e., an electrical power system
in which storage elements (e.g., batteries and ultracapacitors,
also called storage units), local generators, a bidirectional con-
nection to the main grid, and uncontrollable loads are present at
the same time.

Here the main goal of the energy management system is to solve
the so called dispatch problem, i.e., provide the required power
Pioada (k) to the uncontrollable loads at each time step k while
minimizing the economic costs associated to the source of the
energy. Many contributions in the literature focused on how to

Microgrid
l .
Storage
Main Ul’litS
Grid Production
Units

Fig. 1. Microgrid scheme considered in this work. Arrows
represent power flows. The microgrid is in non-islanded
mode, i.e., it is connected to the main grid.

effectively model this kind of environment. In this work we will
in particular consider a variation!' of the model presented in
Parisio et al. (2014) and we will also assume that both the values
of Pload, Pres (the power output of the renewable sources) and
the upper bounds on the power output of the dispatchable units
are known and constant between two sampling times. A scheme
of the considered microgrid is shown in Figure 1.

2.1 Dynamical model of the energy storage systems

In this work we restrict our analysis to microgrids where the
energy storage system can be modeled as a battery obeying the
following hybrid dynamical law:

_ (k) + %Pb(k)
wp(k+1) = {xb(k) + Tsne Py (k)

where the state xy, (k) indicates the level of energy stored in the
energy storage system at time step k, 7. and 74 are the charging
and discharging efficiencies, respectively, P, (k) is the power
exchanged with the energy storage system at time step &, and
T is the sampling interval of the discrete-time system.

if P(k) <0

iRk >0

As this kind of models are not immediately easily exploitable
for control applications, we follow the Mixed Logical Dynam-
ical approach (MLD) (Bemporad and Morari, 1999) and intro-
duce a Boolean (binary) variable i, (k) to indicate whether the
energy storage system is in the charging (i.e o (k) = 1 <—
P, (k) > 0) or discharging mode at time step k. This allows us
to rewrite model (1) more compactly as

1 T,
xp(k+1) = ap(k) + Ty (770 -) 2p(k) + —Po(k), (2)
Nd Nd

where z,(k) = 0p(k)P, (k). Both the logic relationship be-
tween d, (k) and P, (k) and the definition of z1,(k) can be recast
using a set of mixed-integer linear inequalities (Bemporad and
Morari, 1999).

2.2 Generator units

We consider two kinds of generation units in the grid: renew-
able sources (i.e., zero cost uncontrollable power sources with
known but time-varying power output) and dispatchable gener-
ators. Differently from renewable energy sources, dispatchable
generators can be controlled in terms of output power. In other
words, the power they produce can be manipulated within some
bounds and can therefore be considered as a control variable.

1 We disregard the constant loss term in the energy storage system dynamics
for simplicity.

We denote by Pyis(k) the vector representing the power pro-
duced by dispatchable generators, i.e.,
Puis(k) = [P™(k),..., Py®

T
e)]

where P{5(k) indicates the power produced by dispatchable
unit 4, ¢ = 1,..., Ngen at time step k and Nge, is the total

number of dispatchable units.

We use a binary variable 69" (k) to indicate whether the dis-
patchable generator ¢ is active at time step k (09" (k) = 1) or
not (69" (k) = 0).

2.3 Energy prices

All the energy flows in the systems have an associated cost.
There are thus three different prices: cpyy (k) is the purchase
price, csale(k) is the sale price, and cproa(k) is the price for
producing electricity with the dispatchable units. Note that the
prices cpuy (k) and cgale(k) are quantities related to the main
grid. We also assume that prices are known in advance, e.g., by
means of a predictor.

2.4 Main grid

The microgrid that we consider is connected to the main grid.
This connection can be modeled as a binary variable dgyia(k)
indicating whether energy is being bought from the main grid
(Ogria(k) = 1) or sold to it (dgria(k) = 0) at time step k.
We denote by Pi,iq the power exchanged with the main grid,
obtaining

{(5grid(k) =0 <= Pua(k) < 0 (exporting case) 3)

dgria(k) =1 <= Pgia(k) > 0 (importing case).
In order to model the economic cost and revenue when ex-

changing energy with the main grid, we can resort to an aux-
iliary variable Cg,iq defined as

{Cgrid(k) - Csalc(k)Pgrid(k) — Pgrid(k) < Oa
Cgrid(k) = cbuy(k)Pgrid(k) — Pgrid(k) > 0.
Once again, by using the MLD framework, we can link together

0gria and Cgiq by resorting to a set of mixed-integer linear
constraints.

