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Abstract: Stochastic optimal control problems are typically of rather large scale involving
millions of decision variables, but possess a certain structure which can be exploited by first-order
methods such as forward-backward splitting and the alternating direction method of multipliers
(ADMM). In this paper, we use the forward-backward envelope, a real-valued continuously
differentiable penalty function, to recast the dual of the original nonsmooth problem as an
unconstrained problem which we solve via the limited-memory BFGS algorithm. We show
that the proposed method leads to a significant improvement of the convergence rate without
increasing much the computational cost per iteration.
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1. INTRODUCTION

1.1 Motivation and Background

Scenario-based stochastic model predictive control is be-
coming increasingly popular in control applications for
its ability to deliver control actions with foresight under
uncertainty and has been used for the control of power
dispatch (Hans et al., 2015; Patrinos et al., 2011), HVAC
of buildings (Zhang et al., 2013), macroeconomic sys-
tems (Patrinos et al., 2014), supply chains (Schildbach and
Morari, 2016) and many another. The involved optimiza-
tion problems are typically of large dimension (involving
millions of decision variables), but they possess a rich
structure which gradient-based methods have been shown
to be able to exploit (Sampathirao et al., 2015, 2016).
Such methods converge at a rate of O(1/k) and O(1/k2)
using Nesterov’s extrapolation technique (Nesterov, 2012).
Nevertheless, first-order methods are sensitive to ill condi-
tioning which may not always be possible to mitigate by
preconditioning.

A straightforward approach to improve the convergence
properties of first-order methods is to introduce second-
order information. However, this is not available in many
cases of interest, or, it is very hard to compute. The pop-
ular BFGS method produces successive approximations of
the Hessian (Nocedal and Wright, 2006) and the sequence
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of its iterates converges Q-superlinearly to the optimal
solution, but comes with a severe limitation: one needs
to store and update a very large dense matrix; it is thus
unsuitable for large-scale optimization.

The limited-memory BFGS (L-BFGS) method has been
successfully used for the numerical solution of uncon-
strained problems (Liu and Nocedal, 1989) and recently
also for huge-scale problems (Chen et al., 2014). It implic-
itly updates a diagonal approximation of the Hessian using
a computationally cheap algorithm known as the two-loop
recursion (Nocedal and Wright, 2006). Despite its popu-
larity it comes with two limitations which have hindered
its use for the solution of optimal control problems. First,
it can only be applied to unconstrained optimal control
problems or problems with only box constraints on the
input variables (Byrd et al., 1995) and second, it cannot
be applied to nonsmooth problems.

These limitations are lifted using the forward-backward
envelope (FBE) of the original optimization problem which
allows us to reformulate it as an unconstrained problem
of a continuously differentiable function (Patrinos et al.,
2014; Themelis et al., 2016b,a). In this paper we show that
the application of the L-BFGS method to the FBE leads
to a noticeable improvement of the convergence speed
without a significant increase in the computational cost
per iteration.

1.2 Contribution

We previously showed that stochastic optimal control
problems possess a certain structure which can be ex-
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ploited for their efficient numerical solution using an
accelerated proximal gradient (APG) algorithm (Sam-
pathirao et al., 2015). In this paper, we formulate the
Fenchel dual optimization problem introducing a splitting
which has favourable separability properties. We employ a
quasi-Newtonian algorithm combining the limited-memory
BFGS method with the forward-backward envelope func-
tion to achieve faster convergence. The proposed method
involves only matrix-vector products and enables an imple-
mentation where operations across all nodes of the scenario
tree at every stage are executed in parallel.

1.3 Notation

Let R, N, Rn, Rm×n, Sn+, Sn++ denote the sets of real
numbers, nonnegative integers, column real vectors of
length n, real matrices of dimensions m-by-n, symmetric
positive semidefinite and positive definite n-by-n matrices
respectively. Let R = R∪{±∞} denote the set of extended
real numbers. The transpose of a matrix A is denoted
by A� and 〈x, y〉 stands for the standard inner product
of x and y. The set of of nonnegative integers {k1, k1 +
1, . . . , k2}, k2 ≥ k1 is denoted by N[k1,k2].

The indicator function of a set C ⊆ Rn is the extended-
real valued function δ(·|C) : Rn → R and for x ∈ C it
is δ(x|C) = 0 and δ(x|C) = +∞ otherwise. A function
f : Rn → R is called lower semi-continuous or closed
if for every x ∈ Rn, f(x) = lim infz→x f(z). A function
f : Rn → R is called proper if there is an x ∈ Rn so
that f(x) < ∞ and f(x) > −∞ for all x ∈ Rn. For a
closed convex function f : Rn → R, we define its conjugate
f∗ : Rn → R as f∗(x∗) = supx{〈x, x∗〉−f(x)}. A mapping
F : Rn → Rm is called β-Lipschitz continuous, with β ≥ 0,
if ‖F (x1) − F (x2)‖∗ ≤ β‖x1 − x2‖ for every x1, x2 ∈ Rn.
We call f σ-strongly convex if f(x) − σ

2 ‖x‖
2
2 is a convex

function. Unless otherwise stated ‖ · ‖ stands for ‖ · ‖2.
Every nonempty closed convex set C ⊆ Rn defines the
convex function proj(x|C) = argminc∈C ‖x − c‖2, which
is called the (Euclidean) projection of x onto C. The
Euclidean distance of an x ∈ Rn from C is defined as
dist(x|C) = minc∈C ‖x− c‖2.

