MAX-PLUS-ALGEBRAIC PROBLEMS AND THE EXTENDED LINEAR COMPLEMENTARITY PROBLEM — ALGORITHMIC ASPECTS

B. De Schutter * W.P.M.H. Heemels ** A. Bemporad ***

Abstract: Many fundamental problems in the max-plus-algebraic system theory for discrete event systems — among which the minimal state space realization problem — can be solved using an Extended Linear Complementarity Problem (ELCP). We present some new, more efficient methods to solve the ELCP. We show that an ELCP with a bounded feasible set can be recast as a standard Linear Complementarity Problem (LCP). Our proof results in three possible numerical solution methods for a given ELCP: regular ELCP algorithms, mixed integer linear programming algorithms, and regular LCP algorithms. We also apply these three methods to a basic max-plus-algebraic benchmark problem.

Keywords: discrete event dynamic systems, optimization problems, complementarity problems, algorithms, mathematical programming

1. INTRODUCTION

In this paper we consider the subclass of discrete event systems that can be described using the max-plus algebra (Baccelli et al., 1992; Cuninghame-Green, 1979), which has maximization and addition as basic operations. Although the description of discrete event systems that belong to this subclass is nonlinear in conventional algebra, the model becomes “linear” when we formulate it in the max-plus algebra.

In our previous work we have shown that many fundamental problems in the max-plus-algebraic system theory (such as computing max-plus-algebraic matrix factorizations, state space transformations, and minimal state space realizations) can be reformulated as a mathematical programming problem: the Extended Linear Complementarity Problem (ELCP). The standard Linear Complementarity Problem (LCP) and most of its “linear” extensions are actually special cases of the ELCP. In this paper we show that the reverse statement holds as well: any ELCP can be recast as an LCP provided that the surplus variables of the ELCP are bounded over the feasible set (A sufficient condition for this is that the feasible set of the ELCP is bounded). In the derivation of our result we obtain another equivalent problem, which will be called the mixed integer linear feasibility problem (MILFP). As a consequence, we have several ways to solve a given ELCP with bounded surplus variables: either as an ELCP using the algorithm of (De Schutter and
De Moor, 1995a), as a mixed integer linear programming problem, or as a standard LCP. The computation time of the ELCP algorithm of (De Schutter and De Moor, 1995a), which finds all solutions of the ELCP, increases rapidly as the number of (in)equalities and variables increases, which may often be prohibitive. However, in many applications for discrete event systems we often only need one solution of the ELCP. In these cases the alternative (mixed integer or LCP) algorithms offer an attractive, more efficient way to solve the ELCP. This also allows us to solve larger-sized max-plus-algebraic problems than before.

This paper is organized as follows. First, we give a brief introduction to the max-plus algebra and to linear complementarity problems. Next, we show that an ELCP can be written as a MILFP. This leads to three methods to solve an ELCP. Finally, we compare the performance of the three methods for the max-plus-algebraic matrix factorization problem, which is one of the basic problems in the max-plus algebra and in the max-plus-algebraic system theory for discrete event systems.

2. BACKGROUND MATERIAL

2.1 Max-plus algebra

One of the frameworks that can be used to model discrete event systems is the max-plus algebra (Baccelli et al., 1992; Cuninghame-Green, 1979). The basic operations of the max-plus algebra are the maximum (represented by ⊕) and the addition (represented by ⊗):

\[x \oplus y = \max(x, y) \]
\[x \odot y = x + y \]

with \(x, y \in \mathbb{R}_\infty \). The structure \((\mathbb{R}_\infty, \oplus, \odot)\) is called the max-plus algebra. The operations \(\oplus \) and \(\odot \) are extended to matrices as follows. If \(A, B \in \mathbb{R}_\infty^{m \times n} \) and \(C \in \mathbb{R}_\infty^{p \times n} \) then

\[
(A \odot B)_{ij} = a_{ij} \oplus b_{ij} = \max(a_{ij}, b_{ij}) \\
(A \oplus C)_{ij} = \bigoplus_{k=1}^{n} a_{ik} \odot c_{kj} = \max_{k} \{a_{ik} + c_{kj}\} .
\]

In general, the behavior of discrete event systems is highly nonlinear. However, time-invariant discrete event systems with only synchronization and no concurrency can be described by a model of the form

\[
x(k+1) = A \odot x(k) + B \oplus u(k) \\
y(k) = C \odot x(k)
\]

where \(A \in \mathbb{R}_\infty^{n \times n} \), \(B \in \mathbb{R}_\infty^{n \times m} \) and \(C \in \mathbb{R}_\infty^{l \times n} \). In (1)–(2) \(k \) is an event counter and \(u(k), x(k) \) and \(y(k) \) contain respectively the time instants at which the input events, the internal events and the output events occur. Discrete event systems that can be described by the state space model (1)–(2) are called max-plus-linear. For more information the interested reader is referred to (Baccelli et al., 1992; Cohen et al., 1985; Cuninghame-Green, 1979).