“4)

3. OPTIMIZATION PROBLEM
3.1 Control problem formulation

The goal of the controller is to handle the optimization of
the energy management system of the microgrid, choosing
how much energy to produce or trade with the main grid
while guaranteeing the satisfaction of both load needs and
physical constraints of the grid. It is then clear that a constrained
optimization-based control technique, and in particular MPC, is
a natural choice for this task. We note that the use of a hybrid
MPC formulation for this task is indeed well known in the
literature and promising results have been obtained by multiple
authors (Parisio et al., 2016; Cominesi et al., 2018; Velarde
et al., 2017). The formulation we adopt in this work will be
the one described in (Pippia et al., 2019). The control problem

formulation is the following:
i JPiskycrik7rok 5
P (Pais(k), Cgria (k) cproa (k) (5)

Py, (k), 8(k), z(k)

subject to:
Elé(lf) + EQZ(]f) < Egu(k) + Ey (6a)
Ngeu
Py(k) =Y P (k)+
i=1
+ Pres(k) + Pgrid(k) - Hoad(k) (6b)
Py, < Py(k) < Py, (6¢)
Bgrid S Pgrid(k) S Pg;rid (6d)
69" (k)P < P (k) < 62" (k) Py (6¢)
zy, < ap(k) < Ty (6f)

-
u(k) = [P (k), Cera(k), Pu(k)]
fori=1,..., Ngen
fork=0,...,N, -1

where N}, is the prediction horizon, and constraint (6a) arises
from the MLD formulation of the model presented in the previ-
ous sections (interested readers may also refer to Parisio et al.
(2014) for a detailed description). Constraint (6b) represents
power balance and ensures that at each time step all the gener-
ated power is either consumed, stored, or sold to the main grid.
The other constraints are related to the limits that all the power
contributions must respect. In particular, in constraint (6f), zy,
and Ty, represent the lower and upper bound of the state of
charge of the battery. Constraints (6¢)—(6e) model the physical
bounds on, respectively, the power exchanged with the battery,
the power exchanged with the main grid, the power produced
by each production unit 7, i.e., P35(k), and the level of charge
of the battery.

The cost function chosen is a sum of economic costs and arises
from the local energy production through dispatchable units and
from the exchange of energy with the main grid:

J(Pdis(k)7 Cgrid(k)v Cprod(k)) =

Np—1 Ngen
Z <Cgrid(k + ,7) + Cprod(k +]) Z Pidis(k + J)) (7)
7=0 i=1

3.2 Towards a data-driven explicit controller

It is well known in the literature that solving an MILP problem
is a N'P-hard problem in general. Nevertheless, by treating
2(0), Cbuy Csales Cprods Ploads Pres as parameters of the prob-
lem, and by observing that the structure of the problem remains
the same at each time step, we can build a machinery that can
lead to an explicit MPC controller. This idea becomes even
more appealing as we do not actually need to build such a
predictor for all the decision variables as, once the binary com-
ponents are set, the real-valued ones can be found separately. As
practical matter, this would translate into relaxing the original
MILP based controller into a partially explicit controller that
must solve only an LP at each time step. Figure 2 shows the
resulting optimization scheme.

In particular, for what concerns problem (5)-(6f), a possible
approach to achieve this is then the following:

(1) extract a representative dataset of NV examples of paramet-
ric realizations,

ZN = {(3?0(]{3), c{my(_k% Ci)rod(_k)’ (8)
C;ale(k)7 Plload(k% Prles(k))}

Microgrid
model

Binary variables
parameterization

»

Optimizer

\ \
\ \
i i
\ \
\ \
MILP LpP

Fig. 2. Proposed solution scheme.

with Zy € ROFSNe XN vy = |k + N, — 1,
Vk=1,...,N.
(2) solve oft-line the corresponding optimization problems
(3) extract the set of optimal binary tuples associated to the
components of the grid at each step in the prediction
horizon:

Ok = {67V (k), .., 60D (k). 6iia (). 53 (k))}

where each 0% € {0,1}Neent2XN vy — | 4 j v =
0,....Np—1,Vk=1,...,N

(4) use machine learning/function approximation methods to
build a map from parameter values to binary tuples.