2. PROBLEM STATEMENT

2.1 Stochastic optimal control

We first provide a formal statement of general stochastic
optimal control problems for linear dynamical systems.
Let (Ω,F ,P) be a probability space and {∅,Ω} = F0 ⊆
F1 ⊆ . . . ⊆ FN−1 = F be a nested sequence of σ-algebras
known as a filtration (Shapiro et al., 2009). We shall use
the notation v � Fk to denote that v : Ω → R is a Fk-
measurable random variable — this essentially means that
v depends only on information that is available up to time
k. Consider the stochastic discrete-time linear system

xk+1 = Aξkxk +Bξkuk + wξk , (1)

where ξk�Fk, uk�Fk−1 and with known initial condition
x0 = p. This practically means that uk is a causal control
law, i.e., it is a function uk = ψk(p, ξ0, . . . , ξk−1) for
k ∈ N[1,N−1] and u0 = ψ0(x0)

1 .

1 In some applications we may assume that uk � Fk, i.e., uk is
decided as a function of p and all ξ0, . . . , ξk.

A stochastic optimal control problem for (1) with horizon
N and decision variable π = {uk}k∈N[0,N−1]

can be formu-
lated as

V �(p) = min
π

E

[
Vf (xN , ξN ) +

N−1∑
k=0

�k(xk, uk, ξk)

]
, (2)

subject to (1) and the condition x0 = p with �k�Fk,
Vf � FN−1 and E is the expectation operator of the
product probability space of the filtered probability
space (Ω,F , {Fk}k,P). In (2) functions �k and Vf are
extended-real-valued functions which, as we are about to
discuss, can be used to encode hard and/or soft con-
straints, so this formulation is quite general (Sampathirao
et al., 2016, 2015).

We assume that in (2) the cost functions �k are written as
�k(x, u, ξ) = φk(x, u, ξ) + φ̄k(Fkx + Gku, ξ), with Fk, Gk

are functions of ξ (thus Fk, Gk � Fk), where φk is real-
valued, smooth in (x, u), while φ̄k is an extended-real-
valued function, lower semi-continuous, proper, convex
and possibly nonsmooth. Likewise, Vf can be decomposed
as Vf (x, ξ) = φN (x, ξ) + φ̄N (FNx, ξ).

As an example, we may use φ̄k to encode arbitrary hard
constraints on states and inputs of the form Fkxk+Gkuk ∈
Yk by choosing

φ̄k(·) = δ(·|Yk), (3)

where Yk are nonempty convex closed sets for which pro-
jections proj(·|Yk) can be easily computed. Soft constraints
can be encoded by choosing

φ̄k(·) = ηk dist(·|Yk), (4)

where ηk > 0.

The smooth part of the stage cost �k is a quadratic function
of the form

φk(x, u, ξ) =

[
x
u

]� [
Qk S�

k
Sk Rk

] [
x
u

]
+ q�k x+ r�k u, (5)

where Rk ∈ Snu
++, Qk ∈ Snx

+ ,
[
Qk S�

k

Sk Rk

]
∈ Snx

+ and

Rk, Qk, Sk, qk, rk may depend on ξ. The smooth part of
the terminal cost function Vf is a quadratic function
φN (x, ξ) = x�PNx + p�Nx, with PN ∈ Snx

++ and PN , pN
may depend on ξ. The function φ̄N can be selected in
the same way as we have explained for φ̄k, e.g., terminal
constraints of the form FNxN ∈ Xf can be encoded using
φ̄N (·) = δ(·|Xf ), where Xf is assumed to be such that
proj(·|Xf ) can be easily evaluated computationally.

2.2 Scenario-based formulation

The scenario-based formulation of (2) accrues from the
assumption that FN−1 is finite and produces the scenario
tree structure shown in Fig. 1. A scenario tree describes
the probable evolution of the state sequence {xk}k∈N[0,N]

.

The elementary events {ξiN}i∈N[1,µ]
identify a set of fi-

nal outcomes which correspond to the leaf nodes of the
scenario tree. In turn, each leaf node identifies a single
scenario, i.e., a sequence of realizations of the random pro-
cess {ξk}k∈N[0,N]

. The tree is partitioned in N stages. The
observable scenarios at stage k are the nodes of the tree at
that stage; the number of nodes at stage k is denoted by
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Fig. 1. Scenario tree structure describing the evolution of
the state.

µk. The probability that at stage k, the scenario ξiN occurs
is denoted by pik.

