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Abstract—To identify a stationary action profile for a popu-
lation of competitive agents, each executing private strategies,
we introduce a novel active-learning scheme where a centralized
external observer (or entity) can probe the agents’ reactions and
recursively update simple local parametric estimates of the action-
reaction mappings. Under very general working assumptions
(not even assuming that a stationary profile exists), sufficient
conditions are established to assess the asymptotic properties
of the proposed active learning methodology so that, if the pa-
rameters characterizing the action-reaction mappings converge,
a stationary action profile is achieved. Such conditions hence act
also as certificates for the existence of such a profile. Extensive
numerical simulations involving typical competitive multi-agent
control and decision-making problems illustrate the practical
effectiveness of the proposed learning-based approach.

Index Terms—Multi-agent systems, Active learning, Competi-
tive decision-making, Generalized Nash equilibria.

I. INTRODUCTION

Multi-agent system applications are rapidly growing in
complexity due to the widespread use of embedded

sensors and distributed control systems [1]. The deployed
agents can make autonomous decisions to maximize some
private performance index while, at the same time, interacting
with their peers. The competitive or cooperative nature of such
interactions yield emerging behaviours, which in addition to
the possibly large-scale structure and potential privacy issues,
considerably complicate the analysis of the multi-agent system
at hand. Besides, those systems made of interacting decision-
makers typically feature desirable collective outcomes meant
as solutions of the interaction process, which can be gathered
under some (loose) stationarity notion, for example, a Nash
equilibrium in noncooperative game theory [2].

The considerations above hence create a fertile ground for
the problem investigated in this paper. Consider, for instance, a
population of competitive agents that interact with each other
through private action-reaction mappings, which may (or may
not) lead to a particular collective outcome, here identified
as a stationary action profile. By leveraging tools from the
machine learning and system identification literature [3]–[5],
our work aims at answering the following question: given an
agnostic scenario in which an external observer (or entity)
is only allowed to query the action-reaction mappings, is it
possible to learn a stationary action profile of the underlying
multi-agent interaction process?
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A. Motivating example: forecasting price-responses to control
the aggregated electricity consumption in smart grids

Among the indirect control strategies enabling energy flexi-
bility offered by end-users [6], energy retailers or distribution
system operators (DSOs) design price signals to which price-
sensitive users adjust their consumption/storage profile to meet
their private needs [7]–[9]. Leveraging insights into user price-
responsiveness, the price-generation process thus serves as a
mechanism for managing electricity consumption. Such an
indirect control method, however, rely on accurate predictions
of the users’ consumption responses to broadcasted price signals
for activating flexibility. It is then crucial to develop tools to
accomplish such a prediction task under limited knowledge
about the decision process driving users’ price-responsiveness.

As an example, consider a set of N electric vehicles (EVs)
populating a distribution grid [10]–[12], where every user
wants to determine an optimal EV charging schedule over a
certain discrete time interval {1, . . . , T} by controlling the
energy injection xi ∈ RT≥0 of its own EV charger. Specifically,
each user i ∈ {1, . . . , N} aims at minimizing a private cost
in the form Ji(xi, σ(x)) = ‖xi‖2Qi

+ c>i xi + (a(σ(x) + d) +
b1T )>xi, where x ∈ RNT≥0 represents the vector stacking all
the users’ decision variables, ‖xi‖2Qi

+c>i xi models the battery
degradation cost, and (a(σ(x) + d) + b1T )>xi the electricity
pricing. In particular, σ(x) denotes the aggregate demand of
the overall population of EVs, usually defined as σ(x) =
1
N

∑N

i=1
xi ∈ RT≥0, a > 0 represents the inverse of the price

elasticity of demand, b > 0 the baseline price, and d ∈ RT≥0

the normalized average inflexible demand. In addition, each
user has to satisfy both local and shared constraints due for
instance to a minimum charging amount over the interval,
1>T xi ≥ γi ≥ 0, a cap on the power injection xi ∈ [0, x̄i]

T , or
accounting for intrinsic grid limitations, e.g., σ(x)+d ∈ [0, c̄]T .

This formulation thus originates a so-called generalized Nash
game in aggregative form, whose solution coincides to a Nash
equilibrium [2], i.e., a collective charging profile, say x?, in
which none of the user can gain by unilaterally deviating from
its current strategy. On the other hand, such an equilibrium x?,
which yields the aggregate consumption 1

N

∑N

i=1 x
?
i , heavily

depends on the price signals a and b affecting the private
cost function of each agent, Ji, i.e., x? = x?(a, b). It is then
clear how a suitable design of a and b, based on an accurate
prediction of the resulting x?(a, b), allows for an efficient (for
DSOs) and profitable (for retailers) usage of the distribution
grid. In §II-B, we will derive an active learning-based approach
enabling an exact prediction of the outcome of the multi-agent
interaction process on which little knowledge is available.
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B. Related work

Our results can be positioned within those branches of
literature referring to the learning of equilibria in an empirical
game-theoretic or black-box setting. However, our framework
can encompass a broader class of multi-agent decision-making
and control problems than is usually considered.

The pioneering work [13] focused on congestion games,
showing how one can learn the agents’ cost functions while
querying only a portion of decision spaces. This work then
originated a series of contributions investigating query and/or
communication complexity of algorithms for specific classes of
games [14]–[17]. Along the same line, in [18], several schemes
were devised with provable bounds on the best-response query
complexity for computing approximate equilibria of two-player
games with a finite number of strategies. Few other works
belonging to the simulation-based game literature, instead,
took a probably approximately correct learning perspective
to reconstruct an analytical representation of normal form
games (i.e., matrix games) for which a black-box simulator
provides noisy samples of agents’ utilities, devising algorithms
that uniformly approximate the original games and associated
equilibria with finite-sample guarantees [19]–[21]. Stochastic
[22] or sample-average approximation [23] of simulated games,
and Bayesian optimization-based methods [22], [24], [25] have
also been adopted. In the former cases, the authors investigated
matrix games with finite decision sets, providing an asymptotic
analysis of Nash equilibria obtained from simulation-based
models, along with probabilistic bounds on their approxima-
tion quality. Bayesian approaches are, instead, empirical and
typically rely on Gaussian processes used as emulators of
the black-box cost functions. Posterior distributions provided
by the Gaussian process are successively adopted to design
acquisition functions tailored to solve Nash games, which are
based on the probability of achieving an equilibrium. More
recently, [26] proposed an active-set-based first-order algorithm
to learn the rationality parameters of the agents taking part in a
potential game from historical observations of Nash equilibria.

Suitable examples of works tackling standard problems
in game theory through machine learning techniques can be
found in [27]–[30]. In particular, [27] addressed payoff-function
learning as a standard regression problem. The methodology
presented there, however, focused on games in normal form
and came with no theoretical guarantees. Combining proximal-
point iterations and ordinary least-squares (LS) estimators, [28]
designed a distributed algorithm with probabilistic convergence
guarantees to an equilibrium in stochastic games where the
agents learn their own cost functions. In [29], [30], instead,
a coordinator aims at reconstructing private information held
by the agents to enable the computation of an equilibrium by
designing personalized incentives affecting the cost functions.

C. Summary of contributions and paper organization

Unlike the works above, we design an active learning scheme
that allows an agnostic external entity to reproduce faithful
approximations of action-reaction mappings, privately held by
a population of agents, in order to predict a stationary profile
of the underlying multi-agent interaction process exactly.
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Fig. 1: An external observer with learning procedure L makes
queries x̂ and observes each reaction to x̂−i (dashed black lines)
taken by agent i ∈ N (red circles) through its private action-
reaction mapping, fi(·), which may depend on the decision
of any other agent in N (solid red lines), with the goal of
predicting an outcome of the multi-agent interaction process.

Specifically, we consider the scenario illustrated in Fig. 1 and
mathematically formalized in §II-A, where such an external
observer, endowed with a learning procedure L , can get
samples of the action-reaction mappings fi(·) of each agent
i, for all i = 1, . . . , N ; in particular, the external observer
iteratively proposes to agent i a configuration x̂−i of possible
other agents’ decisions and gets back the reaction xi = fi(x̂−i)
of the agent to that configuration (see also the different tasks
reported in Algorithm 1). The proposed scheme is of active-
learning nature in that the queries x̂−i are generated based on
the current surrogate models f̂i(·) of the agents’ responses.

