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1. INTRODUCTION

Passivity is a widely adopted tool for analyzing
the stability of interconnections of dynamical sys-
tems (see Willems (1972); Hill and Moylan (1980);
Lozano et al. (2000)). Passivity is used in sev-
eral domains of engineering sciences, such as in
electrical circuit and mechanical system analysis
(see Arimoto (1996)), and even in the study of
complex phenomena (see Chua (1999)). In par-
ticular, passivity is exploited in robotics as a key
concept for stability analysis of human/machine
interactions involving haptic interfaces (see Miller
et al. (2000); Colgate and Schenkel (1997)).

Passivity analysis of interconnected systems hinges
upon the ability of characterizing the passivity
properties of a single dynamical system. For linear
systems a solid theory and analytical/numerical
criteria are available, and theoretical characteri-
zations were developed for smooth nonlinear dy-
namical systems. Most passivity characterizations
were proposed for continuous-time models, and

recently for sampled-data systems (see Stramigioli
et al. (2002)).

In many practical applications, some of the system
components exhibit a heterogeneous dynamical
discrete and continuous nature that cannot be
captured by smooth models because of abrupt
mode switches. The study of hybrid systems, that
has massively emerged in the last few years, has
been devoted to analyzing the dynamical interac-
tion between continuous and discrete signals in
one common framework (see Antsaklis (2000)).
Passivity analysis of hybrid models has received
little attention, with the only exception of the
contributions of Camlibel et al. (2002), Maha-
patra (2003), Zefran et al. (2001), and Pogromski
et al. (1998) who formulate a notion of passivity
for continuous-time switched systems.

In this paper we characterize the passivity of
discrete-time hybrid systems in piecewise affine
(PWA) form (Sontag, 1981). Our motivating prac-
tical reason for addressing hybrid passivity issues
in discrete-time stems from the need of studying



haptic problems, where a haptic device interacts
with a naturally discrete-time virtual environment
(see Colgate and Schenkel (1997)).

After formulating the passivity problem for discrete-
time PWA systems and providing a methodology
for discretizing linear continuous-time submodels
that preserves passivity properties, we propose
several (sufficient) criteria for proving the passiv-
ity of a given PWA system, and for the synthesis of
switched linear control laws that enforce passivity.
Such criteria are based on the numerical solution
of systems of linear matrix inequalities (LMIs).

2. PASSIVITY ANALYSIS FOR
DISCRETE-TIME PWA SYSTEMS

Following the approach of Cuzzola and Morari
(2001), in this paper we consider linear discrete-
time PWA systems of the form

xk+1 = Aixk +Biuk + φi

yk = Cixk +Diuk + ψi

i = 1, . . . , s
if

[
xk

uk

]
∈ χi,

(1)
where k ∈ T = {0, 1, . . .}, xk ∈ R

n is the
state vector, uk ∈ R

m is the control input, yk ∈
R

p is the output vector, Ai, Bi, Ci, Di, φi, ψi are
constant matrices/vectors of suitable dimensions,
and χi, i = 1, . . . , s is a polyhedral partition of a
given subset X of R

n+m. The set X in which the
state-input pair is defined is assumed to contain
the origin. Each element χi of the partition is
referred to as a cell. Let each cell be a polyhedron
of the form

χi =
{
[xT uT ]T ∈ X : F x

i x ≥ fx
i , F

u
i u ≥ fu

i

}

(2)
where F x

i , f
x
i , F

u
i , f

u
i , i = 1, . . . , s are constant

matrices/vectors. Furthermore, consider the poly-
hedra

χ̄j =
{
x ∈ X : F x

j x ≥ fx
j

}
, j = 1, . . . , t (3)

where χ̄j 6= χ̄h, ∀j 6= h; j, h = 1, . . . , t, and t ≤ s,
and the sets of indices

Sj =
{
i : ∃ [xT uT ]T ∈ χi : x ∈ χ̄j

}
, j = 1, . . . , t.