As shown in Fig. 1, at stage k ∈ N[0,N−1] the i-th node
defines a set of children nodes at stage k + 1 denoted by
child(k, i) ⊆ N[1,µk+1]. Every node at stage k ∈ N[1,N ]

has a unique ancestor node at stage k − 1 denoted by
anc(k, i) ∈ N[1,µk−1].

The system dynamics along scenarios can be written as

xj
k+1 = Aj

kx
i
k +Bj

ku
i
k + wj

k, (6)

with i = anc(k+1, j), Aj
k = Aξj

k
, Bj

k = Bξj
k
and wj

k = wξj
k
.

Let x be a vector comprising all xi
k and ui

k and let Z(p) be
the linear space of all x satisfying (6) with x0 = p. Define

f(x) =

N−1∑
k=0

µk∑
i=1

pikφk(x
i
k, u

i
k, ξ

i
k)

+

µN∑
i=1

piN−1φN (xi
N , ξiN )+δ(x|Z(p)), (7a)

g(Hx) =
N−1∑
k=0

µk∑
i=1

pikφ̄
i
k(F

i
kx

i
k +Gi

ku
i
k, ξ

i
k)

+

µN∑
i=1

piN−1φ̄
i
N (F i

Nxi
N , ξiN ). (7b)

Given that φk are given as in (5), function f is strongly
convex, therefore f∗ is differentiable with L-Lipschitz gra-
dient because of (Rockafellar and Wets, 1998, Prop. 12.60).
Now problem (2) can be written as

P � = min
x

f(x) + g(Hx), (8)

where H is a linear operator with z = Hx with zik =
F i
kx

i
k+Gi

ku
i
k for k ∈ N[0,N−1], i ∈ N[0,µk] and ziN = F i

Nxi
N .

The Fenchel dual of (8) is

D� = min
y

f∗(−H�y) + g∗(y). (9)

Strong duality holds for the above problem, i.e., P � = D�,
under weak assumptions on the domains of φ̄k.

For notational convenience we define f◦(y) := f∗(−H�y),
thus ∇f◦(y) = −H∇f∗(−H�y).

3. NUMERICAL ALGORITHM

3.1 The Forward-Backward Envelope Function

The proximal operator of a proper, closed, convex function
g plays a major role in modern optimization theory and is
defined as

proxλg(v) = argminz{g(z) + 1
2λ‖v − z‖2}. (10)

Proximal operators of a great variety of functions including
indicators of sets, distance-to-set functions and norms can
be easily evaluated analytically and at a very low compu-
tational cost (Combettes and Pesquet, 2010). For example,
the proximal operator of φk in (3) is the projection on Yk,
that is proxγδ(·|Yk)

(v) = proj(v | Yk).

A simple optimality condition for (9) is

y − proxλg∗(y − λ∇f◦(y)) = 0, (11)

for some λ > 0 (Parikh and Boyd, 2013). By virtue of
the Moreau decomposition formula, (11) is equivalently
written as

∇f◦(y) + proxλ−1g(λ
−1y −∇f0(y)) = 0. (12)

We define the forward-backward mapping

Tλ(y) := proxλg∗(y − λ∇f◦(y)), (13)

which, using the Moreau decomposition property, becomes

Tλ(y) = y − λ∇f◦(y)− λ proxλ−1g(λ
−1y−∇f◦(y)), (14)

and we also define the fixed-point residual mapping

Rλ(y) := λ−1(y − Tλ(y)). (15)

The aforementioned optimality condition (11) is equiva-
lently written as Rλ(y) = 0, that is, solving the dual
optimization problem (9) becomes equivalent to finding
a zero of the operator Rλ.

The forward-backward envelope (FBE) of (9) is a real-
valued function ϕλ given by (Patrinos et al., 2014; Patrinos
and Bemporad, 2013)

ϕλ(y)=f◦(y)+g∗(Tλ(y))−λ 〈∇f◦(y), Rλ(y)〉+λ
2 ‖Rλ(y)‖2,

and, provided that f◦ is twice continuously differentiable,
ϕλ is continuously differentiable with Lipschitz-continuous
gradient given by

∇ϕλ(y) = (I − λ∇2f◦(y))Rλ(y). (16)

Also, since f◦ is convex quadratic, ϕλ is also convex (Pa-
trinos et al., 2014).

The most important property of the FBE is that for
λ ∈ (0, 1/L), the set of minimizers of (9) coincides with

argminϕλ ≡ zer∇ϕλ := {y : ∇ϕλ(y) = 0}
= argmin f◦(y) + g∗(y) = zerRλ.

Essentially, the problem of solving the dual optimization
problem (9) is equivalent to the unconstrained minimiza-
tion of the continuously differentiable function ϕλ which
is in turn equivalent to finding a zero of the fixed-point
residual operator.