Multiple contributions have already explored the use of ML
techniques for predicting the optimal active set of optimization
problems. However, most of such approaches were meant to
achieve the best possible predicting performance with little
regard of any secondary use the learned classifier may need
to serve, e.g., providing facilities to assess the correctness
and robustness of the given prediction. For this reason, in
this work, we focus on the idea of using more interpretable
techniques. This immediately draws a comparison with other
kind of interpretable heuristic rule based approaches, such as
one presented in (Pippia et al., 2019), whose decision engine
will be used as comparison term for the rest of the paper.

As we are dealing with real-time applications, we also need
a learning architecture with a small computational footprint
and possibly running also in bounded time for throughput
predictability. As the quantities we are trying to predict are
binary in nature, a natural choice is to resort to a decision-tree
classifier (Breiman et al., 1984) with a limited a-priori number
of nodes for which both the decision path of each prediction
is clearly inspectable (Marchese Robinson et al., 2017) and
a vast literature about establishing the importance of each
provided input feature exists. One of the principal limitations
of decision trees is however their instability. For this reason
we also consider the use of random-forest classifiers (Hastie
et al., 2009), which try to solve this issue by bagging more
decision trees together, at the cost of both a more problematic
interpretability and higher computational requirements.

Each predictor is trained to predict the tuple of binary decision
variables corresponding to the action of a specific time step
within the prediction window. In practice, this means that we
will have N}, predictors, each one trained on a different dataset

tuple (Z N, Ofv) The reason for this choice is twofold: on the

one hand, very small trees simply lack the approximation power
required to efficiently predict hundreds of outputs at the same
time and, on the other hand, it would greatly facilitate the user
in establishing which input feature influences which output. In
both cases, the loss function used to grow the classifiers is the
entropy criterion (Hastie et al., 2009).

3.3 Prediction override for avoiding infeasibility

The proposed approach is still not yet able to ensure the fea-
sibility of the prediction with respects to the constraints (6). A
possible approach to avoid infeasibility in this case is to inspect
the behavior of the proposed predictor, categorize the cases
of bad behavior (i.e., infeasible predictions), and implement
a fail-safe override mechanism that ensures feasibility in such
specific occasions. While this is in general as hard as designing
a whole explicit controller, in many systems (including the one
we analyze) trivial feasible configurations are indeed simple to
recover. Moreover, we note that even in case the prediction
leads to an infeasible configuration, it will probably still be
close to the real optimal one. This means that the task the user
is asked will not be to design a complete substitute optimal
controller as a whole, but rather to simply provide a limited
set of feasibility corrections, without the need of caring about
optimality.

Based on the previous discussion, we consider the three follow-
ing possible sources of infeasibility:

(1) 050 69 (k)P < Pioga (k) — Pres (k) AND 6gpia (k) =
0, i.e., the local production units alone are not able to
satisfy the loads but the grid is set to export mode. In this
case, we override 0gia(k) and set it to dgria(k) = 1, i.e.,
we set the grid to import mode;

(2) Pres(k) - -Pload(k) > 5b(k)|£b(k)| AND (Sgrid(k) =1,
i.e., there is a surplus of generation, higher than the power
that the battery can absorb, but the grid is set to import
mode. In this case, dgyrid (k) is set to 0, i.e., to export mode;

(3) 0 < Poaa(k) — Pres(k) < Y05 89" (k)PS™ AND
dgria(k) = 1, i.e., the loads are higher than renewable
power and the minimum power that can be produced with
the dispatchable units is higher than the necessary extra
energy to satisfy the loads, but the grid is set to import
mode. In other words, in this specific case, there is a
small excess of energy coming from the dispatchable units
that has to be exported to the main grid. Therefore, we

override the rules setting the main grid to export case, i.e.,
dgria(k) = 0.