(4)
Let us denote I = {1, . . . , s} and J = {1, . . . , t}.
Note that ∪t

j=1Sj = I and that by (2) the sets Sj

are mutually disjoint.
Let the origin be an equilibrium point of system
(1) with zero inputs, that is, φi, ψi = 0 for all i
such that 0 ∈ χi. From the standard dissipativity
notion for discrete-time systems (see Lozano et al.
(2000)) we have that system (1) is dissipative

with respect to a given supply function s(u, y) :
R

m+p → R if there exists a constant β such that

k∑

i=0

s(ui, yi) > β ∀k ∈ T. (5)

For p = m, system (1) is said to be passive if it
is dissipative with respect to the supply function
s(u, y) = uT y, i.e., if there exists β such that

k∑

i=0

yT
i ui > β ∀k ∈ T. (6)

The following standard result characterizes the
dissipativity and passivity conditions (see Lozano
et al. (2000)).

Theorem 1. If there exists a positive definite func-
tion V (x) : X → R (called the storage function)
such that along all system trajectories (xk, uk, yk),
[xT

k uT
k ]T ∈ X, the following inequality holds

V (xk+1) − V (xk) − s(uk, yk) < 0 (7)

then the system is dissipative with respect to
s(u, y). In particular, if

V (xk+1) − V (xk) − uT
k yk < 0 (8)

then the system is passive.

Note that both the characterizations of dissipativ-
ity and passivity are well-posed under the stan-
dard assumption that all state-input trajectories
of the system satisfy [xT

k uT
k ]T ∈ X, ∀k ∈ T.

For the purpose of this work, the affine terms φi

and ψi in the definition of system (1) will be as-
sumed to be zero. Indeed, the proposed results are
easily extended to the affine case by performing a
suitable augmentation of state vector as done in
(Johansson and Rantzer (1998a), Johansson and
Rantzer (1998b)).

A practical motivation for addressing the passiv-
ity issue for PWA systems in the discrete-time
framework lies in the fact that in typical hap-
tic problems the interaction that occurs between
the haptic device and the simulated environment
is modeled by a (hybrid) discrete-time system.
Moreover, the virtual environment is often a sim-
ulated discrete-time equivalent (with zero-order
hold and samping time T ) of a suitable mechanical
system (see Colgate and Schenkel (1997)). In or-
der to investigate the properties of the interaction
from the passivity point of view in discrete-time,
it is desirable that the simulated environment be
passive according to (6) when it is designed to be a
discrete-time equivalent of a passive system. The
usual zero-order hold equivalent does not preserve
passivity, in general. For example, the D matrix of
the discrete-time equivalent is zero in the absence
of input/output feedthrough, and consequently
for any initial output value y(0) 6= 0 (5) can be
easily violated at time k = 0 for all β by choosing
a suitable u(0).

In order to preserve passivity after time-discretization,
it suffices to define the output of the discrete-time
system as



yk =
1

T

∫ (k+1)T

kT

y(τ) dτ, ∀k ∈ T (9)

where y(t) is the continuous-time output, rather
than setting yk = y(kT ) as usual. Note that
this does not affect causality if the input is held
constant in each sampling interval. In turn, this
implies

T

k∑

i=0

yT
i ui =

∫ (k+1)T

0

yT (τ)u(τ) dτ, ∀k ∈ T

(10)
and therefore the discrete-time equivalent is pas-
sive according to (6), provided that the continuous-
time system is passive according to the stan-
dard passivity notion for continuous-time systems.
For a linear time-invariant system it is easily
shown that this is accomplished once matrices
(A,B,C,D) of the discrete-time equivalent are
defined as

A = eĀT

B =

∫ T

0

eĀτ B̄ dτ

C =
1

T

∫ T

0

C̄eĀτ dτ

D =
1

T

∫ T

0

∫ τ

0

C̄eĀ(τ−σ)B̄ dσdτ + D̄

(11)

where (Ā, B̄, C̄, D̄) characterize the correspond-
ing continuous-time system. For a PWA system,
the above argument can be repeated cell-wise,
although this involves some degree of approxi-
mation, as switches occurring between sampling
instants cannot be captured by any discrete-time
model.

2.1 Passivity Analysis via Quadratic Storage Functions

A standard yet conservative approach to investi-
gating passivity of general nonlinear systems is to
check the dissipativity inequality (7) against stor-
age functions of prescribed structure (see Lozano
et al. (2000)). In particular, quadratic storage
functions of the form

V (x) = xTPx, P = P T > 0 (12)

are the most common choice. Such an approach
can be successfully applied to the case of PWA
systems of the form (1) and the result is an
easy-to-check sufficient condition that mimics the
one proposed in Mignone et al. (2000) in the
context of stability analysis. Indeed, passivity of
system (1) with zero affine terms is ensured if
there exists a common quadratic storage function
satisfying the passivity inequality for all the linear
subsystems defined by (Ai, Bi, Ci, Di), i ∈ I .
Moreover, checking passivity of each subsystem
via a quadratic storage function boils down to
a standard LMI condition. Hence, the following
result is easily obtained.