We should highlight here that the value and gradient of the
FBE are computed at the computational cost of a forward-
backward step. Moreover, for the evaluation of ∇ϕλ(y) it
suffices to have a way to compute products ∇2f∗(y) · d. If
a closed-form formula is not available it can be evaluated
numerically.
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ploited for their efficient numerical solution using an
accelerated proximal gradient (APG) algorithm (Sam-
pathirao et al., 2015). In this paper, we formulate the
Fenchel dual optimization problem introducing a splitting
which has favourable separability properties. We employ a
quasi-Newtonian algorithm combining the limited-memory
BFGS method with the forward-backward envelope func-
tion to achieve faster convergence. The proposed method
involves only matrix-vector products and enables an imple-
mentation where operations across all nodes of the scenario
tree at every stage are executed in parallel.

1.3 Notation

Let R, N, Rn, Rm×n, Sn+, Sn++ denote the sets of real
numbers, nonnegative integers, column real vectors of
length n, real matrices of dimensions m-by-n, symmetric
positive semidefinite and positive definite n-by-n matrices
respectively. Let R = R∪{±∞} denote the set of extended
real numbers. The transpose of a matrix A is denoted
by A� and 〈x, y〉 stands for the standard inner product
of x and y. The set of of nonnegative integers {k1, k1 +
1, . . . , k2}, k2 ≥ k1 is denoted by N[k1,k2].

The indicator function of a set C ⊆ Rn is the extended-
real valued function δ(·|C) : Rn → R and for x ∈ C it
is δ(x|C) = 0 and δ(x|C) = +∞ otherwise. A function
f : Rn → R is called lower semi-continuous or closed
if for every x ∈ Rn, f(x) = lim infz→x f(z). A function
f : Rn → R is called proper if there is an x ∈ Rn so
that f(x) < ∞ and f(x) > −∞ for all x ∈ Rn. For a
closed convex function f : Rn → R, we define its conjugate
f∗ : Rn → R as f∗(x∗) = supx{〈x, x∗〉−f(x)}. A mapping
F : Rn → Rm is called β-Lipschitz continuous, with β ≥ 0,
if ‖F (x1) − F (x2)‖∗ ≤ β‖x1 − x2‖ for every x1, x2 ∈ Rn.
We call f σ-strongly convex if f(x) − σ

2 ‖x‖
2
2 is a convex

function. Unless otherwise stated ‖ · ‖ stands for ‖ · ‖2.
Every nonempty closed convex set C ⊆ Rn defines the
convex function proj(x|C) = argminc∈C ‖x − c‖2, which
is called the (Euclidean) projection of x onto C. The
Euclidean distance of an x ∈ Rn from C is defined as
dist(x|C) = minc∈C ‖x− c‖2.

2. PROBLEM STATEMENT

2.1 Stochastic optimal control

We first provide a formal statement of general stochastic
optimal control problems for linear dynamical systems.
Let (Ω,F ,P) be a probability space and {∅,Ω} = F0 ⊆
F1 ⊆ . . . ⊆ FN−1 = F be a nested sequence of σ-algebras
known as a filtration (Shapiro et al., 2009). We shall use
the notation v � Fk to denote that v : Ω → R is a Fk-
measurable random variable — this essentially means that
v depends only on information that is available up to time
k. Consider the stochastic discrete-time linear system

xk+1 = Aξkxk +Bξkuk + wξk , (1)

where ξk�Fk, uk�Fk−1 and with known initial condition
x0 = p. This practically means that uk is a causal control
law, i.e., it is a function uk = ψk(p, ξ0, . . . , ξk−1) for
k ∈ N[1,N−1] and u0 = ψ0(x0)

1 .

1 In some applications we may assume that uk � Fk, i.e., uk is
decided as a function of p and all ξ0, . . . , ξk.

A stochastic optimal control problem for (1) with horizon
N and decision variable π = {uk}k∈N[0,N−1]

can be formu-
lated as

V �(p) = min
π

E

[
Vf (xN , ξN ) +

N−1∑
k=0

�k(xk, uk, ξk)

]
, (2)

subject to (1) and the condition x0 = p with �k�Fk,
Vf � FN−1 and E is the expectation operator of the
product probability space of the filtered probability
space (Ω,F , {Fk}k,P). In (2) functions �k and Vf are
extended-real-valued functions which, as we are about to
discuss, can be used to encode hard and/or soft con-
straints, so this formulation is quite general (Sampathirao
et al., 2016, 2015).

We assume that in (2) the cost functions �k are written as
�k(x, u, ξ) = φk(x, u, ξ) + φ̄k(Fkx + Gku, ξ), with Fk, Gk

are functions of ξ (thus Fk, Gk � Fk), where φk is real-
valued, smooth in (x, u), while φ̄k is an extended-real-
valued function, lower semi-continuous, proper, convex
and possibly nonsmooth. Likewise, Vf can be decomposed
as Vf (x, ξ) = φN (x, ξ) + φ̄N (FNx, ξ).

As an example, we may use φ̄k to encode arbitrary hard
constraints on states and inputs of the form Fkxk+Gkuk ∈
Yk by choosing

φ̄k(·) = δ(·|Yk), (3)

where Yk are nonempty convex closed sets for which pro-
jections proj(·|Yk) can be easily computed. Soft constraints
can be encoded by choosing

φ̄k(·) = ηk dist(·|Yk), (4)

where ηk > 0.