4. SIMULATIONS

4.1 Setup

Simulations were carried out solving problem (5)—(6) subject
to the aforementioned parameterization of the binary variables
through ML algorithms. We focus in particular on a Random
Forest method (RF7) and a Decision Tree (DT7) with maximum
depth of 7 levels. The level of depth chosen is a trade-off
between complexity and approximation power. As benchmarks,
we consider both the full MILP original problem and the rule-
based (RB) approach presented in (Pippia et al., 2019), which,
as explained earlier, requires a considerable amount of prior
domain knowledge.

The classifiers were trained using ~ 16000 samples obtained
by solving the real MILP optimization problem with Gurobi
(Gurobi Optimization Inc., 2016) and using real data for the
renewable energy sources and the loads from year 2018 taken
from the ENTSO-E Transparency Platform (Hirth et al., 2018),
while the prices profiles have been designed similarly to (Pippia
et al., 2019). The amount of dispatchable units is set to Nge, =

3, the sampling time is T = 30 min, and the prediction horizon
of the MPC algorithm is NV, = 48, corresponding to 24h. This
in turn results in (1 + 1 + Ngep) - 48 = 240 binary variables in
the optimization problem. Moreover, each simulation considers
a simulation time of one day. We note that all the real value
components of the dataset were normalized using the empirical
mean and standard deviation of the training set.

In order to assess the performance of the proposed methods, we
performed 150 simulations using renewable sources and loads
data from year 2017. Hence, the total number of optimization

problems solved for each method is 150 - % = 7200.

The training procedure of each classifier was carried out using
negligible computational resources on a machine equipped with
an Intel core 17-8565U and 16 GB of RAM. The implemen-
tation was carried out using the Scikit-learn (Buitinck et al.,
2013).

4.2 Results

We compare three different measures for all the methods:

(1) the average open-loop and closed-loop costs;
(2) computation time;
(3) the amount of infeasible configurations for each method.

Regarding the performance in terms of costs, Table 1 shows
the average open-loop and closed-loop costs, in €, associated
to the binary configurations produced by the predictors. The
open-loop cost is the value of the cost (7) obtained after a
single optimization of problem (5), while the closed-loop cost
is the cost computed at the end of a simulation, when all the
inputs applied to the system are known. Both the ML and the
RB methods achieve a similar value of the open-loop cost,
with RB being slightly worse than the proposed approach. For
what concerns the closed-loop cost, the three parametrization
methods achieve very similar performance to the MILP one,
with a difference of at most 1.3%. Note that the RB approach
achieves a smaller value than the MILP one. This is simply due
to the fact that the RB approach leaves a smaller charge in the
battery at the end of the simulation, thus leading to a smaller
value of the closed-loop cost, as explained in (Pippia et al.,
2019).

Table 2 compares the on-line computation time of all the
methods. Moreover, for the ML and RB methods, we also
show the percentage of decrease with respect to the MILP
case and the standard deviation. For all the parameterized
methods, we can notice a tremendous decrease in computation
time of at least 96%. This was expected due to the fact that
the parameterized methods solve only one linear programming
problem instead of a mixed-integer one. Furthermore, in Figure
3 we show the elapsed run time of each single simulation, with
the y-axis in log-scale. We can notice from the figure that, while
the MILP approach has a certain variability in total simulation
time, for the other methods run-time is quite constant.

As already noted, the predictors might sometimes lead to
infeasible configurations for what concerns binary variables.
To explore how often this happens, in Table 3 we show the
number of infeasible binary variable configurations for all the
parametrized methods, i.e., how many times on average the
override explained in Section 3.3 must be applied. Note that
the RB method does not yield infeasible configurations, as
it was designed using domain knowledge to avoid this issue.

100

—— MILP
RF7

Time [s]

DT7
102 RB

M\M—WM—'"‘A/\,—.
A=A PANAANA AN A~y A

i D
0 50 100 150
Time step

108

Fig. 3. Elapsed run times of each single simulation. The y-axis
is in log-scale.

While both architectures are quite robust to this issue, it is also
apparent that in this case RF7 outperforms DT7.