In our framework the low-level interaction among agents is
not particularly relevant, since they are left free to possibly
interact with each other. As such, we do not assume any
particular communication pattern underlying the information
exchange among the agents and topology of interactions. In
fact, we only assume that the decision of some agent i may
be affected by the decision of any other agent within N . On
the contrary, we focus on the external entity, which iteratively
makes queries to estimate private action-reaction mappings
with the ultimate goal of predicting a a stationary profile x?

exactly. To this end, the proposed learning mechanism allows
the central entity to collect and exploit high-quality data that
are informative with respect to (w.r.t.) such a stationary point
prediction task. We summarize our contributions as follows:

i) Formalize a novel problem setting involving an external
entity that aims at predicting a possible outcome in multi-
agent decision-making and control problems in which the
decision policies of the agents are private (§II, V);

ii) Devise an active learning algorithm allowing the external
entity to collect sensible data and update parametric
estimates of the agents’ action-reaction mappings (§IV);

iii) Prove sufficient conditions to assess the asymptotic prop-
erties of our active learning scheme so that, if convergence
happens, it can only be towards a stationary action profile
(§III, IV). This fact entails two main implications:
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a) Learning locally exact surrogates of the action-reaction
mappings allows the external observer to succeed in its
prediction task;

b) Working with very general assumptions, the established
conditions also serve as certificates for the existence of
a stationary action profile.

iv) A demonstration of the practical effectiveness of our
methodology through extensive numerical simulations on
the indirect control method for smart grids in §I-A, and
typical multi-agent control and decision-making problems,
including generalized Nash games and competitive linear
feedback design problems (§VI).

The proofs of the technical results of the paper are all
deferred to Appendix A, while Appendix B reports math-
ematical derivations adopted in the implementation of our
approach. The Python package gnep-learn, implementing the
proposed active learning-based scheme, is publicly available
at https://github.com/bemporad/gnep-learn.

To the best of our knowledge, this work represents a first
attempt integrating traditional machine learning paradigms
within a smart query process, with the goal of predicting a
possible outcome in multi-agent problems in which the decision
policies of the agents are kept private. In contrast with the
cognate literature reviewed in §I-B, we design a deterministic,
active learning-based mechanism that exploits action-reaction
samples to learn private action-reaction mappings, a setting
that covers a wide variety of problems involving competitive
agents with continuous (i.e., possibly infinite) decision sets.

Notation: N, R and R≥0 denote the set of natural, real, and
nonnegative real numbers, respectively. N0 := N ∪ {0}, while
R̄ := R ∪ {+∞}. The transpose of a matrix A ∈ Rn×n is
A>, while A � 0 (< 0) denotes its positive (semi)definiteness.
For a vector v ∈ Rn and a matrix A � 0, ‖v‖2 denotes the
standard Euclidean norm, while ‖ · ‖A the A–induced norm
‖v‖A :=

√
v>Av. The n-dimensional ball centred around x̄

with radius θ > 0 is Bθ(x̄) := {x ∈ Rn | ‖x− x̄‖2 ≤ θ}. In,
1n, and 0n denote the n×n identity matrix, the vector of all 1,
and 0, respectively (we omit the dimension n whenever clear).
Given a set X ⊆ Rn, ιX : Rn → R̄ denote the associated
indicator function, i.e., ιX (x) = 0 if x ∈ X , ιX (x) = +∞
otherwise. The operator col(·) stacks its arguments in column
vectors or matrices of compatible dimensions. For example,
given vectors x1, . . . , xN with xi ∈ Rni and N = {1, . . . , N},
we denote x := (x>1 , . . . , x

>
N)> = col((xi)i∈N ) ∈ Rn, n :=∑

i∈N ni, and x−i := col((xj)j∈N\{i}). With a slight abuse of
notation, we sometimes use also x = (xi,x−i). The uniform
distribution on the interval [a, b] is denoted by U(a, b).

II. LEARNING PROBLEM

We start by formalizing the learning problem addressed,
which is successively motivated by two multi-agent control and
decision-making problems that fit the framework we consider.

A. Mathematical formulation

We consider the scenario illustrated in Fig. 1. There, an exter-
nal observer (or entity) is allowed to make queries and observe
the reactions taken by a set of N (possibly competitive) agents,

indexed by N := {1, . . . , N}, which mutually influence each
other. Specifically, we assume that each agent controls a vector
of variables xi ∈ Rni to react, by means of a private action-
reaction mapping fi : Rn−i → Rni , to the other agents’ actions
x−i ∈ Rn−i , n−i :=

∑
j∈N\{i} nj . Within the multi-agent

interaction process, the whole population of agents has also
to meet collective constraints, i.e., x := (xi,x−i) ∈ Ω ⊆ Rn,
n := ni+n−i, which are known to every agent and the external
entity, and whose portion involving the i-th agent can be
embedded directly within the action choice fi(·). Specifically,
for any given x−i, fi(x−i) is so that (fi(x−i),x−i) ∈ Ω, for
all i ∈ N . We assume that possible additional local constraints
xi ∈ Xi, such as lower and upper bounds on xi, are either
private (i.e., unknown to the other agents and the external
entity), or shared. In both cases, it always holds that the
resulting values fi(x−i) ∈ Xi. In the former case, this is
a de facto situation that the external observer and the other
agents take cognizance of. In the latter case, we assume that
xi ∈ Xi is already embedded in the collective constraint x ∈ Ω.

Being completely agnostic on the overall multi-agent in-
teraction process and main quantities involved, we assume
the underlying external entity endowed with some parametric
learning procedure L , which exploits non-private data (i.e.,
the decisions fi(x−i)) collected iteratively from the agents
through a query process. Specifically, the main goal of the
external entity is to learn, at least locally, faithful surrogates
f̂i (formally defined later in this section) of the unknown
mappings fi(·) in order to predict a desirable outcome of the
multi-agent interaction process, here identified in accordance
with the following definition:

Definition 2.1. (Stationary action profile) A collective action
profile x? ∈ Ω is stationary if, for all i ∈ N , x?i = fi(x

?
−i). �

Given a stationary profile, which coincides with a fixed
point of the action-reaction mappings, none of the agents has
incentive to deviate from the action currently taken. We will
discuss in §II-B (and §V-B when introducing a generalization
of the problem investigated) suitable multi-agent control and
decision-making applications calling for a stationarity condition
as the one in Definition 2.1.

We now state some conditions on the formalized problem
that we assume will hold true throughout the paper:

Standing Assumption 2.2 (Mappings and constraints). For
all i ∈ N , the single-valued mapping fi : Rn−i → Rni is
continuous. In addition, the set Ω ⊆ Rn of feasible collective
actions is nonempty. �

While the non-emptiness of Ω is an obvious requirement for
the problem to be solvable, continuity of fi is a technical, yet
not very restrictive, condition needed to prove our results.

As mentioned above, we endow the external observer with a
learning procedure L to produce faithful proxies of the action-
reaction mappings fi(·) executed by the agents. Specifically,
we let f̂i : Rn−i × Rpi → Rni denote the mapping of agent i
as estimated by the external entity, which is parametrized by
θi ∈ Rpi to be updated iteratively by integrating data obtained
from the agents through a query process, as described in §IV.
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Since our technical analysis will only require f̂i(·, θi) to
approximate fi(·) locally around a possible stationary action,
for simplicity, we parameterize f̂i(·, θi) as the affine mapping

f̂i(x−i, θi) = Λi

[
x−i
1

]
, (1)

for a matrix of coefficients Λi ∈ Rni×(n−i+1) (in this case, θi
is the vectorization of Λi, with pi = ni(n−i+1)). In §IV-D we
will show that adopting such simple surrogate mappings comes
with no restrictions, in the sense that they actually guarantee the
external entity to succeed in its prediction task. In addition, they
bring significant simplifications in the procedure discussed in
Algorithm 1, thus fully motivating their use. The case involving
a generic f̂i(·, θi), instead, will be discussed in §V-C.

Finally, we remark that the conditions postulated in Standing
Assumption 2.2 on the multi-agent interaction process are very
general and, as a result, they do not even guarantee the existence
of a stationary action profile in the sense of Definition 2.1. As
a distinct feature of our approach, we will show that sufficient
conditions can be established to assess the asymptotic properties
of the proposed learning-based algorithm so that, if convergence
happens, it can only be towards a stationary action profile, thus
also providing certificates for the existence of the latter.

B. Applications in multi-agent control and decision-making

1) Learning equilibria in generalized Nash games: A
generalized Nash equilibrium problem (GNEP) [2] typically
involves a population of N agents where each one of them aims
at minimizing some cost function Ji : Rn → R that depends
both on its own (locally constrained) decision xi ∈ Xi ⊆ Rni ,
as well as on the decisions of all the other agents x−i. In
addition, the selfish agents also compete for shared resources,
and are thus required to satisfy coupling constraints, i.e.,
(xi,x−i) ∈ Ω ⊆ Rn. The resulting game is hence defined
by a collection of mutually coupled optimization problems:

∀i ∈ N :

{
min
xi∈Xi

Ji(xi,x−i)

s.t. (xi,x−i) ∈ Ω.
(2)

A key notion is represented here by the generalized
Nash equilibrium (GNE), which typically identifies a de-
sirable outcome of the noncooperative multi-agent decision-
making process. In particular, by introducing fi(x−i) =
argminyi∈Xi(x−i)

Ji(yi,x−i) as the so-called best-response
(BR) mapping, single-valued under strict convexity of xi 7→
Ji(xi,x−i), and Xi(x−i) := {xi ∈ Xi | (xi,x−i) ∈ Ω}, a
GNE x? amounts to a fixed point of the stack of the BR
mappings of the agents, i.e., x?i = fi(x

?
−i) for all i ∈ N .