The smooth part of the stage cost �k is a quadratic function
of the form

φk(x, u, ξ) =

[
x
u

]� [
Qk S�

k
Sk Rk

] [
x
u

]
+ q�k x+ r�k u, (5)

where Rk ∈ Snu
++, Qk ∈ Snx

+ ,
[
Qk S�

k

Sk Rk

]
∈ Snx

+ and

Rk, Qk, Sk, qk, rk may depend on ξ. The smooth part of
the terminal cost function Vf is a quadratic function
φN (x, ξ) = x�PNx + p�Nx, with PN ∈ Snx

++ and PN , pN
may depend on ξ. The function φ̄N can be selected in
the same way as we have explained for φ̄k, e.g., terminal
constraints of the form FNxN ∈ Xf can be encoded using
φ̄N (·) = δ(·|Xf ), where Xf is assumed to be such that
proj(·|Xf ) can be easily evaluated computationally.

2.2 Scenario-based formulation

The scenario-based formulation of (2) accrues from the
assumption that FN−1 is finite and produces the scenario
tree structure shown in Fig. 1. A scenario tree describes
the probable evolution of the state sequence {xk}k∈N[0,N]

.

The elementary events {ξiN}i∈N[1,µ]
identify a set of fi-

nal outcomes which correspond to the leaf nodes of the
scenario tree. In turn, each leaf node identifies a single
scenario, i.e., a sequence of realizations of the random pro-
cess {ξk}k∈N[0,N]

. The tree is partitioned in N stages. The
observable scenarios at stage k are the nodes of the tree at
that stage; the number of nodes at stage k is denoted by

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

12372



11868 Ajay Kumar Sampathirao  et al. / IFAC PapersOnLine 50-1 (2017) 11865–11870

Overall, the proposed algorithmic scheme assumes the
availability of an oracle which allows us to compute the
dual gradient ∇f∗(−H�y) at a given point y and Hessian-
vector products ∇2f◦(x) · d at given points x and d. The
complexity of the algorithm can then be evaluated on the
basis of these oracle invocations.

3.2 Computation of the dual gradient

The efficient computation of the dual gradient is of crucial
importance for the performance of the algorithm we are
about to describe. By virtue of the Conjugate Subgradient
Theorem (Rockafellar, 1976), we have that

∇f∗(−H�y) = argminz{
〈
z,H�y

〉
+ f(z)}. (17)

Since f is given by (7a), (17) can be solved by dynamic
programming using Algorithm 1 (see Sampathirao et al.
(2015)), where Φi

k, Θi
k, Di

k, Λi
k, Ki

k and σi
k, cik are

computed once offline following the Ricatti-type recursion
of (Sampathirao et al., 2015, Algorithm 1).

Algorithm 1 Dual gradient computation

qiN ← yiN + piN , for all i ∈ N[1,µN ]

for k = N − 1, . . . , 0 and i = 1, . . . , µk do in parallel
ui
k ← Φi

ky
i
k + σi

k

qik ← Di′
k y

i
k + cik

for k = N − 1, . . . , 0 do
for i = 1, . . . , µk do in parallel

ui
k ←

∑
j∈child(k,i) Θ

j
kq

j
k+1

qik ←
∑

j∈child(k,i) Λ
j′
k q

j
k+1

x1
0 = p

for k = 0, . . . , N − 1 do
for i = 1, . . . , µk do in parallel

ui
k ← Ki

kx
i
k + ui

k
for j ∈ child(k, i) do in parallel

xj
k+1 ← Aj

kx
i
k +Bj

ku
i
k + wj

k

For a q-ary tree and assuming that F i
k ∈ Rnc×nx , Algo-

rithm 1 involves µ[(2nc − 1)(nx + nu) + nu(2nx + 1) +

nx + q(nx + nu)(2nx + 1)] flops where µ =
∑N−1

k=0 µk.
The complexity of the computation of the dual gradient
is therefore linear in the prediction horizon and also linear
in the total number of nodes of the scenario tree.

3.3 Computation of the dual Hessian

The computation of ∇ϕλ(y) requires the computation of
products of the form ∇2f◦ ·d. Notice that to a great extent
the computations in Algorithm 2 can be parallelized. The
dual Hessian is then used for the computation of ∇ϕλ.

Again assuming that F i
k ∈ Rnc×nx , the total flop count for

Algorithm 2 tallies up to µ[(2nc− 1)(nu+2nx)+4nxnu+
2qnx(nx+nu−1)], which is of the same order of magnitude
as the cost of Algorithm 1.