OL CL
MILP 4202.4 4514.5
RB 4341.1(3.3%) | 4479.3 (—0.8%)
RF7 4213.4 (0.3%) 4574.5 (1.3%)
DT7 4213.4 (0.3%) 4761.9 (0.9%)
Table 1. Average open-loop (OL) and closed-loop
(CL) costs of each simulation performed. The per-
centage shows the increase in the cost w.r.t. the
MILP case. The costs are in €.

CPU time % Decrease
MILP | 6.47(3.72) -
RB 0.06(0.01) 99%
RF7 0.27(0.02) 96%
DT7 0.10(0.01) 98%

Table 2. Average computation time of each simu-

lation performed, in seconds. The standard devia-

tion o is shown between brackets. The percentage
shows the decrease w.r.t. the MILP case.

RB | RF/ DT7

% infeasible | 0% | 0.71% | 6.85%

Table 3. Amount of infeasible binary variable con-
figurations for each parametrized method.

4.3 Discussion

From the simulation results, it can be seen how the ML methods
presented in this article are able to achieve in general a similar
cost and computation time w.r.t. the RB method. Moreover,
compared to the MILP method, the ML methods guarantee a
much faster on-line run time while having a slightly worse
performance in terms of costs. However, as explained in the
previous sections, the need of solving a complex MILP problem
is removed, which in turn implies that there is no need to
include expensive and dedicated hardware, as well as complex
MILP solvers, in the controller implementation. Furthermore,
the limited increase in the cost and the huge decrease in com-
putation time, together with the fact that there is only a very
small amount of domain knowledge needed to implement the
controller, justifies the adoption of our approach, even when
compared to the RB method. Lastly, when comparing the two
ML methods in particular, i.e., RF7 and DT7, the DT7 method
shows a higher infeasibility rate but it also shows a lower
closed-loop cost and lower computation times w.r.t. the RF7
method. Given that the differences between the two methods
are quite small, we can safely claim that the usage of either of
the two methods, in this particular application, is equivalent.

5. CONCLUSIONS

In this paper we have explored the use of machine learning to
get approximate semi-explicit formulations of a hybrid MPC
controller, with feasibility guarantees given by the use of a
simple and compact rule-based engine. Compared to a pure
rule-based formulation, the proposed approach requires much
less domain knowledge from the user. The effectiveness of the
approach has been tested on a well-known energy management
system benchmark and compared to a pure rule-based solution
already available in the literature, showing reduced computa-
tion time with similar performance with respect to the original
problem. In future work we will consider the integration of the
mathematical structure of the problem in the learning procedure
in order to achieve even better performance.

REFERENCES

Alessio, A. and Bemporad, A. (2006). Feasible mode enu-
meration and cost comparison for explicit quadratic model
predictive control of hybrid systems. In 2nd IFAC Conf. on
Analysis and Design of Hybrid Systems, 302-308.

Axehill, D., Besselmann, T., Raimondo, D.M., and Morari,
M. (2014). A parametric branch and bound approach to
suboptimal explicit hybrid MPC. Automatica, 50(1), 240—
246.

Bemporad, A. and Morari, M. (1999). Control of systems
integrating logic, dynamics, and constraints. Automatica,
35(3), 407-427.

Bemporad, A. and Naik, V.V. (2018). A numerically robust
mixed-integer quadratic programming solver for embedded
hybrid model predictive control. In 6th IFAC Conf. on
Nonlinear Model Predictive Control, 412—417.

Bertsimas, D. and Stellato, B. (2018). The voice of optimiza-
tion. https://arxiv.org/abs/1812.09991.

Borrelli, F., Baoti¢, M., Bemporad, A., and Morari, M. (2005).
Dynamic programming for constrained optimal control of
discrete-time linear hybrid systems. Automatica, 41(10),
1709-1721.

Breiman, L., Friedman, J., Stone, C.J., and Olshen, R. (1984).
Classification and Regression Trees. CRC Press.

Buitinck, L. et al. (2013). API design for machine learning
software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine
Learning, 108—122.

Cimini, G. and Bemporad, A. (2017). Exact complexity cer-
tification of active-set methods for quadratic programming.
IEEE Trans. Automatic Control, 62(12), 6094—6109.