Note that numerous standard problems in robust and model
predictive control [31]–[33] based on min-max optimization
minx1 maxx2 J(x1, x2) can be recast in the form in (2), where
J1(x1, x2) = J(x1, x2), J2(x2, x1) = −J(x1, x2), and the set
Ω is the Cartesian product between the set of feasible inputs
x1 and the set of possible disturbances x2.

In this way, a GNE coincides with a stationary action
profile as in Definition 2.1, and an external entity aims at
reconstructing the BR mappings of the agents to predict a
possible outcome of the observed GNEP, i.e., a GNE. Also

in this case, we note that Standing Assumption 2.2 is not
sufficient to guarantee the existence of a GNE profile.

2) Multi-agent feedback controller synthesis: Consider a
competitive version of traditional decentralized control synthe-
sis problems [34], [35], in which each of the N agents wants
to stabilize some prescribed output yi ∈ Rnyi of a global
dynamical system, a goal that may be shared with other agents,
by manipulating a subvector ui ∈ Rnui of control inputs. The
overall linear time-invariant (LTI) dynamics thus reads as:z(k + 1) = Az(k) +

∑
i∈N

Biui(k),

yi(k) = Ciz(k), for all i ∈ N ,
(3)

where z ∈ Rnz denotes the full state vector, A ∈ Rnz×nz and
B = [B1 . . . BN ] ∈ Rnz×nu , nu :=

∑
i∈N nui

, the matrices
of the state-update function, with Bi ∈ Rnz×nui , and Ci ∈
Rnyi

×nz the i-th output matrix. We assume each pair (A,Bi)
controllable and (A,Ci) observable, for all i ∈ N . Note that
while the input vector u = col((ui)i∈N ) ∈ Rnu is partitioned
in N subvectors, the output vectors yi are combinations of the
full state z, for example yi and yj might contain overlapping
subvectors of z. In case each agent adopts a linear feedback
controller ui(z(k)) = κiz(k), the overall control design then
reduces to synthesizing gains κi ∈ Rnui

×nz . From the i-th
agent’s perspective, the state evolution in (3) hence turns into:

z(k + 1) =

A+
∑

j∈N\{i}

Bjκj


︸ ︷︷ ︸

=:Ai(κ−i)=Ai

z(k) +Biκiz(k).

In case each agent has full knowledge of the global model
(A,B) and is interested in minimizing a standard infinite-
horizon cost as local performance index Ji(κi,κ−i) =∑∞

k=0
(yi(k)>Qiyi(k) + u>i (k)Riui(k)), Ri � 0 and Qi < 0,

the i-th action-reaction mapping in this case reads as:

fi(κ−i) =
{
κi ∈ Rnui

×nz | κi =
(
Ri +B>i PiBi

)−1
B>i PiAi,

A>i PiAi−A>i PiBi
(
Ri+B

>
i PiBi

)−1
B>i PiAi+Q̄i = 0,

Pi < 0
}

(4)
where Q̄i := C>i QiCi. Each agent thus aims at designing a
standard linear quadratic regulator (LQR) trying to stabilize
only the particular output of interest yi so that (3) is steered
to the origin. Note that whenever a solution to each algebraic
Riccati equation (ARE) in (4) exists and is unique, every
action-reaction mapping fi(·) happens to be single-valued.

However, since the evolution of each yi heavily depends
on the linear gains κj , j ∈ N \ {i}, the outputs yi’s can
be partially overlapping, and the weights Qi are individually
chosen, a conflicting scenario among agents’ decisions may be
triggered. The solution of the underlying multi-agent feedback
controller synthesis thus calls for a collective action profile in
the spirit of Definition 2.1. Note that, in case such a profile
does exist, then it is necessarily stabilizing since (4) requires
that, for fixed κ−i, (Ai(κ−i) +Biκi) has eigenvalues strictly
inside the unit circle for all i ∈ N . Establishing the existence
of a collective action profile a-priori, however, is less obvious.
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III. PRELIMINARY RESULTS

We now provide general convergence results under certain
assumptions, which will be then further specialized in §IV-D
to establish the properties of our active learning scheme.

Let us then consider a generic function r : Rn × Rp → R,
evaluated as r(x, θ) with x ∈ Rn and θ ∈ Rp, and a feasible
set X ⊆ Rn satisfying the following conditions:

Assumption 3.1. The set X is convex. Moreover, for all θ ∈ Rp,
x 7→ r(x, θ) is a convex function. �

Assumption 3.2. The set X is bounded and nonempty. More-
over, it holds that:

(i) For all x ∈ X , θ 7→ r(x, θ) is convex and differentiable;
(ii) For all θ ∈ Rp, x 7→ r(x, θ) is continuous;

(iii) For all θ ∈ Rp, the vector ∂r(x, θ)/∂θ ∈ Rp of partial
derivatives is bounded w.r.t. x. �

Lemma 3.3. Let Assumption 3.1 hold true. Then, given any
θ ∈ Rp, the set M(θ) := argminy∈X r(y, θ) is convex. If also
Assumption 3.2 holds true, then the value function r? : Rp → R,
r?(θ) := miny∈X r(y, θ), is continuous. �

Before proceeding further, we recall some basic definitions
from [36] useful for the remainder of this section:

Definition 3.4 (Lower semicontinuity, [36, Def. 1.5]). A
function h : Rn → R̄ is lower semicontinuous if, for all

x̃ ∈ Rn, lim
x→x̃

inf h(x) := lim
ε→0

(
inf

y∈Bε(x̃)
h(y)

)
≥ h(x̃). �

Definition 3.5 (Level-boundedness, [36, Def. 1.16]). A function
g : Rn × Rp → R̄ is level-bounded in x locally uniformly in
θ if, for all θ̃ ∈ Rp and α ∈ R, there exists a neighbourhood
I = I(θ̃) ⊆ Rp and a bounded set S ⊂ Rn such that
{x ∈ Rn | g(x, θ) ≤ α} ⊂ S for all θ ∈ I. �

Lemma 3.6. Let Assumption 3.1 and 3.2 hold true. Moreover,
let X be a closed set. Then, the function r̄ : Rn × Rp → R̄,
defined as r̄(x, θ) := r(x, θ) + ιX (x) is lower semicontinuous
and level-bounded in x locally uniformly in θ. �

We conclude this section with the following result establish-
ing the convergence of the sequence of minimizers for r with
minimum norm, {xk}k∈N. Specifically, given some θk ∈ Rp
the corresponding element xk is defined as follows:

xk := argminy∈Rn

{
1
2
‖y‖22

∣∣ y ∈M(θk)
}
. (5)

Lemma 3.7. Let Assumption 3.1 and 3.2 hold true, and assume
that X is also closed. Let {θk}k∈N be a sequence so that
limk→∞ θ

k = θ̃, and let M(θ̃) = {x̃}. Then, the sequence
{xk}k∈N generated by (5) is feasible, i.e., xk ∈ X for all
k ∈ N, and satisfies limk→∞ x

k = x̃. �

The technical results just introduced will be instrumental to
establish the asymptotic properties of the active learning scheme
presented in the next section. Specifically, we will see in §IV-D
how the proposed method meets Assumption 3.1 and 3.2 to
exploit the convergence of the sequence of minimum-norm
minimizers of a suitable collection of parametric programs.

Algorithm 1: Active learning-based method

Initialization: x0 ∈ Ω, θ0
i ∈ Rpi for all i ∈ N

Iteration (k ∈ N0):
• θk+1

i ∈ argmin
ξi∈Rpi

1
k

∑k

t=1
`i(x

t
i, f̂i(x̂

t
−i, ξi)),∀i ∈ N

• x̂k+1 = argmin
y∈Rn

1
2
‖y‖22 s.t. y ∈M(θk+1)

◦ For all i ∈ N : xk+1
i = fi(x̂

k+1
−i )

IV. ACTIVE LEARNING PROCEDURE AND MAIN RESULTS

We now introduce, discuss and analyze the convergence
property of our iterative scheme based on a active learning.

A. Algorithm description

The main steps of our active learning scheme are summarized
in Algorithm 11, where the black-filled bullets refer to the tasks
the external observer is required to perform, while the empty
bullet to the one performed by the agents in N .

Thus, at the generic k-th iteration of Algorithm 1, the external
entity updates the affine surrogate mappings f̂i(·, θki ) including
the most recent samples according to the following rule:

θk+1
i ∈ argmin

ξi∈Rpi

1

k

k∑
t=1

`i(x
t
i, f̂i(x̂

t
−i, ξi)), (6)

where `i : Rn × Rpi → R is some loss func-
tion, typically dictated by the function approximation type
adopted L and the learning problem at hand. Refer-
ring to Algorithm 1, we preliminarily define, for all
i ∈ N , argminξi∈Rpi (1/k)

∑k

t=1
`i(x

t
i, f̂i(x̂

t
−i, ξi)) =:

Θi(
{

(xti, x̂
t
−i)
}k
t=1

) = Θk
i . By referring to Fig. 1, the vector x̂t

hence denotes the query point employed by the external entity
at the t-th iteration to gather all the best responses fi(x̂

t
−i).

Successively, by relying on the updated proxies for the
agents’ action-reaction mappings f̂i, the external entity chooses
the next query point x̂k+1 as the minimum norm strategy profile
in the set M : Rp → 2Ω, p :=

∑
i∈N pi, formally defined as:

M(θk+1) := argmin
y∈Ω

∑
i∈N

∥∥∥yi − f̂i(y−i, θk+1
i )

∥∥∥2

2
, (7)

which contains all collective profiles that are the closest
(according to the squared Euclidean norm, although different
metrics could be used) to a fixed point of each f̂i(·, θk+1

i ). This
step is motivated by the notion of stationary action profile in
Definition 2.1, which coincides with a fixed point of the stack
of the agents’ mappings, i.e., x?i = fi(x

?
−i) for all i ∈ N .

Indeed, if f̂i were exactly equal to fi and the minimum in (7)
were zero, any x? ∈ M(θk+1) would be a stationary action
profile. Note that, by referring to (7), θk+1 identifies the whole
collection of parameters {θk+1

i }i∈N characterizing the surrogate
mappings, which at every iteration represent the argument of
the corresponding parameter-to-query mapping M(·). In the
spirit of the results developed in §III, the cost function in (7)

1A Python package with its implementation is publicly available at
https://github.com/bemporad/gnep-learn.
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x1<latexit sha1_base64="E+v7iVEQ7EqBUdIaMqtdP7HL+js="></latexit>

x2<latexit sha1_base64="yUslnP5LX4nB3pQh52h41StOcL8="></latexit>

⌦
<latexit sha1_base64="W7r5VXd3CYuVP1tEjTVBpMyalIs="></latexit>

x̂
<latexit sha1_base64="n7Ysi2XfM1oplDtOPknqGvql64M="></latexit>

x2 = f̂2(x1, ✓2)
<latexit sha1_base64="Qc0mIo7AO2q+6YLGsaG85I/wtXo=">AAADLXicjVJNb9NAEN24fJTylcKRS0QuRbIi20UlOSBVqpDgViTSVoota7wZ26usd63ddUmw/It66F+BAwc+xJW/gZ3mYgck5jR6b97MzpuNcs60cZxvPWvn1u07d3fv7d1/8PDR4/7+kzMtC0VxSiWX6iICjZwJnBpmOF7kCiGLOJ5Hi5OGP79EpZkUH8wqxyCDRLCYUTA1FPbflP66yUwlUVA6I6eOoyO7Sdyx49bJZDL2vEm1DL3XfgqmjKvQO1iGrj3wTYoGQu9FFfaH7lrqOIN/J0OyidNwv/fZn0taZCgM5aD1zHVyE5SgDKMcqz2/0JgDXUCCs8LE46BkIi8MCtriSsh0BibdAk2abWGxFEZvoXqVRXbTQ+m4w0ZRp0lTZqTk2l7moHTnnRksUEmZBSUFQZG3WaBKilVNJlxqDYphZ9r6DtVg0FKpguPcvmzOO6/t4YlUrN7Nw84ePMk1FrWlct6hDFt8+tug9mIfO6pEQZ4yumyjGoTeduTGuP/7A2feyD0cee9fDo/fbX7DLnlGnpMD4pJX5Ji8JadkSii5Il/Id/LDura+Wj+tXzelVm+jeUpaYf3+A/wPDBs=</latexit>

x1 = f̂1(x2, ✓1)
<latexit sha1_base64="EG4wO8NgSYwYivMh4Gimh8UIwKA="></latexit>

Fig. 2: With N = 2, n1 = n2 = 1, and affine f̂i’s constructed
using feasible samples (red and blue dots), solving (9) would
return the green point as a unique minimizer outside Ω (black
box). While agent 2 can still provide a feasible reaction to this
infeasible query point (decision to be made along the dashed
blue line), agent 1 can not (decision along the dashed red line).

then takes on the same role as the generic function r(·) in that
section, thus establishing an immediate connection between
(7) and the point-to-set mapping M(·) defined in Lemma 3.3.

By considering the minimization problem in (7), we note
that the special choice for the surrogate mappings in (1) is
particularly convenient, since (7) turns out to be a constrained
LS problem, which is convex whenever Ω (or a conservative
subset of it) is so. To simplify notation, assume ni = 1 for all
i ∈ N so that Λi = [ν>i ci] in (1) (the extension to the case
ni ≥ 2 follows readily). Then, the program in (7) becomes:

min
y∈Ω

∑
i∈N

∥∥yi − (νk+1
i )>y−i − ck+1

i

∥∥2

2
. (8)

Moreover, in the absence of constraints (Ω = Rn), we can
further characterize the stationary action profile we wish to
compute. In fact, problem (7) can be solved by imposing
yi− f̂i(y−i, θi) = yi−ν>i y−i−ci = 0 for all i ∈ N , therefore
getting the following system of N equations with N unknowns: 1 −ν>1

...
. . .

...
−ν>N 1

y =

 c1

...
cN

 , (9)

where the superscript k+1 has been omitted for simplicity. In
particular, if (9) is solvable, every solution lies on a subspace
M(θk+1) of dimension smaller than N (a single point when it
is unique), and the vector x̂k+1 corresponds to the minimum-
norm solution of (9). When Ω ⊂ Rn, one might still be tempted
to solve (9) to get the next query point x̂k+1. However, further
queries may return infeasible reactions by some of the agents,
as shown in the pictorial representation in Fig. 2.

Once obtained the minimum norm vector x̂k+1 in (7), this
serves as a query profile to collect the next agents’ reaction
data, xk+1

i = fi(x̂
k+1
−i ). Within the final step of the procedure,

indeed, x̂k+1 is broadcasted to the agents, which on their side
react to x̂k+1

−i by computing fi(·), and finally return the results

to the external entity. Therefore, each xk+1
i enriches the training

dataset used in (6) to improve the affine model f̂i(·, θk+1
i ).

B. Initialization
As commonly done in most active learning algorithms [3],

[4], [37], the execution of Algorithm 1 is preceded by a
(passive) random data collection phase to make an initial
estimate of the affine surrogates f̂i. During this initialization
procedure, the external entity draws iteratively a random
feasible point xk ∈ Ω as follows. First, it forms a random vector
xkr ∈ Rn by extracting its components xkri from distribution
U(m−i ,m

+
i ) where m− ≤ x ≤ m+ define a range of plausible

values of x. Then, the following constrained LS problem

xk = argmin
y∈Ω

‖y − xkr‖22, (10)

is solved for k = 1, . . . ,Kin to define xk and pass it in parallel
to each agent, which in turn responds through the private
action-reaction mapping fi. The resulting actions are collected
by the external entity to update its estimates θki . The remaining
K −Kin iterations of Algorithm 1 are then executed, where
K is the total number of queries performed to the agents.
Alternatively, more sophisticated initialization strategies are
possible, such as Latin hypercube sampling [38], [39] as in,
e.g., [4], however, significant differences are not expected in
our framework as we only learn linear proxies rather than
global surrogates of the agents’ responses. Nevertheless, given
its key role we will discuss in detail the random initialization
procedure within each numerical example reported in §VI.

C. Complexity analysis
We analyze the complexity of Algorithm 1 in the affine

setting (1) along with the mean squared error (MSE) loss

`i(x
t
i, f̂i(x̂

t
−i, ξi)) = ‖xti − f̂i(x̂

t
−i, ξi)‖22, (11)

which make (6) a linear LS problem and the acquisition
problem (7) either a linear system as in (9) (Ω = Rn), or
a constrained linear LS as in (8) (Ω ⊂ Rn is a polyhedron),
both having N unknowns. Hence, the complexity of solving (7)
or (10) is either the complexity of solving a linear system of
N equations or, in the constrained case, a linear LS problem
with N residuals and as many inequalities as in the hyperplane
representation of Ω, multiplied by the number K of iterations.
The memory size required to store the model parameters and
form problem (7) is therefore

∑n

i=1
ni(n−i + 1).

Due to the monotonically increasing number of training data
k, we consider simple recursive methods to update the estimate
θk+1
i in (6), as described for instance in [40], [41], such as

recursive LS [42]. To control the learning rate of the algorithm,
we adopt the following linear Kalman filter iterations [43]
tailored for ni = 1 (see Appendix B for the derivation):

φki =

[
x̂k−i
1

]
, aki = P k

i φ
k
i (12a)

P k+1/2
i = P k

i −
aki (a

k
i )
>

1 + (φki )
>aki

(12b)

θk+1
i = θki + P k+1/2

i φki (x
k
i − (φki )

>θki ) (12c)

P k+1
i = P k+1/2

i + βI (12d)
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For ni > 1, a bank of Kalman filters as in (12) is run in
parallel for each of the ni components of f̂i. The complexity
of solving (6) to update the parameter vector θ is hence
K
∑n

i=1
niO(n2

−i) and requires
∑n

i=1
ni(n−i + 1)(n−i + 2)/2

additional numbers to store the symmetric covariance matrices.
In (12) β ≥ 0 defines the learning rate of the filter, and

the initial value of the N -by-N covariance matrix P 0
i = αI

the amount of `2-regularization on θi (cf. [44, Eq. (12)]). In
particular, the larger the β, the faster is the convergence of the
linear estimator (we obtain standard recursive LS updates for
β = 0 [40], [41]), while the smaller the α, the larger is the
`2-regularization. We will adopt the above setting in all the
numerical simulations reported in §VI.

D. Asymptotic properties

Before characterizing the asymptotic properties of the active
learning procedure in Algorithm 1, we first postulate some
assumptions on the learning procedure L the external observer
is endowed with and then establish some results that will be
instrumental for the main statement of the paper.

Standing Assumption 4.1 (Training loss). For all i ∈ N , the
loss function `i is continuous in both arguments and, for all
(xi,x−i, θi) ∈ Ω × Rpi , 0 ≤ `i(xi, f̂i(x−i, θi)) < ∞, with
`i(xi, f̂i(x−i, θi)) = 0 if and only if xi = f̂i(x−i, θi). �

The conditions in Standing Assumption 4.1 allow us to
characterize the choice of the loss functions adopted in (6).

Our technical analysis will be based on the possibility of
matching pointwise (and, therefore, not necessarily globally
nor even locally) the action-reaction mapping fi of each agent,
which is a key property possessed by the affine surrogates in
(1), which can hence be used with no restrictions. Specifically,
for all i ∈ N and for all (xi,x−i) ∈ Ω, there exists a set Ai =
Ai(xi,x−i) ⊆ Rpi such that `i(xi, f̂i(x−i, θ̃i)) = 0, for all
θ̃i ∈ Ai. While this condition is intrinsic for affine surrogates,
it shall therefore be assumed to hold true in case of generic
proxies f̂i(·, θi) within the discussion in §V-C. Moreover, in
view of the specific structure (1) we consider, the affine proxies
are also continuous with respect to their second argument, i.e.,
f̂i(x−i, ·) is continuous for all x−i ∈ Rn−i .

The crucial result stated next requires the external entity to
solve (6) at the global minimum at every iteration. In case
there exist multiple (global) minimizers we then tacitly assume
further the external observer being endowed with a tailored tie-
break rule, i.e., some single-valued mapping T : 2Rpi → Rpi
used consistently across iterations, such as picking up the
solution θki with minimum norm at every k ∈ N, to single-out
one of those minimizers, for all i ∈ N . With this tie-break rule
T in place, which takes a set of vectors in Rpi as argument
and returns one element from it according to some criterion,
the first step in Algorithm 1 performed by the external observer
turns into an equality rather than an inclusion.

Lemma 4.2. For all i ∈ N , let {(xti, x̂
t
−i)}kt=1 be a collection

of samples to be employed in the update rule for the parameter
θi in (6), where each (xti, x̂

t
−i) ∈ Ω. Assume that, for every

k ∈ N, (6) is solved at the global minimum and a tie-break
rule T is applied to single-out a minimizer. If limk→∞ x

k
i = x̄i,

limk→∞ x̂
k
−i = x̄−i so that (x̄i, x̄−i) ∈ Ω, and limk→∞ θ

k
i =

θ̄i, then θ̄i ∈ Ai(x̄i, x̄−i), for all i ∈ N . �

Lemma 4.2 shows a sort of “consistency property” of the
affine surrogates f̂i, meaning that if all the ingredients involved
in Algorithm 1 happen to converge, then the pointwise approx-
imation of fi shall be exact at x−i, i.e., f̂i(x−i, θ̃i) = fi(x−i).

Standing Assumption 4.3 (Feasible set Ω). The set Ω is a
nonempty polytope. �

We now characterize the properties of the sequence of query
points {x̂k}k∈N produced by the central entity in the second
step of Algorithm 1 by computing the optimal solution to:

x̂k := argminy∈Rn

{
1
2
‖y‖22

∣∣ y ∈M(θk)
}
, (13)

for all k ∈ N, thus mirroring the strategy to generate xk in (5).

Proposition 4.4. Let {θk}k∈N be a sequence so that
limk→∞ θ

k
i = θ̃i for all i ∈ N , and letM(θ̃) = {x̃}. Then the

sequence {x̂k}k∈N generated by (13) is feasible and satisfies
limk→∞ x̂

k = x̃. �

We are now ready to state the asymptotic properties of the
active learning methodology described in Algorithm 1:

Theorem 4.5. Let {θk}k∈N be a sequence so that limk→∞ θ
k
i =

θ̃i for all i ∈ N , and letM(θ̃) = {x̃}. For every k ∈ N, let (6)
be solved at the global minimum and a tie-break rule T applied
to single-out a minimizer. Then, limk→∞ ‖x̂k −xk‖2 = 0, and
the sequence {xk}k∈N and {x̂k}k∈N generated by Algorithm 1
converge to the same stationary action profile. �

As a consequence of Theorem 4.5, in case the convergence
of the parametric estimates happens, it can only be towards
the true (at least pointwise) values. This fact, together with
limk→∞ ‖x̂k − xk‖2 = 0, yields

∑
i∈N ‖x̃i − f̂i(x̃−i, θ̃i)‖22 =∑

i∈N ‖x̃i−fi(x̃−i)‖22 = 0 =
∑

i∈N ‖fi(x̄−i)− x̄i‖22 = 0, i.e.,
‖fi(x̄−i)− x̄i‖2 = 0, i.e., the external entity has in its hands
both a stationary action profile x̃, and pointwise-exact surro-
gates of the action-reaction mappings f̂i(x̃−i, θ̃i) = fi(x̃−i).

Note that the assumptions postulated in §II-A are not
sufficient to guarantee the existence of a vector x? such that∥∥x?i − fi(x?−i)∥∥2

= 0 for all i ∈ N . The following corollary
offers a certificate for the existence of at least a stationary action
profile, and it is an immediate consequence of Theorem 4.5.

Corollary 4.6. Under the conditions stated in Theorem 4.5,
the multi-agent interaction process at hand admits a stationary
action profile x? in the sense of Definition 2.1. �

V. TECHNICAL DISCUSSION AND POSSIBLE EXTENSIONS

Next, we elaborate around the conditions granting the
asymptotic properties in Theorem 4.5, along with possible
extensions to a more general framework or surrogate mappings.

A. Discussion on Theorem 4.5

Assuming that limk→∞ θ
k
i = θ̃i for all i ∈ N , along with

the existence of a single minimizer contained in M(θ̃) (7),
appear rather strong requirements to achieve the convergence
of the proposed active learning scheme that, to the best of
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our knowledge, can not be guaranteed beforehand, not even
by imposing further structure on the learning procedure L or
the multi-agent problem at hand. Both can indeed be verified
only a posteriori or in practice after a large enough number of
iterations of Algorithm 1. As a further motivation for adopting
the affine surrogates in (1), note that checking whether M(θ̃)
is a singleton translates into verifying the positive definiteness
of the Hessian matrix associated to the cost function in (8).

We note that, however, the technical conditions assumed in
Standing Assumption 2.2 are so general that they do not even
seem to be sufficient to establish the existence of a stationary
action profile for the underlying problem. This should be put
together with the fact that the external observer: i) has very
little knowledge of such a process, ii) can be endowed with
any learning procedure L satisfying Standing Assumption 4.1,
and iii) could succeed in its prediction task even with a simple,
i.e., affine, parametrization for the surrogate mappings f̂i.

We point to §VI for many numerical results in which the
a-posteriori verification of the convergence of the parametric
estimates yielding a single minimizer in M(·) succeeds, thus
demonstrating the practical effectiveness of our methodology.

B. Learning composition of action-reaction mappings

Consider the case in which the decision variable xi does not
follow directly as a result of some reaction process through
fi(·), but it coincides with a function of some other inner
variable, say wi ∈ Wi ⊆ Rmi (in this new framework, fi should
be suitably redefined taking Rmi as codomain). By introducing
gi : Rmi → Rni as an additional, private mapping we have
that xi is obtained through the composition (gi fi)(x−i), i.e.,

xi = gi(wi) = gi(fi(x−i)).

This different perspective makes the reaction process to x−i
indirect. As a supporting example for this scenario, consider a
population of agents obeying to the following dynamics:

∀i ∈ N :

{
zi(k + 1) = di(zi(k), ui(k)) + si(v−i(k),u−i(k)),

vi(k) = ti(zi(k), ui(k)),
(14)

where zi ∈ Rnzi , ui ∈ Rnui , and vi ∈ Rnvi denote the state
vector, the control input, and the controlled output of each
agent, respectively, whose evolution (except for ui, which has to
be designed) is determined by mappings di : Rnzi × Rnui →
Rnzi and ti : Rnzi × Rnui → Rnvi . The behaviour of the
state variables, however, is also affected by some function
si : Rnu−i × Rnv−i of the other agents’ control inputs and
outputs. Planning an optimal control strategy over some horizon
of length T ≥ 1 traditionally requires each agent to find a
solution to the following optimal control problem:

∀i ∈ N :


min
wi

Ψi(zi(T )) +

T−1∑
k=0

Φi(xi(k),x−i(k), k)

s.t. zi(0) = zi,0, (14), ∀k = 1, . . . , T − 1,

xi(k) ∈ Xi, ∀k = 0, . . . , T − 1,
(15)

where zi,0 ∈ Rnzi is the measured initial state, wi(k) =
col(ui(k), zi(k + 1)), wi := col((wi(k))T−1

k=0 ) ∈ Rnwi , nwi
:=

T (nui
+ nzi), xi(k) := col(ui(k), vi(k)) ∈ Rnui

+nvi , with
xi := g(wi) = col((xi(k))T−1

k=0 ) ∈ Rni , ni := T (nui
+ nvi),

g : Rnwi → Rni , Xi ⊆ Rnui × Rnvi denotes the input-output
constraint set, Φi : Rnui

+nvi × Rnx−i × N → R is the i-th
stage cost that depends on k to include a possible reference
output signal to track, and Ψi : Rnzi → R is a terminal cost.

The exogenous term si in (14) thus makes (15) a collection
of optimization problems with coupling terms dependent on
x−i both in the cost and constraints, whose overall solution, if
any, naturally calls for a collective action profile in the spirit
of Definition 2.1, which in this generalized setting reads as:

x? ∈ Ω s.t., for all i ∈ N , x?i = gi(fi(x
?
−i)).

The agnostic external entity will therefore collect data by
querying the agents with tailored opponents’ input/output
profiles, and then update proxies for each composition (gi fi)
to predict the optimal control actions adopted by the set of
agents over the T -steps long horizon.

From a merely technical perspective, to let our machinery
work also in this more general setting, the conditions on fi(·) in
Standing Assumption 2.2 shall be replaced with the following:

i) Each mapping (gi fi)(·) is continuous and single-valued;
ii) For all x−i ∈ Rn−i , fi(x−i) produces some wi ∈ Wi so

that (gi(wi),x−i) ∈ Ω.
Then, nothing prevents the external entity from adopting
the same affine surrogate mappings (1) to estimate each
composition (gi fi)(·), whereas the final step of the active
learning scheme in Algorithm 1 will require to simply collect
xk+1
i = gi(fi(x̂

k+1
−i )) for all i ∈ N . The technical analysis on

the asymptotic properties of the variant of Algorithm 1 just
discussed then mimics the one carried out in §IV-D.

C. Generic surrogate mappings f̂i
Adopting the affine parametrization in (1) for the action-

reaction proxies has been shown beneficial to satisfy the
assumptions postulated so far, as well as to simplify the tasks in
Algorithm 1 the central entity has to perform. More importantly,
in view of the analysis in §IV-D, such simple surrogates can
be used with no restrictions, since they actually guarantee the
external entity to succeed in its prediction task.

In case, however, one is interested in more flexible surrogate
mappings f̂i, some further conditions have to be imposed.
Specifically, by mirroring the discussion in §IV-D tailored
for affine proxies, one shall necessarily integrate Standing
Assumption 4.1 with a requirement on the continuity of the
mapping θi 7→ f̂i(x−i, θi) for all x−i ∈ Rn−i . Nevertheless,
the proxies f̂i shall also be able to match at least pointwise the
action-reaction mapping fi of each agent, thus requiring that for
all (xi,x−i) ∈ Ω, there exists a set Ai = Ai(xi,x−i) ⊆ Rpi
such that `i(xi, f̂i(x−i, θ̃i)) = 0, for all θ̃i ∈ Ai. These two
conditions together are key to prove the consistency property in
Lemma 4.2 also with generic surrogate mappings. In addition,
to rely on Proposition 4.4 one should also ensure that the chosen
proxies f̂i allow meeting Assumption 3.1 and Assumption 3.2,
which characterize the second task performed by the external
entity in Algorithm 1, so that the arguments made in the proof
of Theorem 1 could be applied also to this more generic case.
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TABLE I: Charging EVs – Simulation parameters

Parameters Description Value

T Time interval 14
N Number of EVs 10
qi Degradation cost – quadratic term ∼ U(0.006, 0.01)
ci Degradation cost – affine term ∼ U(0.055, 0.095)T

d Normalized inflexibility demand from [10, Fig. 1]
γi Local charging requirement ∼ U(1.2, 1.8)
c̄i Upper bound - power injection 0.25
c̄ Grid capacity 0.2
K Number of iterations (Alg. 1) 200
Kin % of K - initialization of Alg. 1 20
β Learning rate (Kalman filter) 1

100 150 200 250
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Fig. 3: Sequence {x̂k}k∈N, averaged over 25 numerical in-
stances (solid blue line). The shaded black region corresponds
to the passive random data collection phase, which is reported
for the interval k ∈ [100, 200] only for illustrative purposes.

A main drawback of using nonlinear surrogates is that the
cost function in problem (7) may easily become nonconvex,
unless combined with suitable loss functions. For example, a
convex program equivalent to (7) might be obtained by adopting
softmax surrogate mappings and cross-entropy losses, in place
of the Euclidean norm, to model categorical decision variables.
This is however a topic of current investigation.

VI. NUMERICAL RESULTS

We now test the practical effectiveness of the active learning
scheme in Algorithm 1 on several numerical instances of the
multi-agent control and decision-making problems described in
§I-A, §II, along with comparing its performance with the state-
of-the-art centralized method for GNE computation in [45].
We adopt the affine setting (1) with MSE loss (11) detailed
in §IV-C. All simulations are run in MATLAB on a laptop
with an Apple M2 chip featuring an 8-core CPU and 16 GB
RAM. Some of the examples analyzed in this section are also
included in the Python package gnep-learn, publicly available
at https://github.com/bemporad/gnep-learn.

A. Motivating example revisited
Consider again the indirect control problem for smart grids

presented in §I-A. A DSO or an energy retailer (i.e., an
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Fig. 4: Sum between the normalized average inflexible demand
d and a sample of five charging strategies (1/N)

∑
i∈N x

?
i (ā, b̄)

at the equilibrium, for given price signals ā, b̄ > 0 (dashed
dotted coloured lines). The shaded blue area denotes the union
over all the 25 experiments performed.

external observer) wants to make accurate forecasts on the
aggregate electricity consumption of end-users in response to
price-signals, aimed at enabling flexibility offered by the users
themselves. We want to analyze the effect of price signals a,
b > 0 on the aggregate consumption σ(x?(a, b)) of a fleet of
EVs over a certain period T , and the possibility to unlock the
so-called “valley filling” phenomenon [10]. We then consider
the following collection of optimization problems:

∀i ∈ N :


min
xi

qix
>
i xi + c>i xi + (a(σ(x) + d) + b1T )>xi

s.t. 1>T xi ≥ γi, xi ∈ [0, x̄i]
T ,

σ(x) ≤ c̄,
(16)

where we have used the values reported in Tab. I to run
numerical experiments. In particular, we have run 25 instances
of (16) obtained from all the possible combinations of five
values for both a and b chosen equally spaced within the set
[0.02, 0.8]. In all the considered cases, we verified ex-post that
the minimum eigenvalue of the Hessian matrix H associated
with the cost in (8) satisfies λmin(H) ≥ 4.8× 10−2.

Then, Fig. 3 reports the averaged convergent behaviour of the
sequence of queries {x̂k}k∈N produced by Algorithm 1. Note
that we usually obtain an equilibrium x?, computed through
a standard extragradient type method [46], in less than the
K = 200 iterations allocated. In Fig. 4, instead, we show the
effect that different price signals have on the aggregate charging
strategy of the fleet of EVs. Specifically, we note that acting
on the parameters a, b produces a fine control of the aggregate
EVs consumption, increasing demand during off-peak periods,
thereby producing a desirable valley-filling phenomenon.

Therefore, our active learning procedure represents a key
tool for a DSO or an energy retailer in forecasting the aggregate
electricity consumption of private customers in response to
price-signals, in order to enable for the flexibility offered by
the users themselves, or eventually maximize their profits.
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Fig. 5: Hyperparameters analysis on the Nash equilibrium
problem formalized in [47, Ex. 1].

B. Generalized Nash games

For this multi-agent decision-making problem we consider
examples from [47], [48] to cover several cases of interest.

Specifically, [47, Ex. 1] considers N = 10 agents with cost
functions Ji(xi,x−i) = N(1+(i−1)/2)xi−xi(60N−1>Nx),
while Ω = [7, 100]N . We first perform a numerical analysis
to set the two main hyperparameters affecting the execution
of Algorithm 1, namely the learning coefficient β and the
number Kin of iterations during the data collection phase. The
selected values will be adopted also for the remaining numerical
instances considered in this subsection. Fig. 5 illustrates
the impact those hyperparameters have on the convergence
of Algorithm 1 to an equilibrium of the underlying game
(computed through a standard extragradient type method [46]),
averaged over 20 random initialization procedures for each
coefficients combination. In particular, we have considered
β ∈ {0, 0.5, 1, 2, 5} and Kin ∈ {0.01, 0.1, 0.2, 0.4} · K, with
K = 100. Different rules for selecting Kin can be adopted,
e.g., choosing Kin as a function of the dimension n−i−1 of θi.

What we can infer from Fig. 5 is that while, on the one hand,
it seems that some long enough random initialization procedure
is indeed required (solid lines corresponding to K = 1 are
associated with the slowest behaviours), on the other hand,
an exceedingly large learning rate (green and violet lines)
does not appear to bring significant benefit in terms of rate of
convergence. We will thus use β = 1 and Kin = dK/10e.

The performance of the active learning-based approach in
predicting an equilibrium solution of the considered quadratic
game with no coupling constraints is illustrated in Fig. 6. In
particular, the top plot shows the behaviours of the query
points x̂k computed iteratively by the external entity to collect
information on the agents’ BR mappings. Remarkably, the
approximation accuracy of the BR mapping surrogates increases
over the iterations, yielding limk→∞ ‖x̂k−xk‖2 = 0, and there-
fore allowing the external entity to practically succeed in its
prediction task in less than 20 iterations. These considerations
are motivated by the bottom plot in Fig. 6 that reports the
convergent behaviour of θk1 (the other parameter vectors have
a similar evolution), thus supporting Theorem 4.5 numerically.
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Fig. 6: Nash equilibrium problem formalized in [47, Ex. 1].
The shaded regions correspond to the random data collection
phase. Top: sequence {x̂k}k∈N (solid lines) converging to an
equilibrium (dashed lines). Bottom: convergent behaviour of
{θki }k∈N to reconstruct the BR mapping of agent 1. Only the
first 25 samples out of the allocated K = 100 are reported.
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Fig. 7: GNEP formalized in [48, Ex. 1]. The shaded regions
correspond to the random data collection phase. Top: sequence
{x̂k}k∈N (solid lines) converging to an equilibrium (dashed
lines). Bottom: convergent behaviour of the parameter vector
reconstructing the BR mapping of agent 1.

Similar conclusions can be also drawn from Fig. 7 that
illustrates the case in which Algorithm 1 is applied to the
example described in [48, Ex. 1] (in this case, K = 50).
Modelling the internet switching behaviour induced by selfish
users, in this example each cost function reads as:

Ji(xi,x−i) = − xi
1>Nx

(
1− 1>Nx

)
.

Then, while the first agent’s strategy is constrained so that x1 ∈
[0.3, 0.5], for all j 6= 1 we have xj ∈ [0.01, 100]. In addition, a
standard linear constraint 1>Nx ≤ 1 couples the strategies of the
whole population of decision-makers, thus actually resulting
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Fig. 8: GNEP described in [48, Ex. 3]. The shaded region
corresponds to the data collection phase (Kin = 30). Sequence
{x̂k}k∈N (solid lines) converging to a GNE (dashed lines).
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Fig. 9: GNEP formalized in [48, Ex. 11]. The shaded region
corresponds to the random data collection phase (K = 100).
Top: Sequence {x̂k}k∈N (solid lines) converging to the normal-
ized equilibrium (dashed lines). Bottom: convergent behaviour
of the parameter vectors reconstructing the BR mapping for
both agents (same colour, solid lines correspond to the first
element of each θi, while dashed lines to the second).

into a GNEP. An example with multidimensional decision
vectors is instead the one illustrated in Fig. 8, which amounts to
the GNEP described in [48, Ex. 3] and involving N = 3 agents
with three, two and two variables, respectively. Even though
the point {x̂k}k∈N converges to is different from the GNE
reported in [48, Ex. 3], it still coincides with an equilibrium of
the underlying GNEP, being a fixed point of the BR mappings.

We conclude this part by discussing two simple, yet
significant, examples involving two agents only. The first
one consists in the GNEP in [48, Ex. 11] featuring an
infinite number of equilibria {col(α, 1− α) | α ∈ [1/2, 1]},
for which Fig. 9 shows that Algorithm 1 is actually able to
return one of those solutions – specifically that coinciding
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Fig. 10: Nash equilibrium problem with no equilibria. The
shaded region corresponds to the random data collection phase
(Kin = 100, K = 1000). Top: Sequence {x̂k}k∈N obtained
by the external entity. Bottom: diverging behaviour of the
parameter vectors reconstructing the BR mapping for both
agents (same colour, solid lines correspond to the first element
of each θi, while dashed lines to the second one).

TABLE II: Minimum eigenvalue of the Hessian matrix of (7)

Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10

λmin(H) 0.11 0.16 0.001 0.65 ∗

with α = 0.7. After executing such an example 1000 times,
we have noticed that Algorithm 1 always returns the same
equilibrium corresponding to α = 0.7 in all those instances in
which it has converged. On the contrary, the second example
considered does not have any Nash equilibrium due to the
lack of quasiconvexity in the agents’ cost functions, which
are taken as J1(x1, x2) = −x2

1 + 2x1x2 and J2 = x2 − 2x1x2,
xi ∈ [0, 1] for i ∈ {1, 2}. Figure 10 reports the numerical
results for this example, where it is evident the non-convergent
behaviour of the main quantities involved, particularly the
parameter vectors θi. According to the discussion in §V-A, in
this case the sufficient conditions established in Theorem 4.5
do not hold, and therefore no certificate for the existence of
Nash equilibria is provided, which is indeed the case. Finally,
Table II shows that, in all those numerical instances considered
for which convergence of the parametric estimates happens,
also the sufficient condition for the uniqueness of the solution
in M(θ̃) is met (namely, positive definiteness of the Hessian
matrix H of the cost function, along with convexity of Ω),
thus verifying the requirements in Theorem 4.5 numerically.

C. Multi-agent feedback controller synthesis

The control application described in §II-B is slightly more
challenging, mostly because the conditions for the stack of
the (highly nonlinear) action-reaction mappings (4) to admit
a stationary action profile are not clear. For this reason, we
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selected 10 random numerical instances on which Algorithm 1
returned a fixed point of each fi(·) in (4) after just one
execution, thus ensuring the existence of a stationary action
profile according to Corollary 4.6 (Fig. 12 reports just one
converging instance of the first example for agent 1). In
particular, we generated random, discrete-time LTI test models
with unstable eigenvalues, satisfying the observability and
reachability conditions discussed in §II-B2. Given N = 3
agents with nui

= 1 for simplicity, we have nz ∼ U(N, 3N),
ny ∼ U(N, 2N) and nyi ∼ U(2, ny), while weights ri ∼
U(1, 10), Qi = WW> and W ∼ U(0, 1), i ∈ N .

We started by analyzing the impact the hyperparameters
have on the convergence of Algorithm 1 when applied to
the first randomnly generated instance. We replicate precisely
the same approach as described in the previous subsection,
i.e., K = 100, average over 20 executions of Algorithm 1
for coefficients combination β ∈ {0, 0.5, 1, 2, 5} and Kin ∈
{0.01, 0.1, 0.2, 0.4}·K. The results in Fig. 11 show that, unlike
the GNEP setting, for this application the convergence rate
is more sensible to the learning rate β rather than the length
of the random initialization phase (the blue lines do not even
converge indeed). We thus set β = 2 and Kin = 0.1K to
conduct the numerical simulations of this subsection.

The random initialization phase is here performed by present-
ing to the agents centralized LQR gains obtained with output
and input weights Q = Iny

and R = IN , and after perturbing
the original dynamical matrix. Moreover, to avoid the emptiness
of (4) due to the unboundedness of κi, for some κ−i the
external entity computes points κ̂ ∈ Ω̂ = Ω = [−20, 20]Nnz .

As already spotted out in the comments following Fig. 5,
from our numerical experience we have found that, given a
numerical instance enjoying the existence of a stationary action
profile, Algorithm 1 may not converge at each execution. With
the application considered in this subsection, however, this
behaviour is even more pronounced, possibly also in view of the
highly nonlinear structure of the underlying mappings. These
considerations hence motivate us in performing a statistical
analysis to shed further light on this fact, and the last column of
Table III reports the percentage of convergent runs over 1000
executions of Algorithm 1. In all the numerical simulations
in which convergence of the parametric estimates happens –
possibly to different points – we observe that: i) Algorithm 1
returns a fixed point of the stack of the action-reaction
mappings, thus verifying numerically the theory in §IV; and,
quite interestingly, ii) the point it returns is always the same.
Finally, to populate the last column of Table III, for each
numerical example we have taken the smallest eigenvalue of
the Hessian matrix for (8) among the minimum ones λimin(H)
in all those cases in which the convergence of the parametric
estimates happened. Such a column indeed shows that the
condition on M(θ̃) of being a singleton is always met.

D. Comparison results

We now compare the performance of Algorithm 1 against
those offered by TensCalc [45], a centralized state-of-the-art
method for GNE computation. We remark that, unlike our
approach, TensCalc requires a fully centralized scenario
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Fig. 11: Hyperparameters analysis on the first randomly drawn
multi-agent feedback controller synthesis problem.
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Fig. 12: First randomly drawn multi-agent feedback controller
synthesis problem. The shaded region corresponds to the
random data collection phase (K = 100). Top: Sequence
{x̂k}k∈N converging to a stationary action profile. Bottom:
convergent behaviour of the parameter vector reconstructing
the action-reaction mapping (4) of agent 1.

where the agents’ cost functions Ji and local constraint sets Xi
have to be known by the central entity. We thus consider four
examples provided with the toolbox associated to TensCalc2,
namely a zero-sum game and three different min-max problems,
illustrated and described in Fig. 13.

Specifically, Fig. 13 reports just one numerical instance on
top the 50 generated to compare the average computational
time of the two approaches. There, one can appreciate how
our active learning scheme produces a convergent sequence to
the Nash equilibrium (NE) (computed with TensCalc). In
the first example in Fig. 13.(a), the random initialization phase
and the four iterations required to converge take 2.2 [s], as
opposed to TensCalc that provides a solution in 1.3 [ms].
For the examples in Fig. 13.(b)–(d), instead, Algorithm 1 shows
a fast convergence, ranging from 34.2 [ms] to 42.1 [ms], while

2Available at https://github.com/hespanha/tenscalc.
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Fig. 13: Convergence behaviour exhibited by Algorithm 1 in four of the examples provided with TensCalc toolbox: (a)
Two-player zero-sum game with n1 = n2 = 200 and quadratic cost functions J1(x1, x2) = ‖x1‖2 + 2(x2 − 2 · 1200)>x1,
J2(x2, x1) = 9‖x2‖2 − 2(x1 − 2 · 1200)>x2; (b) Min-max problem with scalar decision variables, J1(x1, x2) = (x1 + x2)2,
J2(x2, x1) = −(x2 + x1)2 + 2(x2 + 2)2, and |x2| ≤ 1; (c) Min-max problem with scalar decision variables, J1(x1, x2) =
(x1 + x2 + 1)2, J2(x2, x1) = −(x2 + x1 + 1)2 + 2x2

2, and |x1| ≤ 0.25; (d) Min-max problem with scalar decision variables,
J1(x1, x2) = (x1 + x2)2, J2(x2, x1) = −(x2 + x1)2 + 2(x2 + 2)2, |x1| ≤ 2, and |x2| ≤ 1.

TABLE III: Multi-agent feedback controller synthesis – Nu-
merical results

Example nz ny nyi %conv min
i
{λimin(H)}

1 8 6 {5, 2, 5} 60 5.39× 10−4

2 7 4 {3, 2, 4} 49.3 1.23× 10−3

3 4 6 {2, 4, 2} 87.6 4.29× 10−4

4 5 6 {4, 5, 5} 82.5 1.76× 10−4

5 6 5 {2, 5, 3} 98.1 1.05× 10−4

6 4 6 {2, 3, 3} 89.5 2.59× 10−4

7 8 6 {2, 5, 4} 94.9 6.80× 10−3

8 4 3 {3, 3, 2} 98.6 1.85× 10−4

9 5 6 {2, 5, 2} 62.9 1.79× 10−4

10 8 5 {4, 5, 2} 94.7 3.54× 10−3

TensCalc is generally slower (0.3 to 0.34 [s]). In all cases,
note that TensCalc needs to “generate” a solver, a procedure
lasting for around 4 seconds on the laptop employed.

VII. CONCLUSION AND OUTLOOK

We have proposed an active learning scheme allowing an
external entity to actively learn faithful local surrogates of
action-reaction mappings, privately held by a population of
interacting agents, in order to find a stationary action profile of
the underlying multi-agent interaction process. We showed in
numerical experiments the practical effectiveness and versatility
of the procedure on a number of typical competitive multi-agent
decision-making and control problems.

The proposed approach paves the way to numerous exten-
sions. Looking at the specific problem of learning a GNE in
GNEPs, for instance, given the tight connection between an
equilibrium solution and a minimizer of the Nikaido-Isoda
function [49], one may design a tailored procedure along the
line of Algorithm 1 to locally approximate such a function.
Finally, we remark that problem (7) is based completely on
exploiting the current predictors f̂i. In alternative to the initial

random exploration phase, one could also investigate possible
solutions for better exploring the decision set Ω, as done for
example in reinforcement learning [50] and surrogate-based
global optimization [51], and analyze its potential benefits.

APPENDIX

A. Technical proofs

Proof of Lemma 3.3: Let r̄ : Rn × Rp → R̄ be defined
by r̄(x, θ) := r(x, θ) + ιX (x). Since X is a convex set and
r is a convex function, then r̄ is also a convex function for
each given θ ∈ Rp. By applying [36, Th. 2.6], it follows that
M(θ) = argminy∈Rn r̄(y, θ) is a convex set for all θ ∈ Rp.

To show continuity of r? at a generic θ̃ ∈ Rp, we need to
prove that limk→∞ r

?(θk) = r?(θ̃), for any sequence {θk}k∈N
such that limk→∞ θ

k = θ̃. Consider such a generic sequence
and let xk ∈M(θk) and x̃ ∈M(θ̃). In view of Assumption 3.2,
θ 7→ r(xk, θ) is also convex and differentiable w.r.t. θ and
x̃ ∈M(θ̃), i.e., x̃ is a global minimizer of r(·, θ̃), and therefore
we have that

r?(θk) = r(xk, θk) ≥ r(xk, θ̃) +
∂r(xk, θ)

∂θ

∣∣∣>
θ=θ̃

(θk − θ̃)

≥ r(x̃, θ̃) +
∂r(xk, θ̃)

∂θ

∣∣∣>
θ=θ̃

(θk − θ̃)

≥ r(x̃, θ̃)−D(θ̃)‖θk − θ̃‖,

where the last inequality holds since the partial derivative
∂r(x, θ)/∂θ evaluated in θ̃ is bounded w.r.t. x, with bound
D(θ̃) := supx∈X

∣∣∣ ∂r(x,θ)∂θ

∣∣∣
θ=θ̃

∣∣∣ ∈ R. Therefore, we obtain:

r(x̃, θ̃)−D(θ̃)‖θk−θ̃‖ ≤ r?(θk) = r(xk, θk) ≤ r(x̃, θk) (17)

where the last inequality follows by the optimality of xk.
Since θ 7→ r(x, θ) is continuous and limk→∞ θ

k = θ̃, we
have that limk→∞ r(x̃, θ

k) = r(x̃, θ̃), and the proof concludes
by applying the squeeze theorem to (17). �
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Proof of Lemma 3.6: Lower semicontinuity of r̄(x, θ) readily
follows by the continuity of r(x, θ) at any given point (x̃, θ̃) ∈
Rn × Rp, as

lim
(x,θ)→(x̃,θ̃)

inf r̄(x, θ) = lim
ε→0

[
inf

(y,ξ)∈Bε(x̃,θ̃)
r(y, ξ)

]
=

{
r(x̃, θ̃) if x̃ ∈ X
+∞ if x̃ 6∈ X

which in turn implies that lim(x,θ)→(x̃,θ̃) inf r̄(x, θ) ≥ r̄(x̃, θ̃)
for all (x̃, θ̃) ∈ Rn × Rp. To show level-boundedness, note
that X is bounded and nonempty, and therefore, for all α ∈ R,
{x ∈ Rn | r̄(x, θ) ≤ α} ⊆ X for all θ ∈ Rp. Thus, by setting
S = X and g = r̄ in Definition 3.5, the claim follows. �

Proof of Lemma 3.7: By [36, Th. 2.6], each vector xk in (5) is
uniquely defined since 1

2
‖·‖22 is strictly convex, proper because

X is nonempty and therefore, by Lemma 3.3, M(θk) is a
convex set. Moreover, since x 7→ r(x, θ) is continuous for all
θ ∈ Rp and X is compact, by Lemma 3.6 the function r̄(x, θ),
defined by r̄(x, θ) = r(x, θ) + ιX (x), is lower semicontinuous
w.r.t. x and level-bounded in x locally uniformly w.r.t. θ. Still
in view of Lemma 3.3, we also have that limk→∞ r

?(θk) =
r?(θ̃). Thus, from [36, Th. 1.17(b)] it follows that the sequence
{xk}k∈N generated by (5) is bounded and all its cluster points
lie inM(θ̃), which is however a singleton and contains x̃ only.

For the sake of contradiction, assume that xk 6→ x̃ as k →∞.
Then, there exists some ε > 0 and an infinite subsequence
{xk}k∈I so that ‖xk − x̃‖2 > ε for all k ∈ I. Since {xk}k∈I
is also bounded, by the Bolzano-Weierstrass theorem there
exists an infinite subsequence {xk}k∈I′ , with I ′ ⊂ I, such
that limk→∞,k∈I′ x

k = x̄, with x̄ 6= x̃. Since x̄ is a cluster
point of {xk}k∈N, by relying on [36, Th. 1.17(b)] we have that
x̄ ∈M(θ̃). This however is in conflict with the fact thatM(θ̃)
is a singleton, i.e., M(θ̃) = {x̃}, and hence the assumption
xk 6→ x̃ for k →∞ is contradicted, proving the statement. �

Proof of Lemma 4.2: Let us consider a single agent i ∈ N ,
as the proof for the remaining ones is identical mutatis
mutandis. By making use of a contradiction argument, we
will show that any of the parameters θ̄i ∈ Ai := Ai(x̄i, x̄−i)
asymptotically belongs to the set of minimizers of ξi 7→