3.4 Computation of ∇ϕλ

The gradient of the FBE, ∇ϕλ(y), can be computed as
in (16) where Rλ(y) is computed as

Rλ(y) = λ−1(z(y)−Hx(y)), (18a)

Algorithm 2 Computation of Hessian-vector products

Require: Vector d
q̂iN ← diN , ∀i ∈ N[1,µN ]

for k = N − 1, . . . , 0 do
for i = 1, . . . , µk do in parallel

ûi
k ← Φi

kd
i
k +

∑
j∈child(k,i) Θ

j
k q̂

j
k+1

q̂ik ← Di�
k dik +

∑
j∈child(k,i) Λ

j�
k q̂jk+1

x̂1
0 = 0

for k = 0, . . . , N − 1 do
for i = 1, . . . , µk do in parallel

ui
k ← Ki

kx̂
i
k + ûi

k
for j ∈ child(k, i) do in parallel

x̂j
k+1 ← Aj

kx̂
i
k +Bj

kû
i
k

where

x(y) = argminz{
〈
z,H�y

〉
+ f(z)}, (18b)

z(y) = proxλ−1g{λ−1y +Hx(y)}, (18c)

where x(y) = ∇f∗(−H�y) is computed by Algorithm 1
and z(y) is a proximal step. The latter typically consists
in simple element-wise operations which can be fully
parallelized.

3.5 L-BFGS method for the FBE

Algorithm 3 summarizes the basic steps of the proposed
solution. At every iteration, an L-BFGS direction dν

is computed using the two-loop recursion of (Nocedal
and Wright, 2006, Algorithm 7.4), that is, in line 3 of
Algorithm 3 the matrix Bν — which is an approximation
of the inverse Hessian when this exists — does not need to
be constructed or stored. The computation of dν requires
only 4mnd multiplications, where m is the memory length
of the LBFGS buffer and nd is the dimension of dν . This
step involves the computation of the gradient of the FBE
at yν which is performed as discussed in Section 3.4.

The dual vector yν is updated as in line 4 where τν is
chosen so as to satisfy the Wolfe conditions (Nocedal and
Wright, 2006, Sec. 3.1):

ϕλ(y
ν+1) ≤ ϕλ(y

ν) + c1τν 〈∇ϕλ(y
ν), dν〉 (19a)〈

∇ϕλ(y
ν+1), dν

〉
≥ c2 〈∇ϕλ(y

ν), dν〉 , (19b)

where 0 < c1 < c2 < 1. Here we used c1 = 10−4

and c2 = 0.9. The first inequality is a sufficient decrease
condition, while the second one is known as the curvature
condition and is used to rule out unacceptably short step
lengths. The existence of intervals of τν which satisfy
the Wolfe conditions is guaranteed and such values can
be determined with the line search method proposed
in (Nocedal and Wright, 2006).

Typically, in quasi-Newton methods for the Hessian ap-
proximations to be positive definite, the Wolfe conditions
are used to determine the step-size τν and an inexact line
search is used to compute an appropriate step size as in
(Nocedal and Wright, 2006, Algorithm 3.5).

Although not necessary, quasi-Newton methods benefit
from preconditioning. A simple preconditioning which
aims at eliminating the effect of the probabilities pik is
employed here: the dual variables are scaled by dividing
each yik by

√
pik where pik > 0.
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Algorithm 3 Forward-Backward L-BFGS

Require: λ ∈ (0, 1/L), y0, m (memory), ε (tolerance),
νmax (maximum iterations)
Initialize an LBFGS buffer of length m
while ‖Rλ(y

ν)‖ > ε‖Rλ(y
0)‖ and ν ≤ νmax do

dν ← −Bν∇ϕλ(y
ν) (LBFGS direction)

yν+1 ← yν + τνd
ν where τk satisfies (19)

sν ← yν+1 − yν , qν ← ∇ϕλ(y
ν+1)−∇ϕλ(y

ν)
ρν ← 1/ 〈sν , qν〉
Push (sν , qν , ρν) in the LBFGS buffer
ν ← ν + 1

Algorithm 3 is terminated once the fixed-point residual
becomes adequately small; we use the termination con-
dition ‖Rλ(y

ν)‖ ≤ ε‖Rλ(y
0)‖. The algorithm produces a

sequence yν for which lim infν ‖Rλ(y
ν)‖ = 0, therefore the

termination condition will be satisfied within finitely many
iterations for any ε (Powell, 1976).

3.6 Nonlinear Conjugate Gradient

The use of the forward-backward envelope allows the
use of other smooth optimization methods such as
the Polak-Ribière+ nonlinear conjugate gradient (PR+)
method (Nocedal and Wright, 2006; Grippo and Lucidi,
1997). At every iteration we compute

βPR
ν+1 =

∇ϕλ(y
ν+1)�(∇ϕλ(y

ν+1)−∇ϕλ(y
ν))

‖∇ϕλ(yν)‖2
, (20)

and βPR
0 = 0 and use the direction dν+1 = −∇ϕλ(y

ν+1)+

βPR+
ν+1 dν , where βPR+

ν+1 = max{0, βPR
ν+1}. In PR+, τν is cho-

sen so as to satisfy the strong Wolfe conditions where (19b)
is replaced by |

〈
∇ϕλ(y

ν+1), dν
〉
| ≤ c2| 〈∇ϕλ(y

ν), dν〉 |
together with the descent condition 〈∇ϕλ(xk+1), dk+1〉 ≤
−c3‖∇ϕλ(xk+1)‖2 (Gilbert and Nocedal, 1992). Hereafter
we use the values c1 = 10−4, c2 = 0.9 and c3 = 10−4.