Theorem 2. Consider system (1) and let φi, ψi =
0. If the set of LMIs




P = PT > 0

AT

i PAi − P AT
i PBi −

CT
i

2

BT
i PAi −

Ci

2
BT

i PBi −
Di +DT

i

2


 < 0, ∀i ∈ I

(13)
has a feasible solution P , then the system is
passive with storage function V (x) = xTPx.

2.2 Passivity Analysis via Piecewise Quadratic
Storage Functions

A piecewise quadratic (PWQ) candidate storage
function for system (1) is a function V (x) : X → R

defined as

V (x) = xTPix ∀[xT uT ]T ∈ χi, i ∈ I, (14)

where Pi, i ∈ I, are suitable symmetric positive
definite matrices.
According to (7), if matrices Pi = PT

i > 0, i ∈ I,
exist such that

V (xk+1) − V (xk) − uT
k yk < 0 (15)

for all system trajectories in X, then system (1) is
passive. If this is the case, then the system will be
termed PWQ passive.
Let us define the set of index pairs

S =
{
(i, j) : ∃x ∈ R

n, u, w ∈ R
m : [xT uT ]T ∈ χi,

[(Aix+Biu)
T wT ]T ∈ χj , i, j ∈ I

}

(16)
i.e., the set of all ordered pairs of indices corre-
sponding to possibile switches from cell χi to cell
χj . The following result extends the PWQ sta-
bility result of Mignone et al. (2000) to passivity
analysis.

Theorem 3. Consider system (1) and let φi, ψi =
0. If matrices Pi, i ∈ I exist such that the set of
LMIs




Pi = PT
i > 0 ∀ i ∈ I



AT

i PjAi − Pi AT
i PjBi −

CT
i

2

BT
i PjAi −

Ci

2
BT

i PjBi −
Di +DT

i

2


 < 0

∀ (i, j) ∈ S
(17)

is feasible, then system (1) is PWQ passive with
storage function (14).

Clearly, the feasibility of the LMIs in (17) ensures
that the left-hand term of the dissipation inequal-
ity (15) is negative along all possible system tra-
jectories.

Remark 1. The set of all possible switches S can
be computed by means of reachability analysis



using linear programming (see Bemporad et al.
(2000)). It is worth noting that the computational
burden related to such calculation is usually neg-
ligible compared to that needed for solving the
LMIs (17).

2.3 Relaxed PWQ Passivity Test

By exploiting the same idea as in Johansson and
Rantzer (1998a) and Mignone et al. (2000), a
certain amount of conservatism can be removed
from the PWQ passivity test introduced above.
Indeed, the LMIs (17) imply that the passive
behaviour that the system exhibits in each cell
χi or at the switching point between cells χi and
χj would actually be global if the local system
dynamics were extended to the whole state space.
This is clearly a restriction. For instance, positive
definiteness of each Pi is a stronger condition than
requiring xTPix > 0 for all x ∈ χi, i ∈ I.

Some conservatism can be removed from condi-
tions (17). For the sake of simplicity, we assume
fx

i , f
u
i = 0 and φi = ψi = 0 for all i ∈ I, although

the result can be easily extended to the affine case
by introducing suitable state, input and output
augmentations.
Let Fi be symmetric matrices such that

xTFix ≥ 0, ∀[xT uT ]T ∈ χi (18)

Moreover, for all (i, j) ∈ S, let us introduce the
set

χ̃
j
i =

{
[xT uT ]T ∈ χi : ∃w : [(Aix+Biu]

T wT ]T ∈ χj

}

(19)
i.e., the subset of state-input pairs in cell χi at
time k which are allowed to evolve into cell χj at
time k + 1. In view of (2), it turns out that each
χ̃

j
i is of the form

χ̃
j
i =

{
[xT uT ]T : Vij

[
x

u

]
≥ 0

}
(20)

where Vij is a constant matrix which can be
computed explicitly. Let Gij ∈ R

n+m × R
n+m be

symmetric matrices such that

[
xT uT

]
Gij

[
x

u

]
≥ 0, ∀[xT uT ]T ∈ χ̃ij (21)

Then, PWQ passivity is ensured if the following
conditions hold




Pi − Fi > 0 ∀ i ∈ I


 AT

i PjAi − Pi AT
i PjBi −

CT
i

2

BT
i PjAi −

Ci

2
BT

i PjBi −
Di + DT

i

2


+ Gij < 0.