Cominesi, S.R., Farina, M., Giulioni, L., Picasso, B., and Scat-
tolini, R. (2018). A two-layer stochastic model predictive
control scheme for microgrids. IEEE Trans. on Control
Systems Technology, 26(1), 1-13.

Di Cairano, S., Tseng, H.E., Bernardini, D., and Bemporad, A.
(2012). Vehicle yaw stability control by coordinated active
front steering and differential braking in the tire sideslip
angles domain. /[EEE Trans. on Control Systems Technology,
21(4), 1236-1248.

Diehl, M., Amrit, R., and Rawlings, J.B. (2010). A Lyapunov
function for economic optimizing model predictive control.
IEEE Trans. Automatic Control, 56(3), 703-707.

Diehl, M., Bock, H.G., and Schléder, J.P. (2005). A real-
time iteration scheme for nonlinear optimization in optimal
feedback control. SIAM Journal on control and optimization,
43(5), 1714-1736.

Gros, S., Zanon, M., Quirynen, R., Bemporad, A., and Diehl,
M. (2020). From linear to nonlinear MPC: bridging the gap
via the real-time iteration. International Journal of Control,
93(1), 62-80.

Gurobi Optimization Inc. (2016). Gurobi optimizer reference
manual. https://www.gurobi.com.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements
of statistical learning: data mining, inference, and predic-
tion. Springer Science & Business Media.

Hirth, L., Miihlenpfordt, J., and Bulkeley, M. (2018). The
ENTSO-E Transparency Platform — A review of Europe’s
most ambitious electricity data platform.

Ingimundarson, A., Ocampo-Martinez, C., and Bemporad, A.
(2007). Model predictive control of hybrid systems based on
mode-switching constraints. In Proc. of 46th IEEE Conf. on
Decision and Control, 5265-5269. New Orleans, LA.

Jun, S., Lee, S., and Chun, H. (2019). Learning dispatching
rules using random forest in flexible job shop scheduling
problems. International Journal of Production Research,
57(10), 3290-3310.

Karg, B. and Lucia, S. (2018). Deep learning-based embedded
mixed-integer model predictive control. In Proc. of European
Control Conf., 2075-2080.

Maddalena, E.T., da S. Moraes, C.G., Waltrich, G.,
and Jones, C.N. (2019). A neural network archi-
tecture to learn explicit MPC controllers from data.
https://arxiv.org/abs/1911.10789.

Marchese Robinson, R.L., Palczewska, A., Palczewski, J., and
Kidley, N. (2017). Comparison of the predictive performance
and interpretability of random forest and linear models on
benchmark data sets. Journal of Chemical Information and
Modeling, 57(8), 1773-1792.

Masti, D. and Bemporad, A. (2019). Learning binary warm
starts for multiparametric mixed-integer quadratic program-
ming. In 2019 18th European Control Conference (ECC),
1494-1499.

Mayne, D. (2014). Model predictive control: Recent develop-
ments and future promise. Automatica, 50(12), 2967-2986.

Morrison, D.R., Jacobson, S.H., Sauppe, J.J., and Sewell, E.C.
(2016). Branch-and-bound algorithms: A survey of recent
advances in searching, branching, and pruning. Discrete
Optimization, 19, 79-102.

Nesterov, Y. and Nemirovskii, A. (1994). Interior-Point Polyno-
mial Algorithms in Convex Programming, volume 13. STAM.

Parisio, A., Rikos, E., and Glielmo, L. (2014). A model predic-
tive control approach to microgrid operation optimization.
IEEE Trans. on Control Systems Technology, 22(5), 1813—
1827.

Parisio, A., Rikos, E., and Glielmo, L. (2016). Stochastic
model predictive control for economic/environmental opera-
tion management of microgrids: An experimental case study.
Journal of Process Control, 43, 24-37.

Pippia, T., Sijs, J., and De Schutter, B. (2019). A single-level
rule-based model predictive control approach for energy
management of grid-connected microgrids. [EEE Trans. on
Control Systems Technology, 1-13.

Velarde, P., Valverde, L., Maestre, J.M., Ocampo-Martinez, C.,
and Bordons, C. (2017). On the comparison of stochastic
model predictive control strategies applied to a hydrogen-
based microgrid. Journal of Power Sources, 343, 161-173.