However, as we will discuss in the following section,
although PR+ leads to a significant reduction in the
number of iterations compared to APG, it does not seem
to be faster than it due to the additional cost required in
the line search.

4. SIMULATIONS

We formulated the stochastic optimal control problem for
a linear system with additive and multiplicative uncer-
tainty as in (1) to evaluate the proposed algorithm. The
linear system we have considered is the spring-mass set-up
as in (Sampathirao et al., 2015). This system has m = 5
masses weighing 2 kg connected with m− 1 linear spring-
dampers with stiffness constant κ = 1N/m and damping
ratio β = 0.1. The manipulated variables are the forces
we may exercise on each spring along their principal axes
and the state variables are the positions and speeds of the
masses, i.e., it has 2m state variables and m−1 input vari-
ables. We assume that the system dynamics is obtained by
discretizing the continuous-time dynamics with sampling
time T = 0.5 s. On the system state and input variables
we impose the constraints −4 ≤ xi

k ≤ 4 and −2 ≤ ui
k ≤ 2

for all k ∈ N[0,1] and i ∈ N[1,µk]. The stage cost was chosen
to be �(x, u, ξ) = x′Qx+u′Ru with Q = Inx and R = Inu .
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Fig. 2. Convergence of LBFGS, PR+ and APG for a binary
tree with 1024 scenarios.

We consider scenario trees whose numbers of scenarios are
powers of 2 from 2 to 210. All trees are taken with a fixed
horizon N = 10 and in their first stages are binary, i.e.,
with a branching factor 2 and eventually evolve without
branching until the end of the horizon. We consider a
buffer size with memory 5 for the LBFGS-FBE algorithm.
The convergence condition for all algorithms is ε = 5·10−4.
We generate 100 random initial states x0 for the stochastic
optimal control problem. All algorithms are implemented
in MATLAB and executed on a 4 × 2.60GHz Intel i5
machine with 8GB RAM running 64-bit Ubuntu 14.04.

Although L-BFGS incurs a high cost per iteration (approx-
imately double) compared to APG, as we may observe in
Fig. 2 it converges much faster. Overall, L-BFGS requires
on average a significantly lower number of floating point
operations (flop) as Fig. 3 shows. For example, for the case
of 1024 scenarios, LBFGS requires 191Mflop on average
(max 742Mflop) compared to 512Mflop for APG (max
1.743Gflop) and 463Mflop for PR+ (max 3.035Gflop).

In Fig. 4 we see that PR+ outperforms AGP in terms
of the total number of iterations required for convergence
with ε = 5 · 10−4. However, PR+ overall requires almost
as many oracle calls as APG which compromises the
advantages of its good convergence properties.

5. CONCLUSIONS

We have already shown that APG can take advantage
of the problem structure and parallelize the operations
involved in the computation of the dual gradient across all
scenarios at each stage of the tree. As a result stochastic
optimal control problems can be solved very efficiently
on GPUs (Sampathirao et al., 2015, 2016). In this pa-
per, we have demonstrated that it is possible to achieve
better results using the L-BFGS method on a smooth
merit function of the original optimization problem: the
forward-backward envelope. By using the FBE enables
the use of any other smooth optimization method such
as nonlinear conjugate gradient methods. The proposed
LBFGS method is superior to APG both in terms of
oracle invocations and number of floating point operations.
Future work will focus on the solution of stochastic optimal
control problems on GPUs using the proposed method.
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Overall, the proposed algorithmic scheme assumes the
availability of an oracle which allows us to compute the
dual gradient ∇f∗(−H�y) at a given point y and Hessian-
vector products ∇2f◦(x) · d at given points x and d. The
complexity of the algorithm can then be evaluated on the
basis of these oracle invocations.

3.2 Computation of the dual gradient

The efficient computation of the dual gradient is of crucial
importance for the performance of the algorithm we are
about to describe. By virtue of the Conjugate Subgradient
Theorem (Rockafellar, 1976), we have that

∇f∗(−H�y) = argminz{
〈
z,H�y

〉
+ f(z)}. (17)

Since f is given by (7a), (17) can be solved by dynamic
programming using Algorithm 1 (see Sampathirao et al.
(2015)), where Φi

k, Θi
k, Di

k, Λi
k, Ki

k and σi
k, cik are

computed once offline following the Ricatti-type recursion
of (Sampathirao et al., 2015, Algorithm 1).