∀ (i, j) ∈ S

(22)
Matrices Fi satisfying (18) can be easily computed
from the definition (2) of χi by applying the same
reasoning as in Johansson and Rantzer (1998a)

(note that continuity of V (x) is not an issue in
the discrete-time case). Matrices Fi can be chosen
of the form

Fi = (F x
i )TUiF

x
i (23)

where Ui is any matrix with positive entries. By
the same argument, taking (20) into account,
matrices Gij can be chosen of the form

Gij = V T
ij ZijVij (24)

where matrices Zij have positive entries. A less
conservative version of Theorem 3 which still
yields a set of LMI conditions for PWQ passivity
is then obtained.

Theorem 4. Consider system (1) with φi = ψi = 0
and let fx

i = fu
i = 0. If there exist symmetric

matrices Pi, i ∈ I, matrices Ui with positive
entries, i ∈ I, and matrices Zij with positive
entries, (i, j) ∈ S such that the set of LMIs (22),
with Fi as in (23) and Gij as in (24), is feasible,
then the system is PWQ passive with storage
function (14).

Note that matrices Pi andGij need not be positive
definite.

3. PASSIVITY ENFORCEMENT VIA
PIECEWISE LINEAR STATE FEEDBACK

We now consider the problem of synthesizing a
piecewise linear state feedback control law for
PWA systems of the form (1) in order to enforce
passivity of the resulting closed loop. More specif-
ically, we look for matrices Ki, i ∈ I such that
system (1) with state feedback

uk = −Kixk + vk, [xT
k uT

k ]T ∈ χi (25)

is PWQ passive, i.e., there exists a PWQ storage
function V (x) such that

V (xk+1) − V (xk) − vT
k yk < 0 (26)

holds along all trajectories [xT
k uT

k ]T ∈ X.
The closed loop system reduces to

xk+1 = Âixk +Bivk

yk = Ĉixk +Divk

;

[
xk

uk

]
∈ χi, i ∈ I

(27)
where Âi = Ai −BiKi and Ĉi = Ci −DiKi.
Clearly, by Theorem 3, the closed loop system
with piecewise linear feedback (25) is PWQ pas-
sive if there exist matrices Ki, Pi, i ∈ I such that
the following set of inequalities hold




Pi = PT
i > 0, ∀ i ∈ I



ÂT

i PjÂi − Pi ÂT
i PjBi −

ĈT
i

2

BT
i PjÂi −

Ĉi

2
BT

i PjBi −
Di +DT

i

2


 < 0

∀ (i, j) ∈ S
(28)



where S is the index set (16). Unfortunately, as
observed in Cuzzola and Morari (2001), the set
S of all possible system switches under feedback
is in general not known until the feedback itself
has been designed by solving (28). Moreover,
designing a controller Ki for each cell χi may
not be an easy task. Indeed, since uk depends
on the control gain, at each step k the index
i for which the condition [xT

k uT
k ]T ∈ χi holds

is difficult to compute in advance. A possible
way to deal with this problem is to introduce
additional conservatism by replacing the piecewise
linear feedback in (25) with a set of control gains
defined on the cells χ̄j , j ∈ J , which are defined
by constraints that depend on xk only, i.e., to
consider the piecewise linear feedback

uk = −Kjxk + vk, xk ∈ χ̄j . (29)

Note that this choice does not prevent from em-
ploying a PWQ storage function defined by ma-
trices Pi, i ∈ I. The resulting closed loop system
is

xk+1 = Ãijxk +Bivk

yk = C̃ijxk +Divk

;

[
xk

uk

]
∈ χi, i ∈ I, xk ∈ χ̄j

(30)

where Ãij = Ai −BiKj and C̃ij = Ci −DiKj .
With this restriction, a sufficient PWQ passivity
condition that replaces (28) is derived.

