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Abstract—In the consensus problem on multi-agent systems, in which the states of the agents represent opinions, the agents aim at
reaching a common opinion (or consensus state) through local exchange of information. An important design problem is to choose the
degree of interconnection of the subsystems to achieve a good trade-off between a small number of interconnections and a fast
convergence to the consensus state, which is the average of the initial opinions under mild conditions. This paper addresses this
problem through l1-norm and l0-“pseudo-norm” regularized versions of the well-known Fastest Mixing Markov-Chain (FMMC) problem.
We show that such versions can be interpreted as robust forms of the FMMC problem and provide results to guide the choice of the
regularization parameter.

Index Terms—Consensus, sparsity, optimization, regularization, Fastest Mixing Markov-Chain problem
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1 INTRODUCTION

SEVERAL complex dynamical systems (e.g., wireless sensor
networks, robotic teams, social networks) can be decom-

posed into a large number of subsystems (or agents), whose
interactions are local and can be modeled by weighted edges
in a communication graph, in which the vertices are the
subsystems. Control problems on such multi-agent systems
enjoy properties related to the structure of the communica-
tion graph, described, e.g., by weighted/unweighted adja-
cency and graph-Laplacian matrices [1], [2]. A paradigmatic
example of such control problems is the consensus problem
[3], in which the states of the subsystems represent opinions,
and the agents aim at reaching a common opinion (or con-
sensus state) through local exchange of information, without
any form of centralization. A typical example is distributed
estimation in wireless sensor networks [4]. Under mild con-
ditions, one can prove that the consensus state is the average
of the initial opinions, and the problem is called the average
consensus problem [3]. In both problems, the variables to
be chosen are the weights to be assigned to the edges of the
communication graph. Such weights define a weighted
adjacency matrix and, in the case of undirected communica-
tion graphs, also a weighted Laplacian matrix, whose spec-
tral properties (i.e., properties expressed in terms of the
eigenvalues/eigenvectors of such matrices) determine the
rate of convergence to the consensus state [3], [5]. Interest-
ingly, in the undirected case, determining the weights that
optimize such spectral properties can be formulated as a con-
vex optimization problem [5] (specifically, as a semidefinite

program (SDP)), which is known as the Fastest Mixing Mar-
kov-Chain problem (Problem FMMC, in the paper) and can
be solved efficiently, e.g., using interior-point methods. In
several cases, one may be interested to find a suitable com-
promise between the desired spectral properties of the graph
and the number of non-zeroweights of the edges, thus obtain-
ing sparse solutions to the consensus/average consensus
problems with satisfactory rate of convergence. This is moti-
vated, e.g., in the case of a high cost of communication associ-
ated with each edge. In this context, some recent results
towards such sparse solutions are provided in [6], which
investigates sparse graphswith certain symmetries, for which
one has closed-form expressions for the Laplacian eigenval-
ues. However, the results are restricted to specific kinds of
graphs. Another recent result in this direction is provided by
[7], which shows that every Laplacian matrix associated with
a symmetric graph can be well-approximated by the Lapla-
cian matrix of a sparse subgraph, thus keeping the desired
spectral properties but with a small number of edges. In prin-
ciple, such a property could be exploited to find a good sparse
solution to the average consensus problem, starting from a
dense graphwith good spectral properties in terms of the rate
of convergence to the consensus state, then sparsifying such a
graph, trying to preserve such spectral properties.

The present work focuses on the average consensus
problem and, in the case of undirected graphs, proposes a
different trade-off between good spectral properties of the
communication graph and its sparsity, using an approach
based on an l1-norm regularized version of Problem
FMMC, which is called Problem FMMC-l1(h) in the paper,
where h > 0 denotes the regularization parameter. This
variation of Problem FMMC is motivated by the fact that,
due to geometrical properties of the l1-norm [8], the intro-
duction of such a regularization term in the objective of
a convex optimization problem often enforces the sparsity
of an optimal solution of the regularized version of that
problem. We also consider another variation of Problem
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FMMC (called Problem FMMCconstr-l1(h) in the paper) in
which, besides the introduction of the l1-norm regularization
term, the weights of some edges are fixed, and another one in
which the l1-norm regularization term is replaced by a
l0-pseudo-norm regularization term. Then, we provide both a
theoretical analysis of such variations of Problem FMMC and
a numerical example modeling a wireless sensor network,
comparing their solutions with the one obtained solving
Problem FMMC. Related approaches were proposed in [9,
Section 7.2] and in [10]. In particular, Problems FMMC-l1(h)
and FMMCconstr-l1(h) are similar to one already proposed and
investigated numerically in [9, Section 7.2], with the differ-
ence that the l1-norm term in that reference appears inside an
additional constraint instead than in the objective. We also
mention that, for the average consensus problem in the pres-
ence of disturbances, a similar graph-sparsification optimiza-
tion problemwas also recently considered in [10], and solved
through the Alternating Direction Method of Multipliers
(ADMM) [11]. However, up to our knowledge, the theoretical
analysis of Problems FMMC-l1(h) and FMMCconstr-l1(h) pre-
sented in this paper includes novel theoretical contributions
in Sections 4cÞ, dÞ, fÞ, gÞ. In more details, Sections 4cÞ, dÞ, fÞ,
gÞ contain theoretical results that are specific to the l1-regular-
ized Problem FMMC and were not derived in [9]. In particu-
lar, to the best of our knowledge, our interpretation of
ProblemFMMC-l1(h) as a robust version of the FastestMixing
Markov-Chain problem is novel, together with the other
theoretical results we have obtained in Section 4 using
Gershgorin’s theorem and Weyl’s inequalities. Instead,
Sections 4 aÞ, bÞ and eÞ provide results common also to
l1-norm regularizations of other convex optimization
problems (and reported in the paper for completeness,
and for their applicability to Problems FMMC-l1(h) and
FMMCconstr-l1(h)), whereas Section 4hÞ provides semidefin-
ite programming formulations similar to the one presented
in [9, Section 7.2], which are useful for solving Problems
FMMC-l1(h) and FMMCconstr-l1(h) numerically. Finally, in
Section 5, we also investigate theoretically another regular-
ized version of Problem FMMC, called Problem FMMC-
l0(h), whose analysis presented in that section is novel.

The paper extends significantly its conference version
[12], including the proofs of all the theoretical results already
stated therein (Propositions 2 and 3 of this work), and includ-
ing and proving new theoretical results (Propositions 1, 4,
and all the results in Section 5 of this work). Also the section
about the numerical results has been extended significantly.

The paper is organized as follows. Section 2 summarizes
the FMMC problem and introduces its equivalent formula-
tion. Then, Section 3 presents twomodifications of such a for-
mulation (both obtained adding an l1-norm regularization
term to enforce sparsity, and fixing also some weights in the
second one), which are investigated in Section 4 from a theo-
retical point of view. Section 5 extends the analysis to an
l0-pseudo-norm regularized version of the FMMC problem,
for which interesting properties hold, despite the combinato-
rial nature of such a regularized optimization problem.
Section 6 shows the application of the theoretical results
obtained in the paper to the design of a wireless sensor net-
work, and compares the regularized versions of the FMMC
problem numerically. Finally, Section 7 discusses possible
extensions of the work.

2 THE FASTEST MIXING MARKOV-CHAIN PROBLEM

The consensus problem consists in determining the
strengths of the interconnections among the subsystems of a
multi-agent system, so that their states converge to a com-
mon state, subject to given topological constraints on the
admissible connections. In the simplest case, the subsystems
are linear, their states xi 2 R are scalar-valued, and the evo-
lution of each subsystem i is determined by the discrete-
time dynamics

xiðtþ 1Þ ¼
Xn

j¼1

PijxjðtÞ ; t ¼ 0; 1; . . . ; (1)

where P 2 Rn&n is a matrix of interconnections with non-
negative entries, satisfying the conditions P1n ¼ 1n (here,
1n 2 Rn denotes a column vector of dimension n whose
components are all equal to 1) and

Pij ¼ 0; if i 6¼ j and ði; jÞ =2 E ; (2)

where E is a given set of admissible interconnections. In a
design phase, the elements of the matrix P can be chosen
arbitrarily, provided that the conditions above on P are
satisfied.

The non-negativity assumption on P , together with the
condition P1n ¼ 1n, implies that 1 is the eigenvalue of the
matrix P with maximum absolute value (this can be proved,
e.g., by an application of Gersghorin’s theorem)1, and that
the state xiðtþ 1Þ at time tþ 1 is a convex combination of
the states xjðtÞ at time t.

It is well known (see, e.g., [3]) that, when the eigenvalue 1
has algebraic multiplicity equal to 1, and all the other eigen-
values of P have absolute value smaller than 1, the states of
the subsystems converge to the same consensus state xc,
when t ! 1:

lim
t!1

xiðtÞ ¼
Xn

j¼1

ajxjð0Þ :¼ xc ; for all i 2 f1; . . . ; ng ; (3)

where aj, j ¼ 1; . . . ; n, are suitable non-negative constants
such that

Pn
j¼1 aj ¼ 1. When P is symmetric, one can show

(see, e.g., [3]) that

aj ¼
1

n
; 8j 2 f1; . . . ; ng ; (4)

and the consensus state is simply the average of the initial
states (in such case, the problem is called the average con-
sensus problem). In the following, we will focus on such a
situation, therefore assuming P ¼ PT .