Algorithm 1 Dual gradient computation

qiN ← yiN + piN , for all i ∈ N[1,µN ]

for k = N − 1, . . . , 0 and i = 1, . . . , µk do in parallel
ui
k ← Φi

ky
i
k + σi

k

qik ← Di′
k y

i
k + cik

for k = N − 1, . . . , 0 do
for i = 1, . . . , µk do in parallel

ui
k ←

∑
j∈child(k,i) Θ

j
kq

j
k+1

qik ←
∑

j∈child(k,i) Λ
j′
k q

j
k+1

x1
0 = p

for k = 0, . . . , N − 1 do
for i = 1, . . . , µk do in parallel

ui
k ← Ki

kx
i
k + ui

k
for j ∈ child(k, i) do in parallel

xj
k+1 ← Aj

kx
i
k +Bj

ku
i
k + wj

k

For a q-ary tree and assuming that F i
k ∈ Rnc×nx , Algo-

rithm 1 involves µ[(2nc − 1)(nx + nu) + nu(2nx + 1) +

nx + q(nx + nu)(2nx + 1)] flops where µ =
∑N−1

k=0 µk.
The complexity of the computation of the dual gradient
is therefore linear in the prediction horizon and also linear
in the total number of nodes of the scenario tree.

3.3 Computation of the dual Hessian

The computation of ∇ϕλ(y) requires the computation of
products of the form ∇2f◦ ·d. Notice that to a great extent
the computations in Algorithm 2 can be parallelized. The
dual Hessian is then used for the computation of ∇ϕλ.

Again assuming that F i
k ∈ Rnc×nx , the total flop count for

Algorithm 2 tallies up to µ[(2nc− 1)(nu+2nx)+4nxnu+
2qnx(nx+nu−1)], which is of the same order of magnitude
as the cost of Algorithm 1.

3.4 Computation of ∇ϕλ

The gradient of the FBE, ∇ϕλ(y), can be computed as
in (16) where Rλ(y) is computed as

Rλ(y) = λ−1(z(y)−Hx(y)), (18a)

Algorithm 2 Computation of Hessian-vector products

Require: Vector d
q̂iN ← diN , ∀i ∈ N[1,µN ]

for k = N − 1, . . . , 0 do
for i = 1, . . . , µk do in parallel

ûi
k ← Φi

kd
i
k +

∑
j∈child(k,i) Θ

j
k q̂

j
k+1

q̂ik ← Di�
k dik +

∑
j∈child(k,i) Λ

j�
k q̂jk+1

x̂1
0 = 0

for k = 0, . . . , N − 1 do
for i = 1, . . . , µk do in parallel

ui
k ← Ki

kx̂
i
k + ûi

k
for j ∈ child(k, i) do in parallel

x̂j
k+1 ← Aj

kx̂
i
k +Bj

kû
i
k

where

x(y) = argminz{
〈
z,H�y

〉
+ f(z)}, (18b)

z(y) = proxλ−1g{λ−1y +Hx(y)}, (18c)

where x(y) = ∇f∗(−H�y) is computed by Algorithm 1
and z(y) is a proximal step. The latter typically consists
in simple element-wise operations which can be fully
parallelized.

3.5 L-BFGS method for the FBE

Algorithm 3 summarizes the basic steps of the proposed
solution. At every iteration, an L-BFGS direction dν

is computed using the two-loop recursion of (Nocedal
and Wright, 2006, Algorithm 7.4), that is, in line 3 of
Algorithm 3 the matrix Bν — which is an approximation
of the inverse Hessian when this exists — does not need to
be constructed or stored. The computation of dν requires
only 4mnd multiplications, where m is the memory length
of the LBFGS buffer and nd is the dimension of dν . This
step involves the computation of the gradient of the FBE
at yν which is performed as discussed in Section 3.4.

The dual vector yν is updated as in line 4 where τν is
chosen so as to satisfy the Wolfe conditions (Nocedal and
Wright, 2006, Sec. 3.1):

ϕλ(y
ν+1) ≤ ϕλ(y

ν) + c1τν 〈∇ϕλ(y
ν), dν〉 (19a)〈

∇ϕλ(y
ν+1), dν

〉
≥ c2 〈∇ϕλ(y

ν), dν〉 , (19b)

where 0 < c1 < c2 < 1. Here we used c1 = 10−4

and c2 = 0.9. The first inequality is a sufficient decrease
condition, while the second one is known as the curvature
condition and is used to rule out unacceptably short step
lengths. The existence of intervals of τν which satisfy
the Wolfe conditions is guaranteed and such values can
be determined with the line search method proposed
in (Nocedal and Wright, 2006).

Typically, in quasi-Newton methods for the Hessian ap-
proximations to be positive definite, the Wolfe conditions
are used to determine the step-size τν and an inexact line
search is used to compute an appropriate step size as in
(Nocedal and Wright, 2006, Algorithm 3.5).

Although not necessary, quasi-Newton methods benefit
from preconditioning. A simple preconditioning which
aims at eliminating the effect of the probabilities pik is
employed here: the dual variables are scaled by dividing
each yik by

√
pik where pik > 0.
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Fig. 3. Average and maximum number of floating point op-
erations required by the proposed method compared
to APG and PR+.
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Fig. 4. Iterations required for the proposed algorithm to
converge. Comparison with PR+ and APG.
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