2.2 Linear Complementarity Problem (LCP)

The LCP can be formulated as follows:

Given \(M \in \mathbb{R}^{n \times n} \), \(q \in \mathbb{R}^{n} \), find \(w, z \in \mathbb{R}^{n} \) such that

\[
w = Mz + q \quad \text{(3)}
\]
\[w, z \geq 0 \quad \text{(4)}
\]
\[w^T z = 0 . \quad \text{(5)}
\]

Condition (5) is called the complementarity condition of the LCP. For more information on the LCP and its applications we refer the interested reader to (Cottle et al., 1992; Ferris and Pang, 1997a; Ferris and Pang, 1997b; Ferris and Pang, 1997a; Leenaerts and van Bokhoven, 1998; Murty, 1988) and the references therein.

2.3 Extended Linear Complementarity Problem

In (De Schutter and De Moor, 1995a) we have introduced an extension of the LCP, which we have called the Extended Linear Complementarity Problem (ELCP) and which is defined as follows:

Given \(A \in \mathbb{R}^{n \times n} \), \(B \in \mathbb{R}^{q \times n} \), \(c \in \mathbb{R}^{n} \), \(d \in \mathbb{R}^{q} \) and \(\phi_1, \ldots, \phi_m \subseteq \{1, \ldots, p\} \), find \(x \in \mathbb{R}^{n} \) such that

\[Ax \succeq c \quad \text{(6)}
\]
\[Bx = d \quad \text{(7)}
\]
\[
\sum_{j=1}^{m} \prod_{i \in \phi_j} (Ax - c)_i = 0 . \quad \text{(8)}
\]

The surplus variable \(s^+(i, x) \) of the \(i \)th inequality of \(Ax \succeq c \) is defined as \(s^+(i, x) = (Ax - c)_i \). Condition (8) represents the complementarity condition of the ELCP and can be interpreted as follows. Since \(Ax \succeq c \), all the terms in (8) are nonnegative. Hence, (8) is equivalent to \(\prod_{i \in \phi_j} (Ax - c)_i = 0 \) for \(j = 1, \ldots, m \). So each set \(\phi_j \) corresponds to a group of inequalities in \(Ax \succeq c \), and in each group at least one inequality should hold with equality (i.e., the corresponding surplus variable is equal to 0).

Remark 1. We may without loss of generality assume that the ELCP is written as

\[Ax \succeq c \quad \text{(9)}
\]
\[
\sum_{i=1}^{m} \prod_{j \in \phi_i} (Ax - c)_j = 0 , \quad \text{(10)}
\]

1 The reason for choosing these symbols is that many properties from conventional linear algebra can be translated to the max-plus algebra simply by replacing + by \(\oplus \) and \(x \) by \(\odot \).
since we can replace $Bx = d$ by $Bx \geq d$ and obtain equality conditions on these inequalities by adding the index sets $\phi_{m+1} = \{p+1\}, \ldots, \phi_{m+q} = \{p+q\}$.

In general the solution set of the ELCP consists of the union of a subset of the faces of the polyhedron defined by (6)–(7). In (De Schutter and De Moor, 1995a) we have developed an algorithm to find a parametric representation of all solutions of an ELCP. To the authors’ best knowledge no other ELCP algorithms have been described in the literature.

2.4 Max-plus algebra and the ELCP

In (De Schutter and De Moor, 1995b; De Schutter and De Moor, 1997; De Schutter and De Moor, 1998b; De Schutter and van den Boom, 2001) we have shown that many fundamental problems in the max-plus algebra and in max-plus-algebraic system theory for discrete event systems can be solved using the ELCP. More specifically, the following problems can be recast as an ELCP or solved using an ELCP:

- minimal state space realization for max-plus-linear discrete event systems,
- solving systems of max-plus-algebraic polynomial (in)equalities,
- computing max-plus-algebraic matrix factorizations,
- transformation of max-plus-algebraic state space models,
- mixed max-min problems,
- constructing matrices with a given max-plus-algebraic characteristic polynomial,
- determining max-plus-algebraic singular value decompositions and QR decompositions,
- model predictive control for max-plus-linear discrete event systems,
- …

In addition, in (De Schutter and De Moor, 1998a; De Schutter, 2000) we have shown that some analysis and control problems for hybrid systems such as traffic signal controlled intersections, first-order hybrid systems with saturation, and linear complementarity systems can also be solved using ELCPs.

The underlying reason for the link between all these problems and the ELCP is that a system of the form

\[
\begin{align*}
\max_{i,j} (a_i x_1 + \ldots + a_{j,n} x_n + b_i) &= c_i \\
\max_{i,j} (e_i x_1 + \ldots + e_{j,n} x_n + d_i) &\leq f_i
\end{align*}
\]

can be recast as an ELCP. Basically, the proof of this statement boils down to the fact that $\max(\alpha, \beta) = \gamma$ is equivalent to the system $\alpha \leq \gamma, \beta \leq \gamma, (\gamma - \alpha)(\gamma - \beta) = 0$.

3. THE LINK BETWEEN THE LCP AND ELCP

Lemma 2. The LCP is a special case of the ELCP.

Proof. If we set $x = [w^T z^T]^T, A = I, B = [I - M], c = 0, d = q$ and $\phi_j = \{j, j + n\}$ for $j = 1, \ldots, n$ in the formulation of the ELCP, we get an LCP. □

Theorem 3. If the surplus variables of the inequalities of an ELCP are bounded (from above 2) over the feasible set of the ELCP, then the ELCP can be rewritten as an LCP.

Proof. W.l.o.g. we consider the ELCP (9)–(10). The proof consists of two main steps. First, we transform the ELCP into a mixed integer problem to get rid of the complementarity condition 3 of the ELCP at the cost of introducing some additional binary variables. Next, we transform all variables (both binary and real-valued) into nonnegative real ones, which leads to an LCP.

Define a diagonal matrix $D^u \in \mathbb{R}^{p \times p}$ with $(D^u)_{ii} = a_i^u$ being an upper bound 4 for $s^+(i,x) = (Ax - c)_i$ over the feasible set of the ELCP. Now consider the following system of equations:

\[
\delta \in [0,1]^p, \quad x \in \mathbb{R}^n \\
0 \leq (Ax - c)_i \leq a_i^u \delta_i \quad \text{for } i = 1, \ldots, p, \quad (11) \\
\sum_{i \in \phi_j} \delta_i \leq \#\phi_j - 1 \quad \text{for } j = 1, \ldots, m, \quad (12)
\]

where $\#\phi_j$ denotes the number of elements of the set ϕ_j. Problem (11)–(13) will be called the equivalent mixed integer linear feasibility problem (MILFP).

Now we show that the MILFP (11)–(13) is equivalent to the ELCP (9)–(10) in the sense that x is a solution of (9)–(10) if and only if there exists a δ such that (x,\(\delta\)) is a solution of (11)–(13). Equation (9) is implied by (12). Note that (11) and (13) imply that for each j at least one of the δ_i’s with $i \in \phi_j$ is equal to 0. If $\delta_i = 0$ then it follows from (12) that $(Ax - c)_i = 0$. So in each index set ϕ_j there is at least one index $i \in \phi_j$ such that $s^+(i,x) = 0$. Hence, the complementarity condition (10) is also implied by (11)–(13). So (11)–(13) imply (9)–(10), and it is easy to verify that the reverse statement also holds. As a consequence, the MILFP is equivalent to the ELCP.

Define $S \in \mathbb{R}^{m \times p}$ with $s_{ij} = 1$ if $i \in \phi_j$ and $s_{ij} = 0$ otherwise; and $t \in \mathbb{R}^m$ with $t_j = \#\phi_j - 1$. The MILFP can now be rewritten compactly as

2. We only need boundedness from above since the surplus variables are always nonnegative due to the condition $Ax \geq c$.

3. Note that each term of the complementarity condition (10) of the ELCP can have any number of factors in it, whereas in the complementarity condition (5) of the LCP each term $(w_i c_i)$ has exactly two factors.

4. See Section 4 for efficient methods to compute these upper bounds.
The introduction of the MILFP in this proof is inspired by the paper (Heemels et al., 2001).

Even if we have an ELCP for which the surplus variables are not bounded over the feasible set, then in many practical applications for discrete event systems it often occurs that we are only interested in solutions that lie in a given (bounded) region. In that case we can use the following theorem which can be proved in a similar way as Theorem 3.

Theorem 4. Consider the ELCP (6)–(8) and let X be an arbitrary bounded subset of \(\mathbb{R}^n \). Then every solution \(x \in X \) of the ELCP can be obtained as a solution of an equivalent MILFP or LCP (where the upper bounds \(d_i^u \) are now defined as upper bounds of the surplus variables over the set \(X \)).

4. THREE ELCP ALGORITHMS

The proof of Theorem 3 results in three possible methods to solve a given ELCP:

- as an ELCP using the ELCP algorithm of (De Schutter and De Moor, 1995a);
- as an MILFP using mixed integer linear programming algorithms: If we are only interested in obtaining one solution of an ELCP, we can transform the corresponding MILFP into a mixed integer linear programming problem by adding a dummy linear objective function. This problem can then be solved using, e.g., a branch-and-bound method (Bemporad and Mignone, 2000; Fletcher and Leyffer, 1998; Taha, 1987) or a branch-and-cut method (Cordier et al., 1999);
- as an LCP using standard LCP algorithms \(^5\) such as the PATH algorithm of (Ferris and Munson, 2000), or via a reformulation as a quadratic programming (QP) problem \(^6\).

The removal of \(Bx = d \) in the proof of Theorem 3 is only done to simplify the proof. If we want to solve an ELCP by reformulating it as an MILFP, then it is numerically better to keep the equalities. In that case the full ELCP (6)–(8) would result in the MILFP (11)–(13) but with the additional constraint \(Bx = d \).

A sufficient condition for the surplus variables of the inequalities of the ELCP to be bounded is that the feasible set of the ELCP is bounded \(^7\). Upper bounds

\(^5\) The matrix \(M \) of the ELCP (17)–(18) is not positive definite. Moreover, this LCP is in general not strictly feasible (i.e., in general the set \(\{ z \in \mathbb{R}^n \mid Mz + q > 0, z > 0 \} \) is empty). This may prevent us from using, e.g., Lemke’s method or strictly feasible interior point methods to solve the LCP.

\(^6\) If we consider the QP problem \(\min \mathbf{z}^T (Mz + q) \) subject to \(z \geq 0 \) and \(Mz + q \geq 0 \), then it is easy to verify that the optimal solution \(\mathbf{z}_{opt} \) of the QP problem yields a solution of the LCP (3)–(5) if the value of the objective function in \(\mathbf{z}_{opt} \) is equal to 0. Note that we can significantly reduce the size of the QP problem by setting \(w_0 = 0, w_p = 0, \) and \(w_s = 0 \) (cf. item (2) of the last part of the proof of Theorem 3).

\(^7\) However, boundedness of the feasible set is not a necessary condition for boundedness of the surplus variables. Consider, e.g., the ELCP \(x \in \mathbb{R}^2, -1 \leq x_1, x_1 + 1 (1-x_1) = 0 \), which has an unbounded feasible set \(\{ x \in \mathbb{R}^2 \mid x_1 = 0 \} \), but bounded surplus variables \(s^+(1, x), s^+(2, x) \in [0, 2] \) over the feasible set.
for the surplus variables over the feasible set can be determined as follows:

- The upper bounds d_{ij}^u can be computed efficiently using a linear programming (LP) problem:
 \[d_{ij}^u = \max_{\mathbf{A}x - \mathbf{c} \geq \mathbf{0}} (\mathbf{A}x) \] for $i = 1, \ldots, p$.

If any of these LP problems yields an unbounded objective function, then the ELCP does not have a bounded feasible set and then the condition of Theorem 3 does not hold.

- If we know upper bounds x_{upp} and lower bounds x_{low} for the components of x, e.g., as a consequence of physical or other constraints or because of additional information that is available, then we can even more efficiently compute upper bounds as
 \[d_{ij}^u = (\mathbf{A}^+ x_{\text{upp}} - \mathbf{A}^- x_{\text{low}} - \mathbf{c}) \] for $i = 1, \ldots, p$, with \mathbf{A}^+ and \mathbf{A}^- defined by $\mathbf{(A^+)}_{ij} = \max(a_{ij}, 0)$ and $\mathbf{(A^-)}_{ij} = \max(-a_{ij}, 0)$ respectively.

5. PERFORMANCE OF THE THREE ELCP ALGORITHMS

In order to assess the performance of the three methods to solve an ELCP algorithm, we will use them to solve a benchmark problem, namely max-plus-algebraic matrix factorization. This problem can be considered as one of the fundamental problems in max-plus algebra and also in system theory for max-linear discrete event systems since it is one of the basic components for solving the state space transformation problem and the (partial) minimal realization problem.

More specifically, we have performed the following experiment: For a given integer ℓ and a given integer bound b, we have constructed two random integer matrices $\mathbf{A} \in \mathbb{R}^{\ell \times 2}$ and $\mathbf{B} \in \mathbb{R}^{2 \times \ell}$ with the entries uniformly distributed over the integer set $\{-b, -b + 1, \ldots, b\}$. Next, we have defined $\mathbf{C} = \mathbf{A} \otimes \mathbf{B}$ and constructed the ELCP that solves the following problem:

Given \mathbf{C}, find $\mathbf{P} \in [-b, b]^{\ell \times 2}$ and $\mathbf{Q} \in [-b, b]^{2 \times \ell}$ such that $\mathbf{P} \otimes \mathbf{Q} = \mathbf{C}$.

This ELCP has $n = 4\ell$ variables, $p = 2\ell^2 + 8\ell$ inequalities, and $m = \ell^2$ index sets.

We have performed 1000 experiments for ℓ a random integer in the range $1, 2, \ldots, 10$ and with $b = 10$. Each ELCP has been solved using the different methods of Section 4 with all the algorithms implemented in C.

Since only one solution of the ELCP was required, we have only performed the first part of the ELCP algorithm of (De Schutter and De Moor, 1995a), i.e., the computation of the extreme points of the solution set, and skipped the second part of the algorithm in which it is determined which combinations of extreme points also yield a solution. Moreover, due to excessive CPU times we have only applied the ELCP algorithm of (De Schutter and De Moor, 1995a) if $\ell \leq 7$. The MILFP has been solved using a branch-and-bound method, and the LCP using a quadratic programming approach (cf. Footnote 6). Since the matrix \mathbf{M} is not positive definite, we have a non-convex QP problem. So not every run of the QP solver yields a (global) solution. However, in each experiment we have repeated the QP algorithm with different initial solutions until we obtained a sufficiently accurate solution of the LCP, i.e., a solution for which $\mathbf{z}^T(\mathbf{Mz} + \mathbf{q}) \leq \varepsilon$ with $\varepsilon = 10^{-6}$.

In Figure 1 we have plotted the average CPU time of the three methods to solve the ELCPs. Note that the scale on the y-axis of the plot is logarithmic. Clearly, the MILFP and the LCP approach outperform the ELCP algorithm of (De Schutter and De Moor, 1995a). This also implies that we can now tackle instances of the problems mentioned in Section 2.4 of a significantly larger size than we could before (i.e., using the algorithm of (De Schutter and De Moor, 1995a)). Note that even more improvement can be obtained by selecting mixed-integer and/or LCP algorithms that are more suited for the equivalent MILFPs and LCPs than the algorithms we have used, and by reducing the equivalent MILFPs and LCPs before solving them. This will be a topic for future research.

6. CONCLUSIONS AND FUTURE RESEARCH

The ELCP can be used to solve many problems for max-plus-linear discrete event systems (such as the minimal state space realization problem). We have shown that an ELCP with bounded surplus variables over the feasible set (or with a bounded feasible set) can be rewritten as an LCP. In our constructive equivalence proof we have introduced a mixed integer linear feasibility problem that is also equivalent to the ELCP. As a consequence, we now have three different ways to solve an ELCP: using the ELCP algorithm...
of (De Schutter and De Moor, 1995a), using a mixed integer (linear programming) algorithm, or using one of the many LCP algorithms. The main advantage of the latter two approaches is that they can be used for many applications for max-plus-algebraic discrete event systems in which we only need one solution of the ELCP since in that case they will be much more efficient than the ELCP algorithm of (De Schutter and De Moor, 1995a), which computes all solutions and, as a consequence, requires much more computation time. We have also compared the performance of the three methods to solve an ELCP for a typical max-plus-algebraic benchmark problem (max-plus-algebraic matrix factorization). For this problem the MILFP-based and LCP-based approaches were significantly faster than the approach that uses the ELCP algorithm of (De Schutter and De Moor, 1995a). We expect that this also holds for the ELCPs that arise from other max-plus-algebraic problems.

An important topic for further research is a more thorough evaluation and comparison of the performance of several different mixed integer and LCP algorithms for the special cases of the ELCP that arise in specific applications involving discrete event systems. The LCP or MILFP reformulation of a given ELCP that results from our equivalence proof is not necessarily the most efficient one (i.e., with a minimal number of variables or equations). If we aim at using the equivalent LCP or MILFP to solve the original ELCP in a computationally very efficient way, then it might be useful to look for techniques to reduce the LCP or MILFP by removing redundant variables or inequalities before actually solving the LCP or MILFP. This will also be a topic for future research.

7. REFERENCES