A particularly important aspect of the average consensus
problem is the rate of convergence to the average consensus
state, which is related to the second-largest eigenvalue
modulus of P :

mðP Þ :¼ max
j¼2;...;n

j!jfPgj ; (5)

1. Gersghorin’s theorem [13, Section 7.2] states that all the eigenval-
ues of a matrix A 2 Rn&n belong, in the complex plane, to at least one of
the Gersghorin circles Gi (for i ¼ 1; . . . ; n), whose centers and radii are
defined, respectively, by Aii and

Pn
j 6¼i; j¼1 jAijj.
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where the (real) eigenvalues !jfPg; j ¼ 1; . . . ; n; have been
ordered with their multiplicity in a nonincreasing order,
i.e., 1 ¼ !1fPg ' !2fPg ' ( ( (!jðP Þ ' ( ( ( ' !nfPg > )1.
The smaller mðP Þ, the faster the convergence to the consen-
sus state [3].

In addition, a related quantity is the mixing time [5]

tðP Þ :¼ 1

log ð 1
mðP ÞÞ

; (6)

which is an asymptotic measure of the number of steps
required for reducing by the Euler’s number e a suitable dis-
tance (the total variation distance) between the global state
vector and the vector whose components are equal to the
average consensus state.

Since the symmetric matrix P has non-negative elements
and satisfies P1n ¼ 1n, its generic element Pij can be inter-
preted as a transition probability from the vertex i to the
vertex j of a graph (including the case of a self-loop when
i ¼ j), whose vertices are the subsystems. Hence, the rate of
convergence of the Markov chain with transition probabili-
ties Pij to its stationary distribution depends on mðP Þ.

The problem of determining the coefficients Pij that
minimize mðP Þ subject to a given topology of the graph is
called the Fastest Mixing Markov-Chain problem (Problem
FMMC, in the following), formulated as [5]

Problem FMMC ðfirst formulationÞ :

minimize
P2Rn&n

mðP Þ

subject to P1n ¼ 1n; P ¼ PT ;

Pij ' 0; 8i; j 2 f1; . . . ; ng ;
Pij ¼ 0; if ði; jÞ =2 E :

(7)

Interestingly, this is a convex optimization problem, since

mðP Þ ¼ j!jmax P ) 1

n
1n1

T
n

! "
(8)

(see [5] for a proof of formula (8)), where j!jmax stands for the
largest eigenvalue modulus. Moreover, Problem FMMC can
also bewritten as a semidefinite program [5, Section 2.3].

We introduce an equivalent version of Problem FMMC,
using a notation suitable for its sparse extensions pre-
sented in Section 3 and for their theoretical investigations
in Sections 4 and 5.

In the following, we denote by w 2 Rm the column vec-
tor of weights associated with the m edges joining differ-
ent vertices, and by wsl 2 Rn the column vector of weights
associated with the n self-loop edges. Hence, we can repre-
sent the weighted adjacency matrix P as a linear function
P ðw;wslÞ of such weights. For instance, for n ¼ 3 and
m ¼ nðn) 1Þ=2 (the case of a complete graph), one obtains
the symmetric matrix

P ðw;wslÞ ¼
wsl;1 w1 w2

w1 wsl;2 w3

w2 w3 wsl;3

2

4

3

5 : (9)

Moreover, introducing the vertex-edge incidence matrix
M 2 Rn&m, whose elements are defined as follows:

Mij ¼
1 ; if the vertex i is an endpoint of

the (non self-loop) edge j ;
0 ; otherwise ;

8
<

: (10)

and setting

wsl :¼ 1n )Mw ; (11)

the constraints

Pij ' 0 for any i; j 2 f1; . . . ; ng and P1n ¼ 1n (12)

are equivalent to

wi ' 0 for any i 2 f1; . . . ;mg and Mw * 1n : (13)

Using (11), the matrix P becomes an affine function P ðwÞ of
the weight vector w, and the second-largest eigenvalue mod-
ulus of P is expressed as a convex function—denoted by
mðwÞ—of the weight vector w, since convexity is preserved
by affine mappings [14, Section 3.2]. With the notations just
introduced, Problem FMMC can be compactly rewritten as

Problem FMMC ðsecond formulationÞ :

minimize
w2Rm

fðwÞ :¼ mðwÞ

subject to w ' 0m;

Mw4 1n :

(14)

Remark 1. For each admissible weight vector w, the
weighted adjacency matrix P ðwÞ can be interpreted as a
“walk matrix” [15] on the weighted graph described by
P ðwÞ, for which it is well-known that its maximum (and
maximum modulus) eigenvalue !maxfP ðwÞg ¼ 1 has
multiplicity equal to the number of connected compo-
nents of such a graph. So, in case of a disconnected
graph, for every weight vector w, !maxfP ðwÞg ¼ 1
has multiplicity at least 2, and, trivially, for the second-
largest eigenvalue modulus, one has mðwÞ ¼ 1.

In order to avoid the pathological situation described
in Remark 1, in the remaining of the paper we generally
assume the graph described by the vertex-edge incidence
matrixM to be connected.

3 SOME SPARSE VARIATIONS OF THE FASTEST
MIXING MARKOV-CHAIN PROBLEM

We now consider the following sparse variations of
Problem FMMC.

3.1 Problem FMMC with a Regularization Term
In order to find a good compromise between sparsity ofw and
a small value of the second-largest eigenvaluemodulus of the
weighted adjacencymatrix P ðwÞ, we consider, for any h > 0,
the following regularized version of Problem FMMC, in
which an l1-regularization term with regularization parame-
ter h is added to the objective (here, kwk1 :¼

Pm
i¼1 jwij):

Problem FMMC-l1ðhÞl1ðhÞ:

minimize
w2Rm

f ð1;hÞðwÞ :¼ mðwÞ þ hkwk1

subject to w ' 0m;

Mw4 1n :

(15)
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The term hkwk1 in (15) often induces sparsity of a resulting
optimal solution w+ðhÞ [8], i.e., many components of w+ðhÞ
tend to be 0.

In Section 5, we investigate also the regularized version
of Problem FMMC obtained by replacing the l1-norm in
Problem FMMC-l1(h) with the l0-“pseudo-norm”

kwk0 :¼ number of non-zero components of w : (16)

We state such a problem as follows:

Problem FMMC-l0ðhÞl0ðhÞ:

minimize
w2Rm

fð0;hÞðwÞ :¼ mðwÞ þ hkwk0

subject to w ' 0m;

Mw4 1n :

(17)

Although the l0-pseudo-norm is a more natural way to
enforce sparsity than the l1-norm, it is a nonconvex function,
so, when sparsity is desired, it is common to replace the
l0-pseudo-normwith the l1-norm,which is a convex function.

3.2 Problem FMMC with Fixed Edges and a
Regularization Term

An interesting variation of Problem FMMC-l1(h) consists in
fixing some components of the weight vector w. This is
motivated, e.g., when one is interested in imposing some
additional structure on the topology of the graph resulting
from the optimization of the weight vector (e.g., enforcing
the presence of given subgraphs, such as trees connecting
important “backbone” vertices). Without loss of generality,
in the following we assume (up to a permutation of the indi-
ces) that the fixed weights are the first mfixed ones (where
1 * mfixed * m), whereas the last mfree : m)mfixed weights
are not fixed (the special case mfixed ¼ m is trivial). We then
decompose the column vector w as

w ¼ colðwfixed; wfreeÞ (18)

and the vertex-edge incidence matrixM as

M ¼ ½MfixedjMfree- ; (19)

and we express the second-largest eigenvalue modulus m as
a function mðwfreeÞ of the unfixed weights only. Then, for a
given choice of the weight vector wfixed, we consider the fol-
lowing optimization problem:

Problem FMMCconstr-l1ðhÞl1ðhÞ:

minimize
wfree2Rmfree

f ð1;hÞ
constrðwfreeÞ :¼ mðwfreeÞ þ hkwfreek1

subjectto wfree ' 0mfree
;

Mfreewfree 4 1n )Mfixedwfixed :

(20)

Problem FMMCconstr-l1(h) has a form which is similar to the
one of Problem FMMC-l1(h). We assume in the following
that the fixed weights have been chosen in such a way that
the polyhedron

fw 2 Rmfree : wfree ' 0free;Mfreewfree 4 1n )Mfixedwfixedg (21)

is non-empty, so that Problem FMMCconstr-l1(h) admits a
feasible solution.

Remark 2. A similar variation can be studied replacing the
l1-norm with the l0-pseudo-norm, but it is not investi-
gated here, to avoid redundancy in the analysis.
Another variation is obtained assuming that some edges
are just “sufficiently used” rather than “fixed”, i.e., that,
for some indices i and some constants bi 2 ½0; 1-, one
has wi ' bi. The resulting problem has still linear equal-
ity and inequality constraints.

Remark 3. Although the l1-norm is nondifferentiable at the
origin, the terms kwk1 and kwfreek1 in the objectives of
Problems FMMC-l1(h) and FMMCconstr-l1(h) can also be
written, respectively, as 1Tmw and 1Tmfree

wfree (thus, as lin-

ear—hence differentiable—terms), due to the respective
non-negativity constraintsw ' 0m andwfree ' 0mfree

.

In the next section we provide some theoretical results
about the optimal solutions of Problems FMMC-l1(h) and
FMMCconstr-l1(h).

4 THEORETICAL RESULTS FOR PROBLEMS

FMMC-l1(h) AND FMMCconstr-l1(h)

We first consider the analysis of Problem FMMC-l1(h);
extensions of the results to Problem FMMCconstr-l1(h) are
considered later in this section.

a) Existence of an optimal solution.
The next result states the existence of an optimal solution

to Problem FMMC-l1(h).

Proposition 1. Problem FMMC-l1(h) admits an optimal solution
for every h > 0.

Proof. The feasible set of Problem FMMC-l1(h) is convex,
closed, and bounded. Moreover, its objective is con-
tinuous since the l1-norm regularization term kwk1 is
continuous, and on the feasible set the second-largest
eigenvalue modulus mðP Þ has the expression (8), which is
continuous due to the continuous dependence of the
eigenvalues of a matrix on its entries [16, Section 7.6], and
the fact that the point-wise maximum of a finite set of con-
tinuous functions is continuous, too. Concluding, Problem
FMMC-l1(h) involves the minimization of a continuous
objective function on a compact set, so an optimal solution
to Problem FMMC-l1(h) exists byWeierstrass theorem. tu
b) Effect of the regularization parameter.
Solving Problem FMMC-l1(h) involves finding a good

compromise between the minimization of the term mðwÞ
and the one of kwk1. Next Proposition 2 shows that the regu-
larization parameter h has opposite effects on the two terms
mðwÞ and kwk1, when evaluated at an optimal solution.

Proposition 2. Let 0 < h1 < h2, and w+
1ðh1Þ; w+

1ðh2Þ be optimal
solutions to Problem FMMC-l1(h1) and Problem FMMC-
l1(h2), respectively. Then,

i) mðw+
1ðh1ÞÞ * mðw+

1ðh2ÞÞ ,
ii) kw+

1ðh1Þk1 ' kw+
1ðh2Þk1 .

Proof. By the optimality of w+
1ðh1Þ for Problem FMMC-l1(h1),

one has

mðw+
1ðh1ÞÞ þ h1kw+

1ðh1Þk1 * mðw+
1ðh2ÞÞ þ h1kw+

1ðh2Þk1 : (22)

Similarly, by the optimality of w+
1ðh2Þ for Problem

FMMC-l1(h2), one gets
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mðw+
1ðh2ÞÞ þ h2kw+

1ðh2Þk1 * mðw+
1ðh1ÞÞ þ h2kw+

1ðh1Þk1 : (23)

Combining the two inequalities above, one obtains

h2ðkw+
1ðh2Þk1 ) kw+

1ðh1Þk1Þ
* mðw+

1ðh1ÞÞ ) mðw+
1ðh2ÞÞ

* h1ðkw+
1ðh2Þk1 ) kw+

1ðh1Þk1Þ ;

which is satisfied if and only if conditions i) and ii) hold,
as 0 < h1 < h2. tu

In general, instead, the sparsity

sðw+
1ðhÞÞ :¼ 1) kw+

1ðhÞk0=m

¼ fraction of zero components of w+ðhÞ

of an optimal solution to Problem FMMC-l1(h) may not be a
monotonic function of h, as shown in Fig. 5 (see Section 6).
This behavior is similar to the one observed for other l1-
regularized optimization problems, such as the classical
Least Absolute Shrinkage and Selection Operator (LASSO)
problem (see., e.g., [17, Fig. 1]).

c) Conditions under which w ¼ 0m is an optimal solution to
Problem FMMC-l1(h).

The next result states conditions on the regularization
parameter under which w ¼ 0m is an optimal solution to
Problem FMMC-l1(h), or its unique optimal solution. An
application of the result to the choice of the regularization
parameter is given in Section 4eÞ.

Proposition 3. Let h ' 2. Then w ¼ 0m is an optimal solution to
Problem FMMC-l1(h). If h > 2, then w ¼ 0m is its unique
optimal solution.

Proof. Let Dw be an arbitrary admissible increment of w,
starting from w ¼ 0m (such an increment can be used to
generate the whole set of admissible solutions to Problem
FMMC-l1(h), since it is convex and contains 0m). Then,

the corresponding increment Df ð1;hÞ in the objective f ð1;hÞ

of Problem FMMC-l1(h) is

Df ð1;hÞ ¼ mðDwÞ ) mð0mÞ þ hkDwk1 : (24)

Now, one has mð0mÞ ¼ 1 (as the associated weighted
adjacency matrix is P ð0mÞ ¼ In, the identity matrix of
dimension n& n), whereas one can find a lower bound
on mðDwÞ as follows. The matrix P ðDwÞÞ can be written as

P ðDwÞ ¼ In þ EðDwÞ ; (25)

where the main-diagonal entries of the matrix EðDwÞ are
non-positive with their absolute values bounded from
above by kDwk1, whereas, for each row i, one has

Xn

j6¼i; j¼1

jEijðDwÞj * kDwk1 : (26)

Then, by Gersghorin’s theorem (recall footnote 1), all the
eigenvalues of EðDwÞ are bounded from above in abso-
lute value by 2kDwk1. As the presence of the matrix In in

formula (25) has only the effect of translating the eigen-
values of EðDwÞ by 1, one finally obtains

mðDwÞ ' 1) 2kDwk1 : (27)

Concluding, for an arbitrary admissible increment Dw,
one gets

Dfð1;hÞ ' 1) 2kDwk1 ) 1þ hkDwk1 ¼ )2kDwk1 þ hkDwk1 : (28)

If h ' 2, then Df ð1;hÞ is non-negative for every admissible
Dw, hence w ¼ 0m is an optimal solution to Problem

FMMC-l1(h). If h > 2, then Df ð1;hÞ is positive for every
Dw 6¼ 0m, hence w ¼ 0m is the only optimal solution to
Problem FMMC-l1(h). tu

The following example shows that the bound obtained in
Proposition 3 is tight, at least if one does not impose further
restrictions on the class of graphs to be considered.

Example 1. Let n ¼ 2 and m ¼ 1. Then, the matrix P ðwÞ has
the expression

P ðwÞ ¼ 1) w1 w1

w1 1) w1

# $
; (29)

whose eigenvalues are 1 and 1) 2w1. Hence, on the set
½0; 1- of admissible solutions to Problem FMMC-l1(h), its
objective is j1) 2w1jþ hw1, and w1 ¼ 0 is, respectively,
the unique optimal solution to Problem FMMC-l1(h) for
h > 2, one of its (infinite) optimal solutions for h ¼ 2 (the
optimal ones being all w1 2 0; 12

% &
), and a suboptimal solu-

tion for 0 < h < 2 (the optimal one being w1 ¼ 1
2).

d) Non differentiability of the objective at w ¼ 0m.
In the proof of Proposition 3, we have used Gersghorin’s

theorem instead than an approach based on first-order opti-
mality conditions for a differentiable objective. The reason
is that, as shown in the next Proposition 4, in general the
objective of Problem FMMC-l1(h) is not differentiable at
w ¼ 0m, although the l1-regularization term is represented
by a linear function on its set of admissible solutions. To
state Proposition 4, we need the following definition.

Definition 1. A function y : D ! R defined on a convex and
compact subset D . Rm is differentiable at a point x0 belong-
ing to the boundary @D of D iff there exists a linear map
J : Rm ! R such that

lim
t!0þ

yðx0 þ thÞ ) yðx0Þ ) JðthÞ
kthk

¼ 0 ; (30)

for all feasible directions h 2 Rm, i.e., such that x0 þ th 2 D
for all t > 0 sufficiently small.

Remark 4. In the usual definition of differentiability,
instead, one assumes that the point x0 belongs to the inte-
rior of the set D, and in that case all vectors h 2 Rm are
feasible directions. In Definition 1, we extend this con-
cept to a point belonging to the boundary of the domain
(which is the case of w ¼ 0m for Problem FMMC-l1(h), as
it belongs to the boundary of the domain of the function
mðwÞ).
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Remark 5. For i ¼ 1; . . . ; n, let ei 2 Rm denote the vector
whose component i is equal to 1, and all its other compo-
nents are equal to 0. If the directions ei are feasible, (30)
and the linearity of the map J imply, for every feasible
direction h,

lim
t!0þ

yðx0 þ thÞ ) yðx0Þ
kthk ¼

Xm

i¼1

hi lim
t!0þ

yðx0 þ teiÞ ) yðx0Þ
t

:

Proposition 4. Let n ' 3. Then the objective of Problem FMMC-
l1(h) is nondifferentiable at w ¼ 0m.

Proof. For i ¼ 1; . . . ; n and for each t 2 ½0; 1-, the graph
associated with the weighted adjacency matrix P ðteiÞ is
disconnected, hence the maximum (and maximum mod-
ulus) eigenvalue !maxfP ðteiÞg ¼ 1 of P ðteiÞ has multi-
plicity at least 2, and its second-largest eigenvalue
modulus is mðteiÞ ¼ 1. Thus, at w ¼ 0m, the directional
derivative of the objective of Problem FMMC-l1(h) in
the direction ei, i.e.,

lim
t!0þ

mðteiÞ ) mð0mÞ þ h1TmðteiÞ
t

; (31)

is equal to h. Now, let ŵ be any admissible weight
vector with ŵ > 0m (elementwise). Since the graph
associated with the weighted adjacency matrix P ðŵÞ is
connected, !maxfP ðŵÞg ¼ 1 has multiplicity equal to 1,
hence !2ðP ðŵÞÞ * mðŵÞ < 1, and !nfP ðŵÞg > )1 by
Gersghorin’s theorem. Now, for any t 2 ½0; 1-, one has
P ðtŵÞ ¼ ð1) tÞI þ tP ðŵÞ. Then, the eigenvalues of P ðŵÞ
and P ðtŵÞ, ordered nonincreasingly with their multi-
plicity, are related by

!ifP ðtŵÞg ¼ ð1) tÞ þ t!ifP ðŵÞg ; ði ¼ 1; . . . ; nÞ ; (32)

so, assuming without loss of generality mðŵÞ ¼
!2ðP ðŵÞÞ > 0 (the case mðŵÞ ¼ maxfj!2ðP ðŵÞÞj; j!nðP ðŵÞÞjg
is similar), for t > 0 sufficiently small one gets mðtŵÞ ¼
1) tþ t!2ðP ðŵÞÞ. Hence, at w ¼ 0m, the directional
derivative of the objective of Problem FMMC-l1(h) in the
direction ŵ, i.e.,

lim
t!0þ

mðtŵÞ ) mð0mÞ þ h1TmðtŵÞ
t

; (33)

is equal to !2ðP ðŵÞÞ ) 1þ hkŵk1, which differs from

Xm

i¼1

ŵi lim
t!0þ

mðteiÞ ) mð0mÞ þ h1TmðteiÞ
t

' (
¼ hkŵk1 (34)

(due to Definition 1 and Remark 5, formulas (33) and (34)
would have coincided, instead, in the case of differentia-
bility of the objective of Problem FMMC-l1(h) at w ¼ 0m).
Then, we conclude that the objective of Problem FMMC-
l1(h) is nondifferentiable at w ¼ 0m. tu

Remark 6. For n ¼ 2 and m ¼ 1, instead, the objective of
Problem FMMC-l1(h) is differentiable at w ¼ 0m, as
shown by Example 1. This is not in contrast with the
proof of Proposition 4, since in this case - as being
n < 3—the graph associated with the weighted adja-
cency matrix P ðte1Þ is connected for every t 2 ð0; 1-.

e) Choice of the regularization parameter and reoptimization.
The theoretical results presented above justify the follow-

ing practical rule for choosing the regularization parameter h:

- given a positive integer N and a maximal acceptable
increase " > 0 for the second-largest eigenvaluemod-
ulus of P with respect to its optimal value m+

FMMC in
Problem FMMC, solve Problem FMMC-l1(h) in corre-

spondence ofN values hðjÞ for h such that
. 0 < hð1Þ < hð2Þ < ( ( ( < hðNÞ < 2 (the last in-

equality needed to avoid just the trivial optimal
solution w+ ¼ 0m), and

. mðw+
1ðhðjÞÞÞ * m+

FMMC þ " (j ¼ 1; . . . ; N) (the
inequality needed just to guarantee the desired

tolerance on mðw+
1ðhðjÞÞÞ, hence on the rate of con-

vergence to the consensus state);
- choose j+ 2 f1; . . . ; Ng that maximizes the sparsity

sðw+
1ðhðjÞÞÞ;

- perform a final reoptimization step, solving Problem
FMMC on the graph obtained removing from the
original graph all the non self-loop edges i for which

w+
1;iðhðj

+ÞÞ ¼ 0, obtaining another weight vector w+
reopt.

By construction, the last reoptimization step satisfies

mðw+
reoptÞ * mðw+

1ðhðj
+ÞÞÞ (due to the optimality of w+

reopt on

Problem FMMC on the new graph, and the feasibility of

w+
1ðhðj

+ÞÞ for such an optimization problem), and sðw+
reoptÞ '

sðw+
1ðhðj

+ÞÞÞ. Such a reoptimization step is common to other
l1-regularized optimization problems: for the LASSO, it is
known as debiasing [18, Section 13.3.5].

Finally, a possible way to choose the tolerance parameter "
(which has to be in any case smaller than 1) m+

FMMC , again to
avoid trivial optimal solutions) consists in expressing it in
terms of the maximal allowable ratio r between the mixing
time tðP ðwÞÞ and its optimal value t+FMMC :¼ 1

log ð 1
m+
FMMC

Þ , which

is obtainedwhen solving Problem FMMC, i.e., one sets

" ¼ m+
FMMC

) *1
r)m+

FMMC : (35)

f) Interpretation of Problem FMMC-l1(h) as a robust version of
Problem FMMC.

Problem FMMC-l1(h) has also the following interpreta-
tion. Let us suppose that, for any given “nominal” choice
of the weights wi (i ¼ 1; . . . ; m), one has an “uncertainty”
Dwi such that jDwij * djwij, for some fixed d > 0. Then, an
application of Gersghorin’s theorem and Weyl’s inequal-
ities2 in matrix-perturbation theory shows that the sec-
ond-largest eigenvalue modulus mðwþ DwÞ is bounded
from above as

2. Let A;B 2 Rn&n and symmetric, and let their eigenvalues be
ordered nonincreasingly with their multiplicity as

!1ðAÞ ' !2ðAÞ ' ( ( ( ' !jðAÞ ' ( ( ( ' !nðAÞ ; (36)

!1ðBÞ ' !2ðBÞ ' ( ( ( ' !jðBÞ ' ( ( ( ' !nðBÞ : (37)

Then, in their simplest form, Weyl’s inequalities [19, Theorem 8.4.11]
state that, for every j ¼ 1; . . . ; n, one has

!jðAÞ þ !nðBÞ * !jðAþBÞ * !jðAÞ þ !1ðBÞ : (38)
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mðwþ DwÞ * mðwÞ þ 2dkwk1 : (39)

Then, an optimal “robust” choice of the nominal weight vec-
tor w is obtained minimizing the objective mðwÞ þ 2dkwk1 on
the set of admissible weight vectors w, i.e., solving a robust
version of Problem FMMC which takes into account the
uncertainty of the weights, and is obtained replacing its
objective mðwÞwith mðwÞ þ 2dkwk1. However, this is equiva-
lent to solving Problem FMMC-l1(ðh) with the choice h ¼ 2d.
Finally, we notice that, when d ' 1, for every admissible
nominal choice of the vector w, the perturbation Dw ¼ )w is
admissible for the robust version of Problem FMMC just
described, and the resulting perturbed vector is wþ Dw ¼
0m, which satisfies mð0mÞ ¼ 1, as being the resulting graph
disconnected. Hence, when d ' 1, for every nominal choice
of w one cannot have mðwþ DwÞ < 1 for every admissible
perturbation, and w ¼ 0m is an optimal nominal choice. This
is consistent with Proposition 3.

g) Extension to Problem FMMCconstr-l1(h).
Apart from the tightness of the bound on the minimal

value of the regularization parameter h for which wfree ¼
0mfree

is an optimal solution, the results above can be ex-

tended to Problem FMMCconstr-l1(h). In particular, Proposi-
tions 1, 2, and 3 can be extended to Problem FMMCconstr-
l1(h), simply replacing wfree with w. For the first two proposi-
tions, the extension requires no significant changes in the
proofs. In the third case, the only significant change in the
proof is the additional use of the above-mentioned Weyl’s
inequalities to get a formula similar to (27), bounding the
eigenvalues of the sum of two symmetric matrices. To
obtain the extension of Proposition 4, maintaining the struc-
ture of the proof, one requires the additional assumption
that the subgraph containing only the fixed edges is discon-
nected, and remains disconnected when adding arbitrarily
only one of the “free” edges.

h) Formulation through semidefinite programming.
Likewise Problem FMMC, Problems FMMC-l1(h) and

FMMCconstr-l1(h) can be formulated as semidefinite programs,
allowing the use of interior-point methods for finding
their optimal solutions. More precisely, one obtains the fol-
lowing alternative formulation3 of Problem FMMC-l1(h),
expressing the m non self-loop edges in terms of their end-
points as ði; jÞ, and considering the set

E :¼fði; jÞ : i 6¼ j; i; j 2 f1; . . . ; ng; and
9k 2 f1; . . . ; ng such that Mik ¼ Mjk ¼ 1g :

(40)

Problem FMMC-l1ðhÞl1ðhÞ ðSDP formulationÞ :

minimize
s2R;P2Rn&n

sþ h
2

Xn

i6¼j; i;j¼1

Pij

 !

subject to )sI / P ) 1
n 1n1

T
n / sI;

P1n ¼ 1n; P ¼ PT ;

Pij ' 0; 8i; j 2 f1; . . . ; ng ;
Pij ¼ 0; if ði; jÞ =2 E:

(41)

One gets also the following alternative formulation of Prob-
lem FMMCconstr-l1(h), introducing the subset Efixed . E of
edges ði; jÞ associated with fixed weights Pij;fixed ¼ Pji;fixed.

Problem FMMCconstr-l1ðhÞl1ðhÞ ðSDP formulationÞ :

minimize
s2R;P2Rn&n

sþ h
2

Xn

i6¼j; i;j¼1

Pij

 !

subjectto )sI / P ) 1
n 1n1

T
n / sI;

P1n ¼ 1n; P ¼ PT ;

Pij ' 0; 8i; j 2 f1; . . . ; ng ;
Pij ¼ 0; if ði; jÞ =2 E;
Pij ¼ Pij;fixed; if ði; jÞ 2 Efixed:

(42)

Of course, the fixed weights Pij can be removed from the
summation inside the objective of the optimization problem
above, without changing its optimal solution.

In Section 6, we present some numerical results obtained
solving both Problems FMMC-l1(h) and FMMCconstr-l1(h)
through a modified version of the MATLAB function
fmmc.m in the CVX package (http://cvxr.com/cvx/
download/), which solves the SDP formulation of Problem
FMMC presented in [5] and [9]. Such a modified version is
basically obtained adding the linear term h

2

Pn
i 6¼j; i;j¼1 Pij

inside the objective of the original optimization problem.

5 THEORETICAL RESULTS FOR PROBLEM

FMMC-l0(h)

In this section, we provide some theoretical results about
the optimal solution of Problem FMMC-l0(h). They usually
provide structural properties of the optimal solution similar
to the ones obtained in Section 4 for Problem FMMC-l1(h),
with some differences in the proofs. To differentiate the
notation with respect to the one used for Problem FMMC-
l1(h), we use the subscript “0” when referring to an optimal
solution of Problem FMMC-l0(h).

a) Existence of an optimal solution.
The next result states the existence of an optimal solution

to Problem FMMC-l0(h). Before stating it, we need to recall
the following definition of lower semi-continuity, which is
used in the proof of the next Proposition 5.

Definition 2. Let f : X ! R be a real-valued function defined on
a topological space X. Then, f is lower semi-continuous iff
8c 2 R, the set fx 2 X : fðxÞ * cg is closed.

Proposition 5. Problem FMMC-l0(h) admits an optimal solution
for every h > 0.

Proof. The feasible set of Problem FMMC-l0(h) is convex,
closed, and bounded, hence compact, as being Rm a
finite-dimensional vector space. Moreover, its objective is
lower semi-continuous since:

- the l0-pseudo-norm regularization term kwk0 is
lower semi-continuous (which is verified taking,

for any c > 0, any convergent sequence fwðkÞg1k¼1

such that kwðkÞk0 * c for all k, and observing that
also its limit satisfies the same inequality);

3. Here and in the following, for any two symmetric matrices
X;Y 2 Rn&n, the notation X / Y (resp., X 0 Y ) means that X ) Y is
negative (resp., positive) semidefinite, whereas X * Y (resp., X ' Y )
stands for an elementwise inequality.
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- as it has been shown in the proof of Proposition 1,
on the feasible set, the second-largest eigenvalue
modulus mðP ðwÞÞ is continuous (hence, also
lower semi-continuous);

- the sum of two lower semi-continuous functions
is lower semi-continuous, too.

Concluding, Problem FMMC-l0(h) involves the mini-
mization of a lower semi-continuous objective function
on a compact set, so an optimal solution to Problem
FMMC-l0(h) exists by the generalized Weierstrass theo-
rem [20, Theorem 2.43]. tu

b) Effect of the regularization parameter.
Likewise Proposition 2, next Proposition 6 shows that the

regularization parameter h has opposite effects on the two
terms mðwÞ and kwk0, when evaluated at an optimal solu-
tion. The proof is very similar to the one of Proposition 2,
hence it is not reported.

Proposition 6. Let 0 < h1 < h2, and w+
0ðh1Þ; w+

0ðh2Þ be optimal
solutions to Problem FMMC-l0(h1) and Problem FMMC-
l0(h2), respectively. Then,

i) mðw+
0ðh1ÞÞ * mðw+

0ðh2ÞÞ;
ii) kw+

0ðh1Þk0 ' kw+
0ðh2Þk0 .

Differently from the case of Problem FMMC-l1(h) investi-
gated in Section 4, however, also the sparsity

sðw+
0ðhÞÞ :¼ 1) kw+

0ðhÞk0=m

¼ fraction of zero components of w+
0ðhÞ

is a monotonic function of h, as it is shown by the next prop-
osition, whose proof is immediate and is, therefore, omitted.

Proposition 7. Let 0 < h1 < h2, then sðw+
0ðh1ÞÞ * sðw+

0ðh2ÞÞ.
Notice that, since

- any subgraph with n vertices and m̂ * m (non self-
loop) non-zero weighted edges cannot be connected
when m̂ < n) 1 (as n) 1 is the number of edges in a
spanning tree);

- when the subgraph associated with a feasible w is dis-
connected, the corresponding mðwÞ is equal to 1, so the
optimal choice for w in Problem FMMC-l0(h) is
w ¼ 0m, when one limits to consider disconnected sub-
graphs;the value of the optimal sparsity for Problem
FMMC-l0(h) cannot belong to the interval m)nþ1

m ; 1
) *

(which corresponds with disconnected subgraphs with
at least 1 non self-loop edge), whereas the value 1 is
achievable, and it corresponds to the trivial case of a
completely disconnected subgraph at optimality. Con-
cluding, the possible values for the optimal sparsity for
Problem FMMC-l0(h) are 0; 1

m ; 2
m ; . . . ; m)n

m ; m)nþ1
m ; 1.

The next result states the continuity of the optimal value
of the objective in Problem FMMC-l0(h), and shows also
that Problem FMMC-l0(h) “behaves” like Problem FMMC
for h sufficiently small.

Proposition 8. Let w+
0ðhÞ (resp., w+) be an optimal solution of

Problem FMMC-l0(h) (resp., of Problem FMMC), and
mðw+

0ðhÞÞ (resp., mðw+Þ) the value of the second-largest

eigenvalue modulus of the associated weighted adjacency
matrix P ðw+

0ðhÞÞ (resp., P ðw+)). Then,

i) mðw+
0ðhÞÞ þ hkw+

0ðhÞk0 depends continuously on h;
ii) limh!0þ mðw+

0ðhÞÞ ¼ mðw+Þ;
iii) Given any sequence fhkg

þ1
k¼1 convergent to 0, and an

associated sequence fw+
0ðhkÞg

þ1
k¼1, one can extract from

the latter a subsequence that converges to an optimal
solution of Problem FMMC.

Proof. i) Let 0 < h1, 0 < h2, and h1 6¼ h2. Due to the opti-
mality of w+

0ðh1Þ and w+
0ðh2Þ for Problems FMMC-l0(h1)

and FMMC-l0(h2), resp., one gets

mðw+
0ðh1ÞÞ þ h1kw+

0ðh1Þk0 * mðw+
0ðh2ÞÞ þ h1kw+

0ðh2Þk0 ; (43)

and

mðw+
0ðh2ÞÞ þ h2kw+

0ðh2Þk0 * mðw+
0ðh1ÞÞ þ h2kw+

0ðh1Þk0 : (44)

Then, combining (43) and (44), one obtains

mðw+
0ðh1ÞÞ

* mðw+
0ðh2ÞÞ þ h1 kw+

0ðh2Þk0 ) kw+
0ðh1Þk0

) *

* mðw+
0ðh1ÞÞ þ h2 kw+

0ðh1Þk0 ) kw+
0ðh2Þk0

) *

þ h1 kw+
0ðh2Þk0 ) kw+

0ðh1Þk0
) *

¼ mðw+
0ðh1ÞÞ þ ðh2 ) h1Þ kw+

0ðh1Þk0 ) kw+
0ðh2Þk0

) *
:

(45)

Since w+
0ðh1Þ and w+

0ðh2Þ belong to the admissible set,
which is compact, formula (45) implies (reversing also
the roles of h1 and h2)

mðw+
0ðh1ÞÞ þ h1kw+

0ðh1Þk0
¼ lim

h2!h1
mðw+

0ðh2ÞÞ þ h1kw+
0ðh2Þk0

) *

¼ lim
h2!h1

mðw+
0ðh2ÞÞ þ h2kw+

0ðh2Þk0
) *

;

(46)

from which item i) follows.
Item ii) is proved likewise item i), exploiting also the

fact that w+
0 belongs to an admissible compact set, hence

the term hkw+
0k0 vanishes as h tends to 0 from the right.

Finally, item iii) is obtained combining item ii) with
the compactness of the admissible set (which makes it
possible to extract a convergent subsequence, starting
from any subsequence belonging to that set) and the
continuity of the second-largest eigenvalue modulus
mðP ðwÞÞ with respect to w (already shown in the proof of
Proposition 1). tu

Remark 7. A result similar to Proposition 8 holds also for
Problem FMMC-l1(h). In that case, the proof of the corre-
sponding item i) could be also obtained exploiting Berge’s
theorem of themaximum (see, e.g., [21, Section 3.3]).

c) Conditions under which w ¼ 0m is an optimal solution to
Problem FMMC-l0(h).

The next result states conditions on the regularization
parameter under which w ¼ 0m is an optimal solution to
Problem FMMC-l0(h), or its unique optimal solution. An
application of the result to the choice of the regularization
parameter is given in Section 5 fÞ.

Proposition 9. Let h ' 1
n)1. Then w ¼ 0m is an optimal solution

to Problem FMMC-l0(h). If h > 1
n)1, then w ¼ 0m is its

unique optimal solution.
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Proof. Let Dw be an arbitrary admissible increment of w,
starting from w ¼ 0m. Then, the corresponding increment

Df ð0;hÞ in the objective f ð0;hÞ of Problem FMMC-l0(h) is

Df ð0;hÞ ¼ mðDwÞ ) mð0mÞ þ hkDwk0 : (47)

Now, one has mð0mÞ ¼ 1 (as the associated weighted adja-
cency matrix is P ð0mÞ ¼ In). If kDwk0 < n) 1, then the

graph associated with Dw is disconnected, and Df ð0;hÞ ¼
hkDwk0 ' 0. If kDwk0 ' n) 1, then Dfð0;hÞ ' hkDwk0 ) 1,
which is also non-negative by the assumption h ' 1

n)1.

Then, if h ' 1
n)1, Df

ð0;hÞ is non-negative for every arbitrary
admissible Dw 6¼ 0m, hence w ¼ 0m is an optimal solution

to Problem FMMC-l0(h). If h > 1
n)1, then Df ð0;hÞ is positive

for every arbitrary admissible Dw 6¼ 0m, hence w ¼ 0m is
the only optimal solution to Problem FMMC-l0(h). tu

The following example shows that the bound obtained in
Proposition 9 is tight, at least if one does not impose further
restrictions on the class of graphs to be considered.

Example 2. Likewise in Example 1, let n ¼ 2 and m ¼ 1.
Then, again, the matrix P ðwÞ has the expression (29) and
the eigenvalues 1 and 1) 2w1. Hence, on the subset ð0; 1-
of admissible solutions to Problem FMMC-l0(h), its objec-
tive is j1) 2w1jþ h, whereas for w1 ¼ 0, the objective is
equal to 1. Hence, w1 ¼ 0 is, respectively, the unique opti-
mal solution to Problem FMMC-l0(h) for h > 1, one of its
two optimal solutions for h ¼ 1 (the other one being
w1 ¼ 1

2), and a suboptimal solution for 0 < h < 1 (the

optimal one being w1 ¼ 1
2).

Remark 8. Interestingly, Example 2 demonstrates also that
the functions mðw+

0ðhÞÞ and kw+
0ðhÞk0 may be not con-

tinuous. Indeed, in this example, one has mðw+
0ðhÞÞ ¼ 0

for h 2 ð0; 1Þ, and mðw+
0ðhÞÞ ¼ 1 for h > 1. Moreover,

kw+
0ðhÞk0 ¼ 1 for h 2 ð0; 1Þ, and kw+

0ðhÞk0 ¼ 0 for h > 1. A
similar remark about the possible absence of continuity
holds for Problem FMMC-l1(h), when one considers the
same graph of this example.

d) Non differentiability of the objective at w ¼ 0m.
Likewise Proposition 4, the next result shows that in gen-

eral the objective of Problem FMMC-l0(h) is not differentia-
ble at w ¼ 0m.

Proposition 10. Let n ' 2. Then,

i) the second-largest eigenvalue modulus term mðwÞ is
nondifferentiable at w ¼ 0m for n ' 3, and differentia-
ble for n ¼ 2;

ii) the l0-pseudo-norm regularization term kwk0 is non-
differentiable at w ¼ 0m;

iii) the objective of Problem FMMC-l0(h) is nondifferentia-
ble at w ¼ 0m.

Proof.

i) Let us consider at first the case n ' 3. Then, at
w ¼ 0m, proceeding likewise in the proof of Prop-
osition 4, the directional derivative of the term
mðwÞ in the direction ei, i.e.,

lim
t!0þ

mðteiÞ ) mð0mÞ
t

; (48)

is equal to 0. Now, let ŵ be any admissible weight
vector with ŵ > 0m (elementwise). Then, at
w ¼ 0m, proceeding likewise in the proof of Prop-
osition 4, the directional derivative of the term
mðwÞ in the direction ŵ, i.e.,

lim
t!0þ

mðtŵÞ ) mð0mÞ
t

; (49)

is different from 0, and differs from

Xm

i¼1

ŵi lim
t!0þ

mðteiÞ ) mð0mÞ
t

' (
¼ 0 (50)

(recall Remark 5). Then, we conclude that, for
n ' 3, the term mðwÞ is nondifferentiable at
w ¼ 0m. Finally, for n ¼ 2, the term mðwÞ is differ-
entiable, as shown by Example 2.

ii) Nondifferentiability of the l0-pseudo-norm term
kwk0 at w ¼ 0m follows by the facts that k0mk0 ¼ 0,
and in any neighborhood of 0m with radius " > 0

there exists a feasiblewð"Þ with kwð"Þk0 ' 1.
iii) This follows combining the proofs of items i)

and ii). tu

e) Algorithmic issues.
The following result shows the combinatorial nature of

Problem FMMC-l0(h), and also how solving an instance of
such a problem can be reduced to solving several instances
of (easier to solve) Problems FMMC. The upper bound b1hc of
non self-loop edges in the next proposition comes from the
consideration than any optimal solution w+

0ðhÞ of Problem
FMMC-l0(h) cannot have more than b1hc non-zero compo-

nents, otherwise the trivial choicew ¼ 0m is a better solution.

Proposition 11. Any instance of Problem FMMC-l0(h) can be
solved as follows:

- starting from the original graph G associated with the
vertex-edge incidence matrix M, generate the set Gh of
all its subgraphs Gk with n vertices and with at most
b1hc non self-loop edges;

- for each subgraph Gk 2 Gh, find an optimal solution
w+ðGkÞ of the instance of Problem FMMC associated
with such subgraph, and the corresponding mðw+ðGkÞÞ;

- find a subgraph Gk+ 2 Gh that solves the optimization
problem

minimize
Gk2Gh

mðw+ðGkÞÞ þ hkw+ðGkÞk0
) *

: (51)

Then,

i) the resulting vector w+ðGk+ðhÞÞ is an optimal solution of
Problem FMMC-l0(h);

ii) all optimal solutions of Problem FMMC-l0(h) can be
generated according to the procedure above. Moreover,
the same optimal solution w+

0ðhÞ of Problem FMMC-
l0(h) may be generated starting from more than one
subgraph Gk+ðhÞ 2 Gh (which is optimal for the
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optimization problem (51)), in case of non-uniqueness
of the optimal k+ðhÞ. In particular, one of such sub-
graphs Gk+ðhÞ is the one G~kðhÞ whose non self-loop edges

are the ones associated with the non-zero components
of w+

0ðhÞ.

Proof.

i) Since w+ðGk+ðhÞÞ is feasible for Problem FMMC-
l0(h), one gets, for any optimal solution w+

0ðhÞ of
Problem FMMC-l0(h),

mðw+ðGk+ðhÞÞÞ þ hkw+ðGk+ðhÞÞk0
' mðw+

0ðhÞÞ þ hkw+
0ðhÞk0 :

(52)

Let us show by contradiction that also the reverse
inequality holds in (52), implying the equality
therein. Suppose to the contrary that

mðw+ðGk+ðhÞÞÞ þ hkw+ðGk+ðhÞÞk0
> mðw+

0ðhÞÞ þ hkw+
0ðhÞk0 : (53)

Let G~kðhÞ 2 Gh the subgraph whose non self-loop
edges are the ones associated with the non-zero
components of w+

0ðhÞ. Hence, solving Problem
FMMC on G~kðhÞ, one obtains

mðw+ðG~kðhÞÞÞ * mðw+
0ðhÞÞ ; (54)

by the optimality of w+ðG~kðhÞÞ for Problem FMMC
on G~kðhÞ, and the feasibility of w+

0ðhÞ for the same

optimization problem, and

kw+ðG~kðhÞÞk0 * kw+
0ðhÞk0 ; (55)

by construction. Hence,

mðw+ðG~kðhÞÞÞ þ hkw+ðG~kðhÞÞk0
* mðw+

0ðhÞÞ þ hkw+
0ðhÞk0

< mðw+ðGk+ðhÞÞÞ þ hkw+ðGk+ðhÞÞk0 ;
(56)

which contradicts the optimality of Gk+ðhÞ for the
optimization problem (51). Hence, (53) cannot
hold, and w+ðGk+ðhÞÞ solves Problem FMMC-l0(h).

ii) Let us consider any optimal solution w+
0ðhÞ of

Problem FMMC-l0(h). Likewise in the proof of
item ii), considering the subgraph G~kðhÞ 2 Gh

whose non self-loop edges are the ones associated
with the non-zero components of w+

0ðhÞ, one
obtains both (54) and (55) with the equality, due
to the optimality of w+

0ðhÞ for Problem FMMC-
l0(h). So, w+

0ðhÞ is also generated by the procedure
detailed in the statement of the proposition. In
particular, it is generated starting from the sub-
graph G~kðhÞ. However, in general there may exist

also other optimal subgraphs Gk+ðhÞ for the optimi-
zation problem (51), which generate the same
w+

0ðhÞ, i.e., such that w+ðGk+ðhÞÞ ¼ w+
0ðhÞ. tu

Due to the combinatorial nature of Problem FMMC-l0(h),
unfortunately, the number of instances of subproblems

FMMC to be considered in formula (51) is in general very
large (unless the original graph is “small”, or h is large),
however we remark that:

- each subproblem FMMC is convex and has a semide-
finite programming formulation, which can be solved
through the MATLAB function fmmc.m in the CVX
package (http://cvxr.com/cvx/download/) already
mentioned in Section 4;

- the number of subproblems FMMC to be considered
depends on the parameter h, and is non-increasing
with respect to h. In particular, larger values for h
(which correspond with a larger desired sparsity) are
associatedwith a smaller number of subproblems;

- some simplifications are possible, making it possible
to reduce the number of subgraphs to be considered
in formula (51). For instance, one can detect and
remove all disconnected subgraphs (which can be
detected, e.g., either checking the algebraic multiplic-
ity of the associated Laplacian eigenvalue 1, or
applying an algorithm presented in [22], which gen-
erates all connected subgraphs of a given graph,
with the same number of vertices as in the original
graph). Finally, isomorphic subgraphs could be also
detected and represented by one single subgraph
(although the approach should be in practice limited
to subgraphs with a small number of edges, since the
graph isomorphism problem belongs to the NP class
of computational complexity [23]);

- Proposition 11 may suggest, as one possible heuristic
to obtain good suboptimal solutions to an instance of
Problem FMMC-l0(h), to generate a small number of
random sparse subgraphs Gk of the original graph
with vertex-edge incidence matrix M, solve the asso-
ciated instances of Problem FMMC, then take,
among the obtained optimal solutions w+ðGkÞ, the
one that minimizes mðw+ðGkÞÞ þ hkw+ðGkÞk0.

f) Choice of the regularization parameter.
Likewise in Section 4, the theoretical results presented

above justify the following practical rule for choosing the
regularization parameter h:

- given a positive integer N and a maximal acceptable
increase " > 0 for the second-largest eigenvalue
modulus of P with respect to its optimal value
m+
FMMC in Problem FMMC, solve Problem FMMC-

l0(h) in correspondence ofN values hðjÞ for h such that
. 0 < hð1Þ < hð2Þ < ( ( ( < hðNÞ < 1

n)1, and
. mðw+

0ðhðjÞÞÞ * m+
FMMC þ " (j ¼ 1; . . . ; N) ;

- choose j+ 2 f1; . . . ; Ng that maximizes the sparsity

sðw+ðhðjÞÞÞ.

Remark 9. Differently from the case of Problem FMMC-l1(h)
investigated in Section 4, a final reoptimization step is

not needed after finding w+ðhðj+ÞÞ, since w+ðhðj+ÞÞ solves
an optimization problem including basically also the
sparsity in its objective.

Finally, a possible way to choose the tolerance parameter
" (which has to be in any case smaller than 1) m+

FMMC , again
to avoid trivial optimal solutions) is given by formula (35),
likewise in Section 4.
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g) Interpretation of Problem FMMC-l0(h) as a robust version
of Problem FMMC.

Likewise Problem FMMC-l1(h), Problem FMMC-l0(h) has
the following interpretation. Let us suppose that, for any
given “nominal” choice of the weights wi (i ¼ 1; . . . ;m), one
has an “uncertainty” Dwi such that jDwij * dUðwiÞ, for some
fixed d > 0, where

UðwiÞ :¼
0 if wi ¼ 0 ;
1 if wi > 0 :

!
(57)

Then, likewise in Section 4fÞ, one can show that the second-
largest eigenvalue modulus mðwþ DwÞ is bounded from
above as

mðwþ DwÞ * mðwÞ þ 2dkwk0 : (58)

Then, an optimal “robust” choice of the nominal weight vec-
tor w is obtained minimizing the objective mðwÞ þ 2dkwk0 on
the set of admissible weight vectors w, and is obtained
replacing the objective mðwÞ of Problem FMMC with
mðwÞ þ 2dkwk0. However, this is equivalent to solving Prob-
lem FMMC-l0(ðh) with the choice h ¼ 2d. Likewise in
Section 4gÞ, when d ' 1, w ¼ 0m is just an optimal nominal
choice for the robust version of Problem FMMC just
described, which is consistent with Proposition 9. In this
case, however, that proposition shows that w ¼ 0m is an
optimal nominal choice even under a less restrictive condi-
tion on d: namely, for any d ' 1

2ðn)1Þ.

6 NUMERICAL RESULTS

In this section, we first solve numerically Problems FMMC-
l0(h) and FMMC-l1(h) on a toy example, in which both prob-
lems can be practically solved in a reasonably small amount
of time, then their optimal solutions can be compared.
Finally, at the end of the section, we compare the optimal
solutions of Problems FMMC and FMMC-l1(h), when both
problems are applied to a model of a wireless sensor net-
work with a much larger number of nodes/edges.

6.1 Comparison of Problems FMMC-l1(h) and
FMMC-l0(h)

The comparison between the two sparse variations of Prob-
lem FMMC is performed on a graph with n ¼ 8 vertices
and m ¼ 20 non self-loop edges, which is shown in Fig. 1.
Problem FMMC-l0 is solved by following the procedure
described in Proposition 11. One can observe that, in this

case, the number of all subgraphs with n vertices is equal
to 220 ¼ 1;048;576. However, since we are interested only
in connected subgraphs, we first generate all such sub-
graphs (which have at least n) 1 ¼ 7 non self-loop edges,
since they must contain at least one spanning tree), then
we associate all isomorphic connected subgraphs with
a single representative connected subgraph. In this way, a
total of 8,693 non isomorphic subgraphs is generated, on
which Problem FMMC is solved, according to the proce-
dure described in Proposition 11. The comparison between
the optimal solutions to Problems FMMC-l1(h) and FMMC-
l0(h) is performed by varying the regularization parameter
h, and considering different ranges for such a parameter in
the two problems, since equal values of the parameter are
not directly comparable, as being associated with different
regularizations. In particular, for both problems, we con-
sider N ¼ 100 different values for the regularization
parameter equally spaced inside an interval I1 for Problem
FMMC-l1(h) and an interval I0 for Problem FMMC-l0(h).
From now on, we indicate with hðl1Þ the regularization
parameter associated to Problem FMMC-l1(h), while hðl0Þ
represents the regularization parameter associated to Prob-
lem FMMC-l0(h).

As a first step, we solve Problem FMMC on the graph
shown in Fig. 1, obtaining its optimal solutionw+

FMMC , whose
second-largest eigenvalue modulus is equal to mðw+

FMMCÞ ¼
0:3786, and the sparsity is equal to sðw+

FMMCÞ ¼ 0. Then, we
study the optimal solutions achieved by Problem FMMC-
l1(h) and Problem FMMC-l0(h). In practice, following the
procedures illustrated in Sections 4eÞ and 5fÞ, respectively,
we aim at determining a feasible solution whose associated
second-largest eigenvalue modulus is not much larger than
its minimum possible value m+

FMMC , and that, at the same
time, provides a satisfactory sparsity. For both procedures,
we choose r ¼ 1:5, which is associated with the tolerance
" ¼ 0:145, as m+

FMMC ¼ 0:3786 (see formula (35)). Hence, we
are interested in studying how the optimal solutions to the
two problems vary depending on hðl1Þ and hðl0Þ, respec-
tively, imposing the upper bound m+

FMMC þ " ¼ 0:5236 on m.
In particular, for Problem FMMC-l0(h) we consider 100 val-
ues of hðl0Þ equally spaced inside the interval I0 ¼ ½2 ( 10)8;
0:08-; while for Problem FMMC-l1(h) we consider 100 values
for hðl1Þ equally spaced inside the interval I1 ¼ ½0:02; 0:198-,
since they provide comparable ranges of values for m at
optimality (for graphical reasons, the results in the next fig-
ures are reported at a lower resolution).

In Fig. 2, we report, as functions of the regularization
parameter, the values of the second-largest eigenvalue mod-
ulus m and the sparsity s for the optimal solutions of Prob-
lem FMMC-l1(h) (subplots (a) and (b), respectively and
Problem FMMC-l0(h) (subplots (c) and (d), respectively).
The results shown in Fig. 2 reveal, as expected, that Problem
FMMC-l0(h) usually provides better solutions than Problem
FMMC-l1(h). In fact, in the two respective ranges of values
for the regularization parameter, the values of the second-
largest eigenvalue modulus obtained solving Problem
FMMC-l0(h) are comparable with the ones achieved solving
Problem FMMC-l1(h), but with a better sparsity. However,
from a computational point of view, solving Problem
FMMC-l0(h) for the specific example takes a much longer

Fig. 1. A toy example modeled by a graph with eight vertices and 20 non
self-loop edges.
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time than solving Problem FMMC-l1(h) for the same exam-
ple, i.e., about 40 seconds are needed to solve Problem
FMMC-l1(h) for all the 100 values of its regularization
parameter, whereas more than 4,000 seconds are required
to solve Problem FMMC-l0(h) for all the 100 values of its
regularization parameter, since this requires solving also all
its subproblems FMMC (one time each). The numerical sim-
ulations have been performed using MATLAB R2015a on a
notebook with a 1.60 GHz CPU and 8 GB of RAM.

In order to perform another comparison between the two
approaches, we also proceed in the following way:

1) we fix a positive integerNg, thenwe extract randomly
Ng subgraphs over the total of 8;683 non isomorphic
connected subgraphs of the original graph. This num-
ber of subgraphs is chosen in order to be able to find
an approximate solution to Problem FMMC-l0(h) in a
time comparable to the one needed to solve Problem
FMMC-l1(h) exactly (see the next step);

2) we apply a variation of the procedure described in
Proposition 11, considering only the subgraphs gen-
erated in the step 1) above;

3) we repeat the two steps above for some number Ns

of times;
4) we compute the average and standard deviation of

the results obtained over theNs repetitions.
In the following, for illustrative purposes, we always

choose Ng ¼ 100. We first consider the results achieved by
the procedure described above when fixing Ns ¼ 1. Fig. 3
shows the values of the second-largest eigenvalue modulus
(subplot (a)) and of the sparsity for the suboptimal solution
(subplot (b)) to Problem FMMC-l0(h) obtained in this case.
Also in this case, the values of the sparsity obtained are bet-
ter than the ones achieved solving Problem FMMC-l1(h),
but larger values of the second-largest eigenvalue modulus
are obtained compared with the exact solution of Problem
FMMC-l0(h). In addition, when hðl0Þ is larger than 0:04,
the obtained suboptimal solutions do not even satisfy the
required constraint m * 0:5236.

We now consider the case Ns ¼ 10. The plot on the top of
Fig. 4 shows the average and standard deviation of the

second-largest eigenvalue modulus of the suboptimal solu-
tion to Problem FMMC-l0(h) (subplot (a)), whereas subplot
(b) does the same for the sparsity. Again, when hðl0Þ is larger
than 0:06, in general the obtained suboptimal solutions do not
even satisfy the required constraint m * 0:5236. In addition,
due to the 10 repetitions, the time needed to obtain these
results is about 10 times larger than the one needed to solve
Problem FMMC-l1(h) exactly.

6.2 Comparison of Problems FMMC-l1(h),
FMMCconstr-l1(h), and FMMC

In this part of the paper, we investigate numerically the
optimal solutions of Problems FMMC-l1(h) and
FMMCconstr-l1(h), comparing them with the one of Problem
FMMC. In particular, as a test example, we consider a ver-
tex-edge incidence matrixM corresponding to a model of a
wireless sensor network with 50 vertices and 200 edges,
generated in a similar way as the one in [9, Section 5.1]. The
first two plots in Fig. 5 (subplots (a) and (b), respectively),

Fig. 2. Dependence on the regularization parameter of the second-larg-
est eigenvalue modulus m and the sparsity s for the optimal solutions of
Problems FMMC-l1(h) (subplots (a) and (b)) and FMMC-l0(h) (subplots
(c) and (d)).

Fig. 3. Dependence on the regularization parameter of the second-
largest eigenvalue modulus m and the sparsity s for the suboptimal solu-
tion of Problem FMMC-l0(h), obtained when 100 subgraphs are randomly
extracted from the whole set of connected non isomorphic subgraphs.

Fig. 4. Dependence on the regularization parameter of the average (over
10 trials) of the second-largest eigenvalue modulus m (upper plot) and of
the sparsity s (lower plot) for the suboptimal solution of Problem FMMC-
l0(h), obtained when 100 subgraphs are randomly extracted from the
whole set of connected non isomorphic subgraphs.
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which refers to the behavior of an optimal solution w+
1ðhÞ

with respect to h, confirm the statement of Proposition 2
about the opposite monotonic dependence on h of mðw+

1ðhÞÞ
and kw+

1ðhÞÞk1. Subplot (c) shows its sparsity sðw+
1ðhÞÞ as a

function of h, which in this particular case is not a mono-
tonic function of h. However, the plots also show that w+

1ðhÞ
is sparser than the optimal solution of Problem FMMC, for
all the considered values of h. So, they highlight the possi-
bility, in this case, of finding a value of the parameter h for
which the second-largest eigenvalue modulus mðw+

1ðhÞÞ is
not much larger than its minimum possible value m+

FMMC ,
and that, at the same time, provides a satisfactory sparsity
ofw+

1ðhÞ. Again, in order to find such a parameter, we follow
the procedure illustrated in Section 4eÞ. We choose r ¼ 1:5,
associated with the tolerance " ¼ 0:027, as m+

FMMC ¼ 0:9165
in this particular case. We also consider N ¼ 20 values

hð1Þ; . . . ; hðNÞ for the regularization parameter h (uniformly
spaced in the interval ½2 ( 10)5; 5 ( 10)3-, see Fig. 5), obtain-

ing j+ ¼ 5 and hðj
+Þ ¼ 1:1 ( 10)3 as the optimal regularization

parameter. For this value, we obtain mðw+
1ðhðj

+ÞÞÞ ¼ 0:9186,

kw+
1ðhðj

+ÞÞk1 ¼ 17:45, and sðw+
1ðhðj

+ÞÞÞ ¼ 0:545. Compared
with the optimal solution w+

FMMC of Problem FMMC
(for which mðw+

FMMCÞ ¼ 0:9165, kw+
FMMCk1 ¼ 23:71, and

sðw+
FMMCÞ ¼ 0:41), the increase of the second-largest eigen-

value modulus, the decrease of the l1-norm of the weight
vector, and the increase of its sparsity are, respectively,
about 0:2; 26, and 25 percent. In terms of the mixing time
(6), we obtain an increase of about 3 percent with respect to
the value associated with w+

FMMC . Fig. 6 shows: the original
graph associated with the given vertex-edge incidence
matrix M (subplot (a)); its subgraph obtained keeping only
the edges associated with non-zero weights in the optimal
solution w+

FMMC to Problem FMMC (subplot (b)); the one
obtained keeping only the edges associated with the non-

zero weights of w+ðhðj+ÞÞ (subplot (c)); a comparison of the
two subgraphs (subplot (d)), obtained merging such sub-
graphs and highlighting in blue the non-zero-weighted
edges appearing in both graphs and in green (resp., red)
the non-zero weighted edges of the optimal solution to

Problem FMMC (resp., Problem FMMC-l1(hðj
+Þ)) that are

associated with zero weights in the optimal solution to

Problem FMMC-l1(hðj
+Þ) (resp., Problem FMMC). In particu-

lar, starting from the original 200 edges joining different
vertices, the optimal solution to Problem FMMC keeps 118
edges, while the optimal solution to Problem FMMC-

l1(hðj
+Þ) keeps only 91 edges. The percentage of edge reduc-

tion when moving from w+
FMMC to w+

1ðhðj
+ÞÞ is therefore

about 23 percent.
As described in Section 4eÞ, after finding the parameter

hðj
+Þ, an additional improvement may be obtained perform-

ing a reoptimization step, solving Problem FMMC on the
sparser subgraph obtained deleting the edges associated
with zero weights in the obtained optimal solution w+

1ðhðj
+ÞÞ

to Problem FMMC-l1(hðj
+Þ). This step is illustrated in sub-

plots (e) and (f) of Fig. 6, which shows in red the edges
deleted by the reoptimization step. In this way, a new
weight vector w+

reopt is obtained with mðw+
reoptÞ * mðw+

1ðhðj
+ÞÞÞ

and sðw+
reoptÞ ' sðw+

1ðhðj
+ÞÞÞ. So, compared with w+

1ðhðj
+ÞÞ, the

sparsity of the weight vector w+
reopt either remains the same

or even increases, whereas the second-largest eigenvalue
modulus either remains the same or even decreases. Indeed,
after the reoptimization step, we obtain mðw+

reoptÞ ¼ 0:9169

and sðw+
reoptÞ ¼ 0:56.

Finally, we report the results obtained solving Problem
FMMCconstr-l1(h) (in this case, for simplicity of comparison,

for h ¼ hðj
+Þ), imposing the constraint that the 11 non self-

loop edges associated with the vertex A in Fig. 7 are fixed,
resp., to the values 0:1; 0:05; 0:25; 0:1; 0:01; 0:07; 0:05; 0:1;
0:02; 0:05; 0:1, whose sum is 0:9 < 1 (hence the problem is

feasible). Since such constraints are not satisfied by wðj+Þ
1 , a

significant change of the optimal solution is expected, with
respect to the unconstrained version of the problem. Indeed,

for the optimal solution w+
free;1ðhðj

+ÞÞ to such an instance of

Problem FMMCconstr-l1(hðj
+Þ), we obtain mðw+

free;1ðhðj
+ÞÞÞ ¼

0:9193. Such an increase of mðw+
free;1ðhðj

+ÞÞÞ with respect to

mðw+
1ðhðj

+ÞÞÞ was also expected, as Problem FMMCconstr-

l1(hðj
+Þ) is more constrained than Problem FMMC-l1(hðj

+Þ),

Fig. 5. Dependence on h of the second-largest eigenvalue modulus of
the weighted adjacency matrix P ðwÞ evaluated at an optimal solution
w+

1ðhÞ of Problem FMMC-l1(h), the l1-norm of w+
1ðhÞ, and its sparsity. Fig. 6. A comparison of the subgraphs associated with non-zero weights

in the optimal solutions to Problems FMMC and FMMC-l1(hðj
+Þ). See the

main text for explanations about the colors used in the figure.
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and has the same objective (including in the objective also the
fixedweights).

7 CONCLUSIONS

In the paper, we have presented some theoretical and
numerical results about several sparse variations of the
Fastest Mixing Markov-Chain problem. Among possible
future developments, we mention:

! the possibility of using other sparsity-enforcing reg-
ularization terms (such as the reweighted l1-norm
[24], the group LASSO [25] and the sparse group
LASSO [26]);

! the possible extension of the nondifferentiability
results provided by Propositions 4 and 10 to other
values for the weight vector w. This could be useful
to motivate the choice of suitable alternative iterative
algorithms to solve Problems FMMC-l1(h) and
FMMC-l0(h);

! an investigation of theoretical bounds on the degree
of sub-optimality in sparsity of the optimal solution
to Problem FMMCconstr-l1(h) with respect to the one
achieved using the l0-pseudo-norm;

! the possibility to obtain probabilistic guarantees on
the heuristic proposed in Section 5eÞ to solve Prob-
lem FMMCconstr-l0(h) suboptimally, using the sce-
nario optimization approach [27];

! the possibility of solving the proposed regularized
optimization problems in a distributed way;

! an extension of the theoretical analysis to nonlinear
and stochastic consensus problems.
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