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Abstract— This article considers the two-stage approach
to solving a partially observable Markov decision process
(POMDP): the identification stage and the (optimal) control stage.
We present an inexact sequential quadratic programming frame-
work for recurrent neural network learning (iSQPRL) for solving
the identification stage of the POMDP, in which the true system
is approximated by a recurrent neural network (RNN) with
dynamically consistent overshooting (DCRNN). We formulate
the learning problem as a constrained optimization problem
and study the quadratic programming (QP) subproblem with a
convergence analysis under a restarted Krylov-subspace iterative
scheme that implicitly exploits the structure of the associated
Karush–Kuhn–Tucker (KKT) subsystem. In the control stage,
where a feedforward neural network (FNN) controller is designed
on top of the RNN model, we adapt a generalized Gauss–Newton
(GGN) algorithm that exploits useful approximations to the
curvature terms of the training data and selects its mini-batch
step size using a known property of some regularization function.
Simulation results are provided to demonstrate the effectiveness
of our approach.

Index Terms— Gauss–Newton methods, Markov decision pro-
cesses, numerical optimization, recurrent neural networks
(RNNs), reinforcement learning (RL), sequential quadratic pro-
gramming (SQP).

I. INTRODUCTION

REINFORCEMENT learning (RL) or approximate
dynamic programming (ADP) involves an agent or

decision maker that interacts with its environment based on
the states of the environment observable by the agent [1], [2].
For each decision that the agent makes, it incurs a cost or,
alternatively, gets a reward. Hence, the ultimate goal of the
agent is to minimize the total costs, or maximize the sum of
its rewards, received from the environment. In most cases, it is
assumed that the operations of the agent are in accordance
with a finite discrete-time Markovian decision process (MDP),
which, in turn, assumes that the states of the environment are
fully observable by the agent at any given time t , providing
all necessary information that the agent can use to decide
what action to take. This is not always the case in reality,
especially as the environment is mostly complex and its model
is unknown. Hence, many practical RL problems are solved
within the framework of partially observable Markov decision
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process (POMDP). In line with control problems, the envi-
ronment is presented as the state-space model of a dynamical
system that encodes the spatial and temporal information
about the system, which can be used to predict its future
behavior. With the popularity of deep learning methods [3],
the paradigm of world model [4] has been recently used to
describe RL methods in which a generative and/or predictive
model is trained to represent the agent’s own imagination
of the environment. A control neural network which the
agent uses to make decisions and takes actions online is
thereafter trained offline on top of the representative model.
This approach encompasses an idea that dates back as far as
the 1990s where mostly recurrent neural networks (RNNs)
are trained to build a predictive model of the environment or
complex system [5], [6], [7], [8], helping to possibly develop
a meaningful representation of the Markovian state space in
the face of partial observability [8]. Data efficiency becomes
an added advantage in the design of the representative RNN
model, which is a key element of model-based RL and control
methods [2]. These so-called recurrent control networks [7]
are mostly designed with much focus on their architecture that
enable them to capture relevant information about the underly-
ing system dynamics. Schaefer et al. [8] introduce the recurrent
control neural network (RCNN) with an architectural design
motivated by the two stages of a typical neural network-based
complex control method, namely: 1) a system identification
stage where an RNN with dynamically consistent overshooting
(DCRNN) [9] is designed to train a state-space model of
the system using process measurements and 2) an optimal
control (OC) policy selection stage where a feedforward
neural network (FNN) is concatenated with the RNN to learn
an OC policy, which is later used to control the real process.

This unified approach largely benefits from the approxi-
mation power of the individual neural networks when trained
with an appropriate gradient-based algorithm. Besides their
slow convergence, a drawback in learning RNNs for practical
applications with first-order gradient-based algorithms is the
possible problem of vanishing and exploding gradients [10],
[11], which may lead to their difficulty in learning long-term
dependencies, as their operations rely only upon the slope of
the loss surface in the Jacobian. The second-order methods,
however, can be used to mitigate these drawbacks by utilizing,
in their learning procedures, the information contained in
the curvature of the loss surface, which provably accelerates
convergence. The second-order methods for learning RNNs
have historically been used in two ways: 1) the use of
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second-order optimization algorithms, such as generalized
Gauss–Newton (GGN), Levenberg–Marquardt (LM), and
conjugate gradient (CG) algorithms (see [12], [13], [14], [15],
[16], [17], [18], [19]) and 2) using nonlinear sequential state-
estimation techniques, such as extended Kalman filter (EKF)
method (see [20], [21], [22], [23], [24], [25]). In the first
approach, the second-order information is captured through
Hessian (or approximate Hessian) computations, while in the
second approach, the second-order information is computed
recursively as a prediction-error covariance matrix. In any
event, these approaches provide ways to capture relevant
second-order information about the training loss function
as well as help to curtail the possible vanishing/exploding-
gradient problem. As the strength of data-based RL and control
methods lies in their data efficiency, it is further desirable
to capture curvature information about the neural network
training data for better approximation and representation
capability within the allotted training time. In control appli-
cations, recovering a good representation of the underlying
system is very important for robustness and reliability. For
this reason, many recent works have focused on designing
custom training algorithms for their application-specific RNN
structures (see the recent works [17], [26], [27], [28], [29]).

Although we discuss the training problem of RCNNs in
accordance with the two stages involved, our main focus is
on the first stage of the training problem where training a
DCRNN is viewed as a constrained optimization problem.
While this viewpoint helps us to develop alternative neural
network training algorithms, it can also provide tools to derive
useful convergence results for the algorithm [30]. In this work,
we establish an inexact sequential quadratic programming
(SQP) framework for the DCRNN training problem where
the quadratic programming (QP) subproblems are solved by
a restarted Krylov-subspace iterative scheme that implicitly
exploits the structure of the associated Karush–Kuhn–Tucker
(KKT) subsystems. As the resulting algorithm is based on
the restarted generalized minimal residual (GMRES) Krylov-
subspace method, we call it GMRES recurrent learning (GRL)
algorithm, or GRL(m̂r ) to include a given restart parameter
m̂r . The inexact sequential QP for recurrent neural network
learning (iSQPRL) framework allows us to use sparse iterative
methods that exploit the structure of subproblems for fast
convergence and to achieve a control- and data-efficient model
of the DCRNN. As a back-propagation-through-time (BPTT)
algorithm for training RNNs [31], GRL(m̂r ) also addresses one
of the main shortcomings associated with the class of BPTT
algorithms, viz., requiring an excessive number of iterations to
converge to the true solution, largely increasing the complexity
of the algorithm [32]. In the second stage—where we learn
an OC law—we simply adapt the GGN with self-concordant
regularization (GGN-SCORE) algorithm, established for con-
vex optimization problems in [33]. Because the GGN-SCORE
algorithm was established for curvature exploiting, this also
improves our overall model-based control decision approach
for data efficiency.

The rest of this article is organized as follows. In Section II,
we present the state-space RCNN model and the optimiza-
tion problem involved in each of the two training stages.

In Section III, we introduce the SQP framework for the
DCRNN learning problem of the first stage and present details
of our proposed learning algorithm, which we call GRL(m̂r ),
an algorithm that uses a nonmonotone line search for its
globalization (see Algorithm 1). In Section IV, we present
the curvature-exploiting GGN-SCORE algorithm for training
the control network of the second stage. We analyze the
complexity of the proposed algorithm in Section V. Numerical
examples in which we demonstrate our approach is pre-
sented in Section VI, and a concluding remark is given in
Section VII.

II. RECURRENT CONTROL NEURAL NETWORKS

The RCNN training problem involves two stages: 1) identify
a DCRNN model and 2) train an FNN on the DCRNN model
for OC policy selection. In accordance with this, we first
formulate the problem of training an RNN (and DCRNN).
Then, we present the RCNN and formulate its training problem
on top of an extension of the DCRNN model.