Lemma 1. Consider system (1) and let φi, ψi = 0.
If there exist matrices Pi, i ∈ I and Kj , j ∈ J
such that the set of inequalities





Pi = PT
i > 0, ∀ i ∈ I



ÃT

ijPlÃij − Pi ÃT
ijPlBi −

C̃T
ij

2

BT
i PlÃij −

C̃ij

2
BT

i PlBi −
Di +DT

i

2


 < 0

∀j ∈ J , ∀i ∈ Sj , ∀l : (l, i) ∈ I × I
(31)

holds, then the closed loop system with piecewise
linear feedback (29) is PWQ passive.

Note that, contrary to condition (28), in this case
the cell χl that contains vector [xT

k+1 uT
k+1]

T is
not accounted for and the only requirement here
is that the pair of indices (l, i) belongs to the set
I × I of all switches.
The characterization introduced in Lemma 1 is
not computationally appealing since the inequali-
ties in (31) are bilinear inKj and Pi and hence the
synthesis problem cannot be approached directly
by means of convex optimization techniques. In-
deed, by introducing additional conservatism and
manipulating inequalities (31), a sufficient LMI
condition for PWQ passivity of the closed loop
can be obtained as the following result shows.

Theorem 5. Consider system (1) and let φi, ψi =
0. If there exist matrices Qi = QT

i , i ∈ I and
matrices Gj , Yj , j ∈ J such that the set of LMIs




Qi = QT
i > 0 ∀ i ∈ I




Rj + RT
j − Qi

1

2
(RT

j CT
i − Y T

j DT
i ) RT

j AT
i − Y T

j BT
i

1

2
(CiRj − DiYj)

Di + DT
i

2
BT

i

AiRj − BiYj Bi Ql


 > 0

∀j ∈ J , ∀i ∈ Sj , ∀ (l, i) ∈ I × I

(32)
holds, then the system with piecewise linear state
feedback (29) where

Kj = YjR
−1
j (33)

is PWQ passive.

Proof. Since Qi > 0 and Rj +RT
j > Qi by (32), it

turns out that Rj is nonsingular and moreover it is

easily shown that RT
j Q

−1
i Rj ≥ Rj +RT

j −Qi > 0.
Hence (32) implies




Qi = QT
i > 0 ∀ i ∈ I




RT
j Q−1

i
Rj

1

2
(RT

j CT
i − Y T

j DT
i ) RT

j AT
i − Y T

j BT
i

1

2
(CiRj − DiYj)

Di + DT
i

2
BT

i

AiRj − BiYj Bi Ql


 > 0

∀j ∈ J , ∀i ∈ Sj , ∀ (l, i) ∈ I × I

(34)

By multiplying (34) from the left by diag{R−T
j , I}

and from the right by diag{R−1
j , I} we obtain





Qi = QT
i > 0 ∀ i ∈ I




Q−1
i

C̃T
ij

2
ÃT

ij

C̃ij

2

Di +DT
i

2
BT

i

Ãij Bi Ql



> 0

∀j ∈ J , ∀i ∈ Sj , ∀l : (l, i) ∈ I × I

(35)

which is equivalent to (31) by a Schur complement
argument, where Qi = P−1

i . The result then
follows by Lemma 1. ♦

Clearly, a less conservative version of the previous
result can be obtained if the definition of the cells
χi does not depend the input vector u. In that
case, it is indeed possible to define a feedback gain
Ki for each cell, thus recovering condition (28)
fully.

Corollary 1. Let system (1) be given and let
φi, ψi = 0. If there exist matrices Qi = QT

i > 0,
i ∈ I and Yi, i ∈ I such that the set of LMIs




Qi = QT
i > 0 ∀ i ∈ I


Qi

1

2
(QiC

T
i − Y T

i DT
i ) QiA

T
i − Y T

i BT
i

1

2
(CiQi − DiYi)

Di + DT
i

2
BT

i

AiQi − BiYi Bi Qj


 > 0

∀(i, j) ∈ S

(36)



holds, then the system with piecewise linear state
feedback

uk = −Kixk + vk, xk ∈ χi (37)

where
Ki = YiQ

−1
i (38)

is PWQ passive.

4. CONCLUSION

This paper has proposed a characterization of pas-
sivity for discrete-time piecewise affine systems.
Based on such characterization, easy-to-check suf-
ficient analysis criteria have been derived in the
form of LMI tests by employing quadratic and
piecewise quadratic storage functions. The prob-
lem of designing a piecewise linear state feedback
control law that enforces passivity of the closed
loop system has also been addressed by exploit-
ing piecewise quadratic storage functions, and is
solved by finding a feasible solution of a certain
set of LMIs.
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