A. RNN for State Reconstruction in RL and Control

Suppose that the state transition and observables of the
environment or system process can be described by a nonlinear
open-loop dynamical system, for which a model is assumed
to be unknown. Let {u0, u1, . . . , uN−1} be a sequence of
inputs to the dynamical system and {y0, y1, . . . , yN−1} the
corresponding sequence of observable outputs, with ut ∈

Rnu , yt ∈ Rny . System identification is performed by training
an RNN model of the form

xt+1 = fx (xt , yt , ut , θx ) (1a)
ŷt = fy(xt , θy) (1b)

where fx and fy describe the Markovian state-space dynam-
ics and are, respectively, parameterized by the vectorized
weight/bias terms θx ∈ Rnθx and θy ∈ Rnθy , xt ∈ Rnx

is the RNN hidden state, and ŷt ∈ Rny is its prediction
of the system observable at time t . In the identification
task, the RNN is trained to encode meaningful information
about the true system in its hidden states xt . In addition to
passing the observables yt as external inputs to the state-update
function (1a), they are also given as the targets for the RNN
predictions ŷt . In this work, we propose to learn xt and the
parameter vectors θx , θy in parallel in the context described
in [22], that is, in a way analogous to direct multiple shooting
approach to OC problems. This is achieved by formulating the
learning task as the equality-constrained problem

min
z

f (z) := R(x0, θx , θy)+

N−1∑
t=0

ℓ(yt , ŷt ) (2a)

s.t. c(z) :=


x1 − fx (x0, y0, u0, θx )

...

xN−1 − fx (xN−2, yN−2, uN−2, θx )

cN (x0, fx (xN−1, yN−1, uN−1, θx ))

 = 0

(2b)
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Fig. 1. Unrolled DCRNN.

where f : Rn
→ R, c : Rn

→ Rm , z :=

[x⊤1 · · · x
⊤

N−1 x⊤0 θ⊤y θ⊤x ]
⊤

≡ [z1 z2 · · · zn]
⊤, n =

m + nθy + nθx , m = Nnx , ℓ : Rny × Rny → R
is a loss function, and R is a regularization term.
Both ℓ and R are assumed to be twice continuously
differentiable with respect to their arguments. The last
constraint in (2b) represents possible constraints, such
as periodicity, x0 − fx (xN−1, yN−1, uN−1, θx ) = 0
[34], or fixed terminal state constraint, where
cN : Rnx × Rnx → Rnx .

B. Extension to DCRNNs

Since now on, we will consider the special structure of (1)
given by

xt+1 = σx (Wxuut +Wxy yt +Wxx xt + bx ) (3a)
ŷt = Wyx xt + by (3b)

where σx (·) is an elementwise activation function. Let θx :=

vec([Wxu Wxy Wxx bx ]) and θy := vec([Wyx by]), where
Wxu ∈ Rnu×nx , Wxy ∈ Rnx×ny , Wxx ∈ Rnx×nx , and Wyx ∈

Rny×nx are the RNN weight matrices, and bx ∈ Rnx , by ∈ Rny

are the bias vectors associated with model (3). Formulation (2)
does not minimize a pure open-loop simulation error, in that
yt enters the state-update equation rather than ŷt . To handle
open-loop simulation terms, we approximate the recurrence
of the RNN dynamics by truncating its unrolling into the
past at a finite time step t = m−. The DCRNN contains in
modeling an internal dynamics by overshooting the network
dynamics in the sense that, we take m+ > 1 overshooting
time steps into the future where the network uses its own
predictions as the future external inputs [9] (see Fig. 1). Still,
in the overshooting part, the network gets the system inputs ut ,
as they also influence the network dynamics. This phenomenon
results in the following state-space equations of the DCRNN
dynamics:

xt+1 = σx (I x̂t +Wxuut + bx ) (4a)
ŷt = Wyx xt + by (4b)

with x̂t =

{
Wxx xt +Wxy yt ∀0 ≤ t ≤ m−
Wxx xt +Wxy ŷt ∀m− < t ≤ N

(4c)

where I ∈ Rnx×nx is an identity matrix. Letting ℓ = (yt −

ŷt )
2, c(z) := [c0, c1, . . . , cN ] ∈ Rm , and N = m− + m+, the

corresponding optimization problem is

min
z

f (z) := R(x0, θx , θy)+

N−1∑
t=0

(yt − ŷt )
2 (5a)

s.t. ct = 0 ∀t = 0, . . . , N (5b)
with ct := xt+1 − σx (I x̂t +Wxuut + bx ) (5c)

x̂t =

{
Wxx xt +Wxy yt ∀0 ≤ t ≤ m−
Wxx xt +Wxy ŷt ∀m− < t ≤ N − 1.

(5d)

C. FNN for OC Policy Selection

Given a training dataset {ut , yt }, t = 0, . . . , N − 1, after
computing the optimal values of the parameter vectors θx and
θy , we construct an FNN on top of the DCRNN to obtain an
RCNN (see Fig. 2). In this work, a three-layer FNN model
is considered to obtain new OC inputs ût , ∀t > m−. The
resulting control network together with the DCRNN forms the
following RCNN represented by their state-space equations:

ût = σu(Vuhσh(Vhx x̂t + bh)+ bu) ∀m− ≤ t ≤ N

(6a)

xt+1 =

{
σx (I x̂t +Wxuut + bx ) ∀0 ≤ t < m−
σx (I x̂t +Wxu ût + bx ) ∀m− < t ≤ N

(6b)
Rt = Grσr (Wyx xt + by) ∀m− < t ≤ N (6c)

with x̂t =

{
Wxx xt +Wxy yt , 0 ≤ t ≤ m−
Wxx xt +Wxy ŷt , m− < t ≤ N

(6d)

where Vuh ∈ Rnu×nh , Vhx ∈ Rnh×nx , bh ∈ Rnh , and
bu ∈ Rnu are the control network parameters to be learned,
and σu and σh are elementwise activation functions. Gr is a
constant, problem-specific matrix, chosen such that with an
appropriate choice of the function σr , the network output map
Rt (xt , ŷt ; ût ) models the problem’s reward function. Here, the
optimization problem to solve is

max
θu

f̂ (θu) :=

N−1∑
t=m−

Rt (7)

where θu := vec([Vuh Vhx bh bu]) ∈ Rnθu .

III. SEQUENTIAL QP FOR RECURRENT LEARNING

In the following, we describe the iSQPRL framework,
which we use to construct an algorithm to solve the DCRNN
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Fig. 2. Architecture of RCNNs.

learning problem. Consider again problem (5) and define the
Lagrangian

L(z, λ) := f (z)− λ⊤c(z) (8)

where λ ∈ Rm is the vector of Lagrange multipliers. The SQP
approach for solving problem (5) involves iteratively solving
the QP subproblem

d z
k ∈ arg min

dz

1
2

d⊤z H(zk)dz +∇ f (zk)
⊤dz (9a)

s.t. ∇c(zk)dz + c(zk) = 0 (9b)

at a given approximate solution zk , k = 1, 2, . . ., where
∇c(z) = [∇c0(z) · · · ∇cN−1(z)]⊤ ∈ Rm×n and H(zk) is the
Hessian ∇2L(zk, λk) := ∇

2 f (zk) + ∇(∇c(zk)
⊤λk) of the

Lagrangian at step k, or an approximation to it. Suppose at
iteration k, the QP solver finds an optimal multiplier λ̃k (which
can change from iteration to iteration). Then, by setting

dλ
k = λ̃k − λk (10)

we update (z, λ) using

zk+1 = zk + αkd z
k , λk+1 = λk + αkdλ

k (11)

where αk is a carefully chosen step length or learning rate.
This iterative process creates a sequence {zk} of approxima-
tions, which should be made to converge to a solution z∗ of (5).
Next, we consider the equivalent Newton viewpoint of the
QP subproblem (9), to simplify our analysis of the proposed
solution technique.

The necessary (KKT) optimality conditions for the QP
subproblem at any step k are given by the nonlinear equation

F̃(zk, λk) :=

[
∇ f (zk)−∇c(zk)

⊤λk
c(zk)

]
=

[
0
0

]
. (12)

For simplicity of notation, we denote by F̃k := F̃(zk, λk) and
similarly for other functional quantities, and set Jk := ∇ck and
gk := ∇ fk . By applying Newton’s method to (12), we obtain
Newton’s equation

Ãk d̃k = −F̃k, Ãk = ∇F̃k =

[
Hk −J⊤k
Jk 0

]
, d̃k =

[
d z

k
dλ

k

]
.

(13)

By treating λk+1 as an unknown and by letting Fk :=

[gk, ck]
⊤, bk := −Fk , we equivalently write (13) as the saddle-

point system [
Hk J⊤k
Jk 0

]
︸ ︷︷ ︸

Ak

[
dz

k
−λ̃k

]
︸ ︷︷ ︸

dk

=

[
−gk
−ck

]
︸ ︷︷ ︸

bk

. (14)

The solution dk to (14) constitutes the Newton direction at step
k. Depending on the choice of Hk , say Hk = ∇

2Lk , and by
setting dλ

k as in (10), we choose an appropriate value for the
step-length parameter αk , say αk = 1, and take the step (11).
Once the system in (14) is solved, Ãk and d̃k satisfying (13)
can then be obtained accordingly.

A. Approximating the Lagrangian Hessian

Clearly, the choice Hk = ∇
2Lk in (14) would be com-

putationally prohibitive for the DCRNN training problem in
most cases. Besides, we often need Hk to be positive-definite
in order to ensure that the QP subproblem solved at each
step is convex, thereby preserving the convergence proper-
ties provided by the primal step direction. However, ∇2Lk
is not positive-definite in general. In this work, we reduce
these computational difficulties by approximating ∇2Lk by
the modified Broyden–Fletcher–Goldfarb–Shanno (BFGS) for-
mula [35], [36], [37], [38] presented in [39].

Starting from an initial positive-definite matrix H0, the
modified BFGS scheme seeks an approximation Hk to the
true Hessian ∇2Lk as follows. At step k, define

γ̄k = θkγk + (1− θk)Hkδk, 0 ≤ θk ≤ 1 (15)

where γk = ∇Lk+1−∇L(zk, λk+1) and δk := αkd z
k = zk+1−

zk . Vector γ̄k is geometrically the closest to γk , such that the
inequality

δ⊤k γ̄k ≥ ηδ⊤k Hkδk (16)

is satisfied, where the parameter η is chosen empirically
and typically takes the value 0.2 [39], [40], [41], which is
just sufficient for our approximations. The key idea is to
gradually approach the true Hessian while accounting for the
curvature information captured during the most recent step.
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Consequently, the convexity parameter θk in (15) takes the
value

θk =


1, if δ⊤k γk ≥ ηδ⊤k Hkδk

(1− η)δ⊤k Hkδk

δ⊤k Hkδk − δ⊤k γk
, otherwise

(17)

and a rank-two matrix Uk defined by

Uk =
γ̄k γ̄
⊤

k

δ⊤k γ̄k
−

Hkδkδ
⊤

k Hk

δ⊤k Hkδk
(18)

is selected to update Hk as

Hk+1 = Hk +Uk (19)

which maintains positive-definiteness of Hk .

B. Numerical Solution of the Saddle-Point System

As the linear system (14) can involve a large number of
variables, it becomes natural to present a computationally
efficient technique for solving it. In this work, we do not wish
to impose restrictive assumptions on iSQPRL as we know
that the matrix Ak in (14) is not positive-definite. Hence,
we present a solution approach to the system in a general
learning framework. The GMRES algorithm [42], which we
briefly describe next, is our method of choice for this purpose.
Starting from an arbitrary initial guess dk,0 ∈ Rn̂, n̂ = n +m,
define the initial residual rk,0 := bk − Akdk,0, and let

Km̂(Ak, rk,0) := span
{

rk,0, Akrk,0, . . . , Am̂−1
k rk,0

}
(20)

be the m̂-dimensional Krylov subspace generated by Ak and
rk,0. At the m̂-th step, GMRES finds an approximation dk,m̂ ∈

Km̂ to the true solution dk = A−1
k bk . This approximate solu-

tion is the value of dk that minimizes the norm of the residual
rk,m̂ = bk − Akdk,m̂ . In its implementation, GMRES does not
explicitly form the vectors rk,0, Akrk,0, A2

krk,0, . . . , Am̂−1
k rk,0,

as they may be close to being linearly dependent; instead,
it uses the Arnoldi iteration to form an orthonormal basis
for Km̂(Ak, rk,0). In particular, if qk,1, qk,2, . . . , qk,m̂ are the
orthonormal vectors formed by the Arnoldi iteration, and if
these vectors form the matrix Qk,m̂ ∈ Rn̂×m̂ , then we can
write dk,m̂ as dk,m̂ = dk,0 + Qk,m̂sk,m̂ , sk,m̂ ∈ Rm̂ .

Let H̃k,m̂ ∈ R(m̂+1)×m̂ be the upper Hessenberg matrix gen-
erated from the (modified) Gram–Schmidt orthogonalization
step of Arnoldi iteration satisfying

Ak Qk,m̂ = Qk,m̂+1 H̃k,m̂ .

Let βk := ∥rk,0∥. Then, Qk,m̂+1e1 = qk,1 = ∥rk,0∥
−1rk,0,

where e1 := [1 0 0 · · · 0]⊤ ∈ Rm̂+1, and

rk,m̂ = bk − Akdk,m̂

= bk − Ak(dk,0 + Qk,m̂sk,m̂)

= βkqk,1 − Qk,m̂+1 H̃k,m̂sk,m̂

= Qk,m̂+1(βke1 − H̃k,m̂sk,m̂).

As Qk,m̂+1 has orthonormal columns, we get that

∥rk,m̂∥ = ∥βke1 − H̃k,m̂sk,m̂∥.

Therefore, one finds dk,m̂ ≡ dk by solving

min
s∈Rm̂
∥βke1 − H̃k,m̂s∥ (21)

whose solution can be obtained efficiently by using the QR
factorization of H̃k,m̂ , which, in turn, can be cheaply updated
from iteration to iteration by exploiting its structure.

While GMRES solves a general linear system, the restarted
variant of it, written GMRES(m̂r ), provides a better conver-
gence speed and helps to curtail the memory issue linked to
the storage of the orthonormal vectors formed in the former.
Instead of allowing the storage of the entire Krylov subspaces
whose size grows quadratically with the number m̂ of steps,
GMRES(m̂r ) restricts the dimension of the Krylov subspace to
a fixed integer parameter m̂r and restarts the Arnoldi process
using the current approximate solution dk,m̂r as the new initial
guess [42]. As the GMRES(m̂r ) method only computes an
approximate solution dk of the SQP subproblem, it forms an
inexact SQP method (see [43]). Hence, we consider (14) with
the residual vector rk ≡ rk,m̂r =: (r

z
k , rλ

k ) that accounts for the
error due to this inexactness[

Hk J⊤k
Jk 0

] [
d z

k
−λ̃k

]
=

[
−gk
−ck

]
+

[
r z

k
rλ

k

]
. (22)

The addition of this residual vector is useful for deriving
relevant bounds on important terms of the problem, as we
shall see. In specific terms, the residual vector characterizes a
part of the globalization strategy (Steps 9–13 of Algorithm 1)
described in Section III-C. As a first step, we now state a
result, established in [42], on the convergence of GMRES(m̂r ),
that provides an upper bound on the residual norm of the
algorithm.

Proposition 1 ([42], Proposition 4, and Theorem 5):
Suppose that Ak is diagonalizable, so that Ak = Pk Dk P−1

k ,
where Dk is the diagonal matrix of eigenvalues of Ak . Let
τ be the number of distinct eigenvalues ϱ1, ϱ2, . . . , ϱτ of
Ak with nonpositive real parts, and let the other eigenvalues
be enclosed in CΘ(Ω), a circle of radius Θ centered at Ω

with Ω > Θ > 0. Then, the residual norm of GMRES(m̂r )
satisfies

∥rk,m̂r ∥ ≤ κ(Pk)ξk∥rk,0∥ (23)

where

κ(Pk) = ∥Pk∥∥P−1
k ∥, ξk =

(
ᾱ

β̄

)τ (
Θ

Ω

)m̂r−τ

,

ᾱ = max
1≤i≤τ

τ+1≤ j≤n̂

|ϱt − ϱ j | and β̄ = min
1≤i≤τ

|ϱt |.

C. Globalization of iSQPRL by a Line Search

Many known inexact SQP approaches rely upon a line
search or trust region method for global convergence. For the
sake of completeness, we discuss these globalization concerns
for iSQPRL with a line-search strategy, and with specific ref-
erence to the GMRES(m̂r ) iterative scheme considered in this
work. In order to do this, we assume that the sequence {Hk}

is obtained through the modified BFGS formula described in
Section III-A. We also assume that the value of m̂r is sufficient
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to ensure convergence of GMRES(m̂r ), and that the sequence
of iterates {zk, λk} is generated by the described iSQPRL
framework. Furthermore, the following conditions hold (using
L∗ to denote L(z∗, λ∗)).

A.1: {zk, λk} is contained in a closed, bounded, convex
set S, on which the functions f and c are twice
continuously differentiable.

A.2: The columns of Jk are linearly independent, for each
k.

A.3: The matrices Hk are uniformly positive-definite on
the null spaces of Jk , that is, ∃σ1 > 0, such that for
each k, d⊤Hkd ≥ σ1∥d∥2 for all d ∈ Rn̂ satisfying
Jkd = 0.

A.4: The sequence {Hk} is bounded in norm, that is, ∃σ2 >

0, such that for each k, ∥Hk∥ ≤ σ2.
A.5: The matrices Hk have inverses that are bounded in

norm, that is, ∃σ3 > 0, such that for each k, H−1
k

exists and ∥H−1
k ∥ ≤ σ3.

A.6: ∇2Lk is Lipschitz continuous for each k in the neigh-
borhood of (z∗, λ∗).

A.7: The primal-dual step dk locally satisfies

lim
k→∞

∥(Pk(Hk −∇
2L∗)Pk)d z

k∥

∥d z
k∥

= 0

where Pk is the projection matrix Pk = I −
Jk(J⊤k Jk)

−1 J⊤k .
Assumptions A.1–A.7 are fairly standard for an
equality-constrained optimization problem adopting a
line-search technique, and in which positive-definiteness of
Hk is enforced [44], [45]. Some of the assumptions can,
however, be relaxed to meet specific practical demands.
The following condition provides a stronger version of
Assumptions A.3 and A.4 and will be imposed for the sake
of simplicity of our presentation.

B.1: For all d ∈ Rn̂ , ∃σ1, σ2 > 0, such that σ1∥d∥2 ≤
d⊤Hkd ≤ σ2∥d∥2 for each k.

An important consequence of Assumption A.7 is that one
can recover a local two-step superlinear convergence with
positive-definite matrices Hk , requiring only that a projection
of each Hk is close to a projection of ∇2L∗ [41], as opposed to
the similar convergence result, say for unconstrained problems,
that requires ∇2L∗ to be also positive-definite with

lim
k→∞

∥(Hk −∇
2L∗)d z

k∥

∥d z
k∥

= 0.

We formally state the two-step superlinear convergence result
for the constrained problem in the following.

Lemma 2 ([41, Th. 1]): Let Assumptions A.1–A.7 hold for
the recurrent learning problem. Then

lim
l→∞

∥zl+1 − z∗∥
∥zl−1 − z∗∥

= 0.

In order to ensure superlinear convergence of the kind shown
in Lemma 2 from an arbitrary starting point, we equip the
SQP with a line-search strategy for choosing a value for
the step-length parameter αk that ensures the value of some
well-defined merit function is sufficiently reduced for an

acceptable1 step to be taken. This strategy provides a way to
decide when a progress is made toward a solution. One such
merit function commonly used to account for feasibility of the
constraints ck is the ℓ1 merit function defined as follows:

M1(zk; ρk) = fk +
ρk

ω
∥ck∥1,

ρk

ω
> 0 (24)

where ω > 1 is selected heuristically, the motivation for which
becomes clear in the ρk selection rule of (34). The main goal
is to ensure that the (feasible) KKT points of (5) are critical
points of M1.

Upon computing an acceptable step dk and defining the
merit function, we choose a step length αk , which satisfies
the so-called sufficient decrease (or Armijo [46]) condition

M1(zk + αkd z
k ; ρk) ≤M1(zk; ρk)+ ναk∇dz

k
M1(zk; ρk)

(25)

where 0 < ν ≤ 0.5 is a small value and ∇dz
k
M1(zk; ρk) is the

directional derivative of M1 along dz
k , which we derive in the

following lemma.
Lemma 3: Let assumptions A.1–A.5 hold for the iSQPRL

problem. Then, the directional derivative of M1(zk; ρk) along
a step d z

k satisfies

∇dz
k
M1(zk; ρk) ≤ gkdz

k −
ρk

ω

∥∥ck − rλ
k
∥∥

1 (26a)

∇dz
k
M1(zk; ρk) ≥ gkdz

k −
ρk

ω

∥∥ck − rλ
k
∥∥

1 . (26b)

Proof: Applying Taylor’s theorem to f and c, we have

M1
(
zk + αkdz

k ; ρk
)
−M1(zk; ρk)

= f
(
zk + αkd z

k
)
− fk +

ρk

ω

∥∥c
(
zk + αkd z

k
)∥∥

1 −
ρk

ω
∥ck∥1

≤ αk g⊤k d z
k + σ2α

2
k
∥∥dz

k

∥∥2
+

αkρk

ω
∥ck∥1.

From (22), we have Jkdz
k = −ck + rλ

k ; hence, with αk ≤ 1,
we get

M1
(
zk + αkd z

k ; ρk
)
−M1(zk; ρk)

≤ αk g⊤k d z
k + σ2α

2
k
∥∥d z

k

∥∥2
−

αkρk

ω

∥∥ck − rλ
k
∥∥

1

= αk

(
g⊤k d z

k −
ρk

ω

∥∥ck − rλ
k
∥∥

1

)
+ σ2α

2
k
∥∥d z

k

∥∥2
.

Similar arguments yield the lower bound

M1
(
zk + αkdz

k ; ρk
)
−M1(zk; ρk)

≥ αk

(
g⊤k d z

k −
ρk

ω

∥∥ck − rλ
k
∥∥

1

)
− σ2α

2
k
∥∥dz

k

∥∥2
.

Taking the limits

lim
αk→0

M1
(
zk + αkd z

k ; ρk
)
−M1(zk; ρk)

αk
=: ∇dz

k
M1(zk; ρk)

proves (26).
Consequently, the directional derivative of M1 along d z

k is
given by

∇dz
k
M1(zk; ρk) = g⊤k dz

k −
ρk

ω

∥∥ck − rλ
k
∥∥

1 . (27)

1An inexact solution dk is considered acceptable if, together with some
penalty term ρk of the merit function, it causes a sufficient reduction in the
value of the merit function.
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As with inexact Newton methods for a general nonlinear
system of equations [43], inexact SQP methods require that
the residual norm is reduced strictly at each step to allow for
the update (zk+1, λk+1) in (11). This requirement, in our case,
is provided in the following conditions.

M.1: The primal step computed in the iSQPRL framework
is a descent direction for M1.

M.2: The residual rk satisfies ∥rk∥ ≤ σ4∥Fk∥, 0 < σ4 < 1.
Indeed, that condition M.2 holds with the primal steps
evaluated via GMRES(m̂r ) is a simple deduction from Propo-
sition 1.

Corollary 1 (of Proposition 1): The residual norm at step k
satisfies condition M.2 with σ4 = κ(Pk)ξk for an appropriate
choice of m̂r assuming the initial guess dk,0 = 0.

Proof: With dk,0 = 0, we get from (23) and the definition
of rk,m̂ that ∥rk∥ ≤ κ(Pk)ξk∥rk,0∥ = κ(Pk)ξk∥bk − Akdk,0∥ =

κ(Pk)ξk∥bk∥ = κ(Pk)ξk∥Fk∥.
The following result tells us what conditions are sufficient,

in particular the choice of ρk , such that condition M.1 holds.
Proposition 4: Let Assumptions A.1–A.5 and B.1 hold for

the iSQPRL problem. Then, the directional derivative of
M1(zk; ρk) along a step dz

k satisfies

∇dz
k
M1(zk; ρk)

≤ −d z
k
⊤Hkd z

k +
(ρk

ω
− ∥λ̃k∥∞

) (
∥ck∥1 −

∥∥rλ
k
∥∥

1

)
+ dz

k
⊤r z

k .

(28)

Moreover, if we choose

ρk > ω∥λ̃k∥∞ (29)

and dz
k
⊤r z

k ≤ 0, then d z
k is guaranteed to be a descent direction

for M1, and ∇dz
k
M1(zk; ρk) < 0 at nonstationary points

of (5).
Proof: From (22), we obtain

g⊤k d z
k = −d z

k
⊤Hkd z

k + d z
k
⊤ Jk λ̃k + d z

k
⊤r z

k

dz
k
⊤ Jk λ̃k = −c⊤k λ̃k + rλ

k
⊤
λ̃k .

Substituting these into (27) gives

∇dz
k
M1(zk; ρk)

= −d z
k
⊤Hkdz

k + d z
k
⊤ Jk λ̃k + dz

k
⊤r z

k −
ρk

ω

∥∥ck − rλ
k
∥∥

1

= −d z
k
⊤Hkdz

k −
(
ck − rλ

k
)T

λ̃k + d z
k
⊤r z

k −
ρk

ω

∥∥ck − rλ
k
∥∥

1.

Using the relation −(ck − rλ
k )⊤λ̃k ≤ ∥λ̃k∥∞∥ck − rλ

k ∥1 from
Hölder’s inequality, we obtain

∇dz
k
M1(zk; ρk)

≤ −dz
k
⊤Hkd z

k −
(ρk

ω
− ∥λ̃k∥∞

) ∥∥ck − rλ
k
∥∥

1 + d z
k
⊤r z

k (30)

which proves (28) by applying the reverse triangle inequality
on −∥ck−rλ

k ∥1. By assumption B.1, and if d z
k ̸= 0 solves (9),

it is sufficient to show that

1M1 := d z
k
⊤r z

k −
(ρk

ω
− ∥λ̃k∥∞

) ∥∥ck − rλ
k
∥∥

1 ≤ 0 (31)

in order to show that d z
k is a descent direction for M1, with

ρk > ω∥λ̃k∥∞. To do this, we define

r⊤k d̄k = rλ
k
⊤
λ̃k + d z

k
⊤r z

k = dz
k
⊤Hkdz

k + g⊤k d z
k + c⊤k λ̃k

where d̄k = (d z
k , λ̃k). By noting the relation

−
ρk

ω

∥∥ck − rλ
k
∥∥

1 < −
∥∥λ̃k∥∞

∥∥ck − rλ
k ∥1

we have

dz
k
⊤r z

k −
(ρk

ω
− ∥λ̃k∥∞

) ∥∥ck − rλ
k
∥∥

1

= d z
k
⊤Hkd z

k + g⊤k d z
k + c⊤k λ̃k − rλ

k
⊤
λ̃k︸ ︷︷ ︸

=dz
k
⊤r z

k

−
ρk

ω

∥∥ck − rλ
k
∥∥

1

+ ∥λ̃k∥∞
∥∥ck − rλ

k
∥∥

1

r⊤k d̄k − rλ
k λ̃k ≤ 0.

Remark 1: Alternatives to the merit reduction condi-
tion (29) exist in the literature (see [47]), with their specificity
linked to the choice of merit function. The use of a particular
merit reduction condition is, however, often well motivated,
say, as a way to quantify an appropriate steepness of the
directional derivative of the merit function with the residual
terms of the inexact SQP step [44].

Corollary 2: Let the assumptions of Proposition 4 hold,
and let dz

k be such that (28) is satisfied. Then, the following
property holds:

ρk ≥
ω

2

[
g⊤k d z

k + d z
k
⊤Hkd z

k − d z
k
⊤r z

k
∥ck∥1 − ∥rλ∥1

+ ∥λ̃k∥∞

]
. (32)

Proof: See Appendix A.
From the property shown in Corollary 2, we see that a

necessary requirement for condition (29) is that we choose
ω ≥ 2 (see [44], [45]). In order to maintain (29) at each
step k, thereby ensuring the exactness of M1 at convergence,
a common approach is to safeguard the inequality with some
positive constant ρ̄ in a way that

ρk ≥ ω∥λ̃k∥∞ + ρ̄. (33)

The selection rule for ρk , proposed in [39], is slightly modified
for the inexact SQP problem of this work

ρk =


max{ω∥λ̃k∥∞ + ρ̄,

1
ω

(ρk−1 + ω∥λ̃k∥∞ + ρ̄)} ∀k ̸= 1

ω∥λ̃k∥∞ + ρ̄, if k = 1.

(34)

The rationale behind (34) is that it provides relevant bounds
on the sequence {ρk} and allows, for k large enough and
toward convergence, the choice ρk = ρk−1, provided that
ρk−1 ≥ ω∥λ̃k∥∞ + ρ̄. Coupled with a backtracking line-
search procedure, a step length αk , such that the Armijo
condition (25) holds, is chosen.

Many known results for the global convergence of
line-search SQP algorithms in constrained optimization are
based upon the exactness and stationarity of M1 at KKT
optimality points of the problem and are direct consequences
of the descent property of M1 (when shown to hold) at dk ,
such that the line search succeeds for all k. In the same
spirit, and with condition M.2 assumed to hold, we obtain the
following result (which we prove by following the reasoning
in [48, Th. 17.2]).
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Theorem 5: Let the assumptions of Proposition 4 hold for
the iSQPRL problem, and let ρk be chosen according to
the rule (34), so that ρk > ω∥λ̃k∥∞ holds. Suppose further
that the sequence {λk} is bounded. Then, if αk is bounded
below by some positive constant, the sequence of iterates {zk},
starting from an arbitrary point, converges to a stationary point
of M1.

Proof: Since {λk} is bounded, and hence {ρk}, then it is
easy to show that there exists an index k1, such that ρk ≈ ρ ≥

ω∥λ̃k∥∞ + ρ̄ for all k ≥ k1. The adaptation rule (34) indeed
ensures that ρk does not increase unnecessarily in attaining
this ρ, since then {λ̃k} is bounded. Therefore, by the descent
property of M1 in Proposition 4, we get that M1 remains
exact.

Consider the set of indices K := {k ≥ k1 : αk < 1}.
Then, each of the step k ∈ K causes a sufficient decrease in
M1 by the backtracking line-search procedure. Moreover, with
M1(zk; ρ) ≥ K > −∞ for some constant K , the sufficient
decrease condition (25) shows that

αk∇dz
k
M1(zk; ρk)→ 0. (35)

Now let ᾱ ≤ αk be some constant for which the backtracking
line-search procedure fails. Then, with k ∈ K, at least one of
the following holds:

zk + ᾱdz
k /∈ S (36a)

M1(zk + ᾱd z
k ; ρk) > M1(zk; ρk)+ νᾱ∇dz

k
M1(zk; ρk).

(36b)

However, by Assumption A.1 and with d z
k ̸= 0, (36a) does

not hold. Hence, we have (36b). From the proof of Lemma 3
and (27), we get

M1(zk + ᾱd z
k ; ρk)−M1(zk; ρk) ≤ ᾱ∇dz

k
M1(zk; ρk)

+ σ2ᾱ
2∥∥dz

k

∥∥2

which together with (36b) gives

−(1− ν)∇dz
k
M1(zk; ρk) ≤ σ2ᾱ

∥∥d z
k

∥∥2
.

From (30) and Assumption B.1, we have

σ1∥d z
k∥

2
≤ −∇dz

k
M1(zk; ρk)

and since ν > 1, we get from the above two inequalities

αk ≥ ᾱ ≥
σ1

σ2
(1− ν) > 0. (37)

Therefore, (35) implies ∇dz
k
M1(zk; ρk) → 0. Consequently,

by (30) and ρk ≥ ω∥λ̃k∥∞ + ρ̄, we have

dz
k
⊤Hkd z

k → 0, ck → 0.

By our assumptions on Hk , the above implies d z
k → 0, which

we know to hold if and only if zk is a feasible point satisfying
the KKT optimality conditions in (12).

D. Practical Aspects

We discuss two practical issues that are considered in the
implementation of our algorithm with the goal of enabling the
convergence results discussed so far.

Algorithm 1 GRL(m̂r ) With Nonmonotone Line Search

1: Input: data {ut , yt }
N−1
t=0 , initial guess for (x0, θx , θy), number

of epochs Ne, line-search parameters 0 < µ < 1, ν, ρ̄, initial
Lagrangian multiplier vector λ0, initial BFGS matrix H0

2: Output: updated parameters (x0, θx , θy)

3: Evolve (1). Set z0 ← [x⊤1 · · · x
⊤
N−1 x⊤0 θ⊤y θ⊤x ]

⊤

4: Compute f0, c0, J0, g0,L0
5: k ← 0
6: repeat
7: Construct KKT system (14)
8: Solve KKT system with preconditioning (see Section III-B

and Section III-D1). Get (dz
k , λ̃k). Get dλ

k as in (10)
9: Get ρk using (34). Define the merit functionM1 (24). Define

mk (39)
10: if M1(zk + dz

k ; ρk) ≤ mk + ν∇dz
k
M1(zk; ρk) then

11: zk+1 ← zk + dz
k

12: λk+1 ← λk + dλ
k

13: else
14: Construct KKT system (41)
15: Solve KKT system with preconditioning (see Section III-B

and Section III-D1). Get (d̄z
k , λ̄k)

16: d̄λ ← λ̄k − λk
17: if ∥d̄z

k∥ > ∥dz
k∥ then

18: d̄z
k ← 0, d̄λ ← 0

19: end if
20: αk ← 1
21: while M1(zk +αkdz

k +α2
k d̄z

k ) > mk + ναk∇dz
k
M1(zk; ρk)

do
22: αk ← µαk
23: end while
24: zk+1 ← zk + αkdz

k + α2
k d̄z

k
25: λk+1 ← λk + αkdλ

k + α2
k d̄λ

26: end if
27: Compute fk+1, ck+1, Jk+1, gk+1,Lk+1
28: Get Uk as in (18). Hk+1 ← Hk +Uk
29: k ← k + 1
30: until k ≥ Ne

1) Preconditioning for GMRES(m̂r ): The (left) precondi-
tioned GMRES(m̂r ) is the GMRES(m̂r ) applied to the system

M−1
k Akdk = M−1

k bk

where Mk ∈ Rn̂×m̂ is a suitably chosen, problem-dependent
preconditioner. In this work, we implement GMRES(m̂r ) for
the solution of (14) at each step k, left-preconditioned with
the nonsingular preconditioner

Mk =

[
Gk J⊤k
Jk 0

]
(38)

where Gk ̸= Hk is an n×n matrix chosen so that Mk is invert-
ible. This preconditioning method, known in the literature as
constraint preconditioning [49], has been used extensively to
achieve improved convergence results for problems of the
kind (14). There are various options for the choice of Gk
(see [49] for an overview).

2) Enforcing Superlinear Convergence: An important
requirement for the superlinear convergence of SQP algorithms
is that the line-search strategy accepts a unit step length2 for
all k. This superlinear step, however, may not be accepted for
the merit function M1, thereby inhibiting fast convergence.

2It is remarked that obtaining a unit step length does not always hold [41].
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This condition, known as the Maratos effect, is avoided in this
work by incorporating the nonmonotone line-search procedure
introduced in [50] into our algorithm allowing to occasionally
take nonmonotone steps toward progress (see lines 14–25 in
Algorithm 1). The approach is based on the observation that
with the number mk defined by

mk := max
j=0,...,hm

M1(zk− j ; ρk) (39)

over a nonmonotone horizon hm (typically, hm = 3), the
function M1 “eventually” satisfies the modified sufficient
decrease condition

M1(zk + αkdz
k ; ρk) ≤ mk + ναk∇dz

k
M1(zk; ρk). (40)

In specific terms, it is proposed in [50] to perform the variable
update

zk+1 = zk + α̂kd z
k + α̂2

k d̄ z
k

whenever the merit function does not accept a unit step length
in the test (40), where 0 < α̂k ≤ 1 is the number returned by
a backtracking line search performed on

M1
(
zk + αkdz

k + α2
k d̄ z

k ; ρk
)
≤ mk + ναk∇dz

k
M1(zk; ρk)

and d̄ z
k is defined by[

Hk J⊤k
Jk 0

] [
d̄ z

k
−λ̄k

]
=

[
−gk
−c̄k

]
(41)

with c̄k = c(zk + d z
k ). It is shown that under suitable condi-

tions (such as those assumed in this work), this “correction
plus arc-search” procedure globally preserves Q-superlinear
convergence of the SQP algorithm, even though now the merit
function M1 is not forced to reduce at each step k [50].

IV. OFFLINE LEARNING OF THE CONTROL NETWORK

A key element considered in discussing our proposed
algorithm for the optimization problem of the second stage
of training RCNN is the structure of the Hessian terms
which the method efficiently exploits. Although an FNN is
often a simpler network to train than a recurrent network,
it is still desirable to exploit curvature information about the
training data to improve learning. Adeoye and Bemporad [33]
establish a GGN algorithm that ultimately exploits the idea of
self-concordance [51] for approximating batchwise parameter
updates in an unconstrained optimization problem. In this
work, we adapt the GGN-SCORE algorithm3 of [33] for
training the control network as described next.

Suppose that in stage 2 of learning the RCNN, we process
mini-batches of sample streams in a multistep ahead fashion,
composed of the current and future stacks (ûk, ŷk), ûk ∈

Rnu ·nb , and ŷk ∈ Rny ·nb , where nb is the mini-batch size, 1 <

nb < nθu (possibly 1 < nb ≪ nθu ), k = 1, 2, . . . , ⌈(Nu/nb)⌉,
and Nu ≥ nb is a desired number of training samples. Let
r̄ : Rnθu → R be a self-concordant function4 with parameter
Mr̄ , that is, the inequality∣∣∣〈v,

(
∇

3r̄(θ)[v]
)

v
〉∣∣∣ ≤ 2Mr̄

〈
v,∇2r̄(θ)v

〉3/2
(42)

3An implementation of GGN-SCORE is available in the Julia package
SelfConcordantSmoothOptimization.jl [68].

4For details on self-concordant functions, we refer the interested reader to
the references provided in [33].

holds for any θ in the closed convex set W ⊆ Rnθu and v ∈

Rθu , where ∇3r̄(θ)[v] ∈ Rnθu×nθu denotes the limit

∇
3r̄(θ)[v] := lim

t→0

1
s

[
∇

2r̄(θ + sv)−∇2r̄(θ)
]
, s ∈ R.

Note that any self-concordant function can be scaled to have
Mr̄ = 1 in (42) [52, Corollary 5.1.3].

Let us regularize problem (7) with r̄(θu) and a penalty
parameter λr̄ ∈ R to have the regularized minimization
problem5

min
θu

f̄ (θu)+ λr̄ r̄(θu) (43)

where f̄ ≡ − f̂ . Then, letting z̄ := θu and nd := ny · nb, the
mini-batch GGN update rule for optimizing over θu is

z̄k+1 = z̄k −
(

J⊤ŷ Q f̄ Jŷ + λr̄ H̄k

)−1
J⊤ŷ g f̄ (44)

where at step k, H̄k ∈ Rnθu×nθu is the Hessian of r̄ with respect
to θu , Jŷ ∈ Rnd×nθu is the Jacobian of ŷk with respect to θu ,
g f̄ ∈ Rnd is the residual vector defined as the gradient of f̄
with respect to ŷk , and Q f̄ ∈ Rnd×nd is the Hessian of f̄
with respect to ŷk . Note that dependence of the terms on k is
ignored for notational convenience.

Clearly, the computations involved in (44) are highly pro-
hibitive. Adeoye and Bemporad [33] use a generalized inverse
identity on (44) to derive a more computationally convenient
way to update z̄ as follows:

B̄k := λr̄ I + Q̄k J̄k H̄−1
k J̄⊤k (45a)

z̄k+1 = z̄k − H̄−1
k J̄k B̄−1

k ēk (45b)

where I ∈ Rnd×nd is an identity matrix, J̄k ∈ R(nd+1)×nθu

is Jŷ augmented with λr̄ ḡk the gradient of λr̄ r̄ with respect
to θu , ēk ∈ Rnd+1 is g f̄ augmented with a unit term, and
Q̄k ∈ R(nd+1)×(nd+1) is a diagonal matrix with diagonal terms
defined by Q f̄ with an additional zero diagonal term. That is,

J̄⊤k =
[

J⊤ŷ λr̄ ḡk

]
, Q̄k =

[
Q f̄ 0
0 0

]
, ēk =

[
g f̄
1

]
.

We note that the Hessian H̄k is a diagonal matrix
with diagonal elements that can be quite cheap to obtain,
and hence, its inverse H̄−1

k can clearly be computed
efficiently.

Furthermore, with motivation from the Newton decrement
framework in convex optimization, a learning rate σ/(1 +
Mr̄ η̄k) was introduced in (45) to obtain the full GGN-SCORE
update step

B̄k := λr̄ I + Q̄k J̄k H̄−1
k J̄⊤k (46a)

z̄k+1 = z̄k −
σ

1+ Mr̄ η̄k
H̄−1

k J̄k B̄−1
k ēk (46b)

where 0 < σ ≤ 1 and η̄k = ⟨ḡk, H̄−1
k ḡk⟩

1/2. Hence, the
self-concordance of r̄ helps to control the rate at which its
second derivatives change within the region of convergence,
thereby giving the problem an affine-invariant structure [33],
as well as to select a learning rate at step k without a line-
search technique.

An efficient way to compute vector B̄−1
k ēk in (46b) is to

solve a linear system, say, by QR factorization, and not by

5Note that f̄ ≡ f̂ is used if the problem defines Rt in (7) as a cost to be
minimized rather than a reward to be maximized.
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Fig. 3. Convergence curves for the function approximation in DCRNN
training using GRL(m̂r ) with ρ̄ = 0.8, first-order methods (Adam [55] and
stochastic gradient descent (SGD) [56]), LBFGS (best memory size: 1) with
line search [57, Sec. 3.5] (training stopped at line-search failure), and sLBFGS
(best memory size: 10) with adaptive step size [58]. Hidden state vector is
initialized to zero. MSE stands for the mean-squared error. (a) Mountain car.
(b) Ethylene oxidation. (c) Mountain car. (d) Ethylene oxidation.

a direct matrix inversion. However, in our adaptation of the
algorithm, it is observed that, by construction, the diagonal
matrix B

¯ k ∈ Rnθu×nθu , with diagonal terms defined by

b
¯ i, j = δ̄i, j/b̄i,i i, j = 1, . . . , nθu

provides a good approximation to B̄−1
k , where δ̄i, j is the

Kronecker delta function and b̄i,i are the diagonal entries of
B̄k . Hence, for the training of the control network in this
work, we propose the approximation B̄−1

k ≈ B
¯ k , so that (46b)

becomes

z̄k+1 = z̄k −
σ

1+ Mr̄ η̄k
H̄−1

k J̄kB
¯ k ēk .

Once the RCNN is trained on the representative DCRNN
model to a desired accuracy, the control network parameters
become fixed and are used to perform simulation tasks on the
true system. Simulation results obtained from a classical RL
problem and a model predictive control (MPC) steady-state
regulation problem are presented in Section VI to demonstrate
the efficiency of our approach.

V. COMPLEXITY ANALYSIS

In this section, we estimate the computational complexity
of the method proposed in this article. The proposed GRL(m̂r )
algorithm is summarized into three main steps, viz., con-
structing the Newton–KKT system, solving the Newton–KKT
system, and updating the optimization variables.

1) Constructing the KKT System: Constructing the
Newton–KKT system at each iteration k involves evaluating
the constraints and their gradients with a combined worst-case
complexity of O(2mn). Hence, in addition to evaluating the
modified BFGS Hessian matrix, constructing the KKT system
has an overall complexity of O(n2

+2mn) per iteration in the
worst-case scenario.

2) Solving the KKT System: The KKT system is solved
using the restarted GMRES scheme, which depends on both
the number of restarts required to reach a given tolerance and
the restart parameter m̂r . Let us denote by N1, the number

of GMRES restarts required to reach a specified tolerance.
Then, the matrix-vector multiplications and vector operations
in the restarted GMRES procedure have a (fixed) worst-case
complexity of O(N1nm̂2

r ), which involves the construction of
the upper Hessenberg matrix H̃k,m̂r in the Arnoldi iteration.
Here, we assume the use of an updating QR algorithm in the
solution of (21). Note that m̂r is typically small, say between
10 and 50, compared with n.

3) Updating the Optimization Variables: The line-search
method using the Armijo update rule with the ℓ1 merit function
has a worst-case complexity of O(n) per iteration.

Overall, the complexity of the proposed GRL(m̂r ) algorithm
for training the RNN model considered in this article is
estimated as O(2n2 Ne + 2nNe + 2mnNe). Since the number
of iterations, Ne, is generally small for GRL(m̂r ), which also
provides a better solution quality, a compromise is made on
computational complexity in favor of GRL(m̂r ) for conver-
gence speed in terms of small iteration number and solution
quality, against benchmark (first-order) BPTT algorithms.

As we mentioned before, we may use any convenient
gradient-based algorithm for learning the control FNN. Hence,
the effective complexity involved in training the full RCNN
will be the complexity of the GRL(m̂r ) algorithm plus the
complexity of the algorithm used to train the control FNN.

VI. NUMERICAL EXAMPLES

In the following examples, the RCNN is trained with σx and
σh set, respectively, to the hyperbolic tangent (tanh) and the
rectified linear unit (ReLU) functions. The RCNN is structured
as described in Section II. The entries of the DCRNN weights
are initialized to a normally distributed number randomly
generated by the Mersenne–Twister pseudorandom number
generator, while the bias vectors, the hidden states, and the
Lagrangian parameter are all initialized to the zero array.
ρ̄ = 0.8, ω = 2, Ne = 200, µ = 0.8, and ν = 0.5.
We setR(x0, θx , θy) = (Qα/2)∥x0∥

2
2+(Qβ/2)(∥θx∥

2
2+∥θy∥

2
2)

with Qα = 1.0 and Qβ = 10−5. The restart parameter
m̂r in GRL(m̂r ) is upper bounded by 50 for solving the
resulting saddle-point systems with Gk = I , the identity
matrix, in (38). The control network weights Vuh and Vhx
are initialized according to the Kaiming uniform initialization
scheme described in [53]; that is, we initialize each entry of
the matrices to a number generated randomly from a uniform
distribution in the interval [−d, d] where d = 4(3/n̂w)1/2, and
n̂w represents nu or nh accordingly. The bias vectors here are
initialized to the zero array. The control network is trained
with r̄ set to the pseudo-Huber function rµ̄ parameterized by
µ̄, rµ̄(θu) := (µ̄2

+ θ2
u )1/2

− µ̄, and λr̄ = 10−2, σ = Mr̄ = 1.
All bound constrained continuous variables ai ≤ xi ≤ bi are
transformed to [54]

xi = tai ,bi (x̂i ) =
bi + ai

2
+

bi − ai

2

(
2x̂i

1+ x̂i

)
,

i = 1, 2, . . . , n.

(47)

First, in Figs. 3 and 4, we visualize the convergence of
Algorithm 1 using the two examples considered. The approx-
imation errors and CPU time (in seconds) are compared with
those of standard BPTT algorithms in Tables I and II. The
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Fig. 4. Convergence of Algorithm 1 for terms defined in Proposition 4
and Theorem 5 (ρ̄ = 0.8 and ω = 2). Left: mountain car dynamics. Right:
ethylene oxidation process.

TABLE I
SOLUTION COMPARISON BETWEEN THE PROPOSED METHOD AND SGD,

ADAM, LBFGS, AND SLBFGS (MOUNTAIN CAR PROBLEM)

results shown in Figs. 3 and 4 corroborate with our discussions
in Section III-C, in particular, Proposition 4 and Theorem 5.
We observe small variations in ρk , that is, ρk ≈ ρ, as
∇dz

k
M1 → 0.

A. Classical RL Example

The RL problem considered in this example is the classical
mountain car problem described in [2]. The task is to drive an
underpowered car to the top of a steep mountain.

The continuous observables here are the states of the car
given by yt = [ȳt , ˙̄yt ], where ȳt is the car’s position and ˙̄yt is
its velocity at any given time t . For each time the car reaches
the top of the mountain, it gets a positive reward Rt

Rt = logistic10(ŷt − yref) (48)

in which σr has been set to a steep logistic function
logistic10(x) := (1/1 + e−10x ) [59], and yref

= 0.5. The
function Rt returns a number that is approximately equal to
1 whenever ŷt > yref and 0 otherwise. The control action is the
applied force ut ∈ {−1, 0, 1}. The car’s motion is described
by the set of equations

ȳt+1 = ȳt + ˙̄yt

˙̄yt+1 = ˙̄yt + 0.001ut − 0.0025 cos(3ȳt )

with the bound constraints −1.2 ≤ ȳt ≤ 0.5 and −0.07 ≤ ˙̄yt ≤

0.07. The task is episodic in that, when ȳt has reached its right

Fig. 5. RCNN offline training results for the mountain car environment.
Top: DCRNN identified model in stage I (testing via open-loop simulation);
error = y − ŷ. Bottom: stage II training of the RCNN.

Fig. 6. Real-time RCNN control actions ut ∈ {−1, 0, 1}. Top: control actions
for the first 200 steps. Bottom: control actions for the last 200 steps.

bound, the goal was reached, and an episode is completed.
However, when it reached its left bound, ˙̄yt was reset to zero.

Each episode starts from an initial random position ȳt ∈

[−0.6,−0.4] and a zero velocity. We trained the RCNN using
the algorithms proposed in this article, where the control inputs
ut and environment observables yt were given to the network
as inputs and targets accordingly. Here, nu = 1 and ny = 2,
and we used m− = m+ = 50, nx = 2, nh = 128, Nu = 1000,
and nb = 64.

Given the characteristics of the problem, we chose σu as the
tanh function that keeps the variables ût in the interval [−1, 1]
during training. However, for our simulations, we follow the
standard approach of bucketing the continuous outputs of σu
into the discrete set {−1, 0, 1}. This approach for ensuring the
input bound constraints are satisfied can be used in different
problem settings by using an appropriate σu or by using the
variable transform (47). Furthermore, we set Gr = [1, 0], and
Rt is defined in (48).

The RCNN training results are shown in Fig. 5. In the
identification stage, the effective DCRNN model was trained
on three randomly generated datasets with trained hidden
states from one dataset used in the next initialization.6

6This way, we are able to generate a good start value for the hidden state
to improve the representation power of the DCRNN.
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Fig. 7. Real-time performance of the trained RCNN control actions in the
mountain car environment.

TABLE II
SOLUTION COMPARISON BETWEEN THE PROPOSED METHOD AND SGD,

ADAM, LBFGS, AND SLBFGS (ETHYLENE OXIDATION)

In the second stage, the control network was trained with
1000 noisy observations (5% Gaussian noise over ten seeds).
Simulation performance on the true system with 10 000 noisy
observations (5% Gaussian noise over ten seeds) are shown
in Figs. 6 and 7. Adding noise at these stages creates a
more realistic situation [60], [61]. As displayed, we were able
to train the RCNN with our algorithms to keep the agent’s
rewards and steps taken per episode within a reasonably good
threshold in the true environment.

B. Chemical Process Example

The ethylene oxidation process in a nonisothermal contin-
uously stirred tank reactor is considered in this example. The
oxidation process is described by the following dimensionless
equations [62]:

˙̄y1 = u1(1− ȳ1 ȳ4)

˙̄y2 = u1(u2 − ȳ2 ȳ4)− A1eγ1/ȳ4(ȳ2 ȳ4)
0.5

−A2eγ2/ȳ4(ȳ2 ȳ4)
0.25

˙̄y3 = −u1 ȳ3 ȳ4 + A1eγ1/ȳ4(ȳ2 ȳ4)
0.5
− A3eγ3/ȳ4(ȳ3 ȳ4)

0.5

˙̄y4 =
u1

ȳ1
(1− ȳ4)+

B1

ȳ1
eγ1/ȳ4(ȳ2 ȳ4)

0.5
+

B2

ȳ1
eγ2/ȳ4(ȳ2 ȳ4)

0.25

+
B3

ȳ1
eγ3/ȳ4(ȳ3 ȳ4)

0.5
−

B4

ȳ1
(ȳ4 − Tc)

where the continuous observables are given by the dimen-
sionless state variables yt = [ȳ1, ȳ2, ȳ3, ȳ4], ȳ1, ȳ2, ȳ3, and
ȳ4 represent the gas density, ethylene concentration, ethy-
lene oxide concentration, and temperature in the reactor,

Fig. 8. RCNN training results for ethylene oxidation process dynamics.
Top: DCRNN identified model in stage I (testing via open-loop simulation);
error = y − ŷ. Bottom: stage II training of the RCNN. MSE stands for the
mean-squared error.

respectively, at any given time t . The control action is ut =

[u1, u2], where u1 is the feed volumetric flow rate and u2 is the
concentration of ethylene in the feed, with bound constraints
0.0704 ≤ u1 ≤ 0.7042 and 0.2465 ≤ u2 ≤ 2.4648. The
parameters in the equations above are given values adopted
from [62] (see Appendix B).

The goal of the process is to maximize the production
of ethylene oxide for a limited reactant feedstock, starting
from an initial state y0 = [0.997, 1.264, 0.209, 1.004] with a
sampling period of 1t = 9.36. Again, we trained the RCNN
using the algorithms proposed in this article, where the control
inputs ut and environment observables yt were given to the
network as inputs and targets accordingly. Here, nu = 2 and
ny = 4, and we used m− = m+ = 40, nx = 2, nh =

128, Nu = 1000, and nb = 64. Here, σu was taken to be the
identity map with bound constraints enforced through (47),
Gr = [1, 1, 1, 1], and Rt is defined by taking the squared
difference between ŷt and a reference point yref, with σr and
σy both set to the identity map, so that we have

Rt = (ŷt − yref)2

where we set yref
≡ [ȳ1s, ȳ2s, ȳ3s, ȳ4s] =

[0.998, 0.424, 0.032, 1.002], the open-loop asymptotically
stable steady state of the process provided in [62]. Note that
in this problem, Rt is specified as a cost to be minimized.

The training and identification results are displayed in
Fig. 8. In the first identification stage, the effective DCRNN
model was trained on five randomly generated datasets with
trained hidden states from the first dataset used in the second
initialization. Simulation performance on the true system is
shown in Fig. 9. As shown, the constant control inputs reported
in [62] to bring the process states to the asymptotically stable
steady-state value resemble with what is obtained by our
approach, that is, us = [u1s, u2s] = [0.35, 0.5] in [62].

Regarding the comparison between the proposed GRL(m̂r )
algorithm for training the DCRNN with respect to first-order
SGD and Adam optimizers and two quasi-Newton meth-
ods [limited-memory BFGS (LBFGS) and stochastic LBFGS
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Fig. 9. Performance of the trained RCNN control actions in ethylene oxidization process. Top left: RCNN control inputs ut = [u1, u2] with bound constraints
0.0704 ≤ u1 ≤ 0.7042 and 0.2465 ≤ u2 ≤ 2.4648. Bottom left: Simulation squared errors Rt = (ŷt − yref)2. Right: ŷt = [ȳ1, ȳ2, ȳ3, ȳ4] are the RCNN
predictions of the steady state yref

= [ȳ1s , ȳ1s , ȳ3s , ȳ4s ].

TABLE III
COMPARISON BETWEEN THE PROPOSED METHOD AND SELECTED RNN STRUCTURES IN THE MOUNTAIN CAR PROBLEM

(sLBFGS)], in Fig. 3, we compare the corresponding con-
vergence curves. Although shown to sometimes converge
faster than GRL(m̂r ), LBFGS (for which we report the best
results obtained after careful tuning) yields less numerically
robust function approximation results in our examples, as the
backtracking line search fails most of the time. In particular,
failure occurs frequently when the memory size is as large as
4. The sLBFGS method seems numerically more robust than
the LBFGS in our experiments for a small memory size, but
its performance depends heavily on selecting a good adaptive
step size. For a large memory size, and with the adaptive
step-size technique adopted in our experiments, sLBFGS tends
to converge as slow as a first-order method, such as SGD.
In summary, GRL(m̂r ) compares favorably overall with respect
to the alternative state-of-the-art methods tested.

In Table III, we also compare our approach with the vanilla
RNN and recently proposed RNN structures and training
methods. In particular, we compare with two variants of the
recently proposed dynamic recurrent routing neural networks
(DRRNets) [63]: DRRRNN and DRRGRU. In order to have
a feel of the low-rank regularization proposed in [63], which
leads to a (convex-)cardinality problem, we trained the respec-
tive DRRNets with an ℓ1 regularization (i.e., DRRNets +
SGD + ℓ1). Our choice of these variants for comparison is
based on the results and discussions in the DRRNets paper.
As shown, our approach produces smaller approximation
error in fewer number of iterations and reduced runtime.

All parts of the experiments, including the RCNN models
and the proposed algorithms, were implemented in Julia
v1.7.2 on a laptop with 16× 2.30 GHz Intel Core i7-11800H
CPU and 16-GB RAM. Gradient and Jacobian computations

were performed by Julia’s open-source ForwardDiff.jl
[64] package. The first-order algorithms used for comparison
in Fig. 3 were provided by Julia’s open-source Flux.jl [65],
[66] package. The continuous dynamical system simulations
inSection VI-B were performed within Julia’s open-source
DynamicalSystems.jl [67] library.

VII. CONCLUSION

In this work, we have proposed an efficient training
approach for RCNNs, an RNN architecture for data-efficient
RL and control. We presented an approximate Newton
framework for training the state-space model of DCRNNs
with convergence guarantee, through the lens of inexact
SQP and numerical linear algebra techniques. The proposed
GRL(m̂r ) algorithm efficiently addresses one of the main
shortcoming associated with benchmark BPTT algorithms,
viz., requiring excessive number of iterations to converge
to the true solution. The method does this by exploiting
approximate second-order information about the training
data to speed up convergence, with minimal parameters to
tune—we provided a detailed insight into the choice of the
main parameter ω in our algorithm. Numerical examples have
shown the efficiency of our proposed method.

In future works, we will explore the success of the proposed
framework in more complex RL and control tasks. With
control applications in focus, it would also be interesting to
explore more creative and reliable ways to handle input and
output constraints, for example, directly incorporating these
constraints into the optimization framework proposed in this
article. Another future research direction is in the use of more
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TABLE IV
PARAMETERS USED IN THE ETHYLENE OXIDATION PROCESS [62]

computationally efficient iterative schemes in the solution of
the KKT subproblems where our algorithm spends most of its
running time.

APPENDIX A
PROOF OF COROLLARY 2

From (28) and (27), we get

g⊤k dz
k+d z

k
⊤Hkd z

k+

(
2ρk

ω
−∥λ̃k∥∞

) ∥∥ck − rλ
k
∥∥

1 − d z
k
⊤r z

k ≤ 0

and applying the reverse triangle inequality on ∥ck−rλ
k ∥1 gives

2ρk

ω
− ∥λ̃k∥∞ ≥

g⊤k d z
k + d z

k
⊤Hkd z

k − d z
k
⊤r z

k

∥ck∥1 −
∥∥rλ

k

∥∥
1

ρk ≥
ω

2

[
g⊤k d z

k + d z
k
⊤Hkd z

k − dz
k
⊤r z

k
∥ck∥1 − ∥rλ∥1

+ ∥λ̃k∥∞

]
.

APPENDIX B
PARAMETERS USED IN THE EXAMPLES

See Table IV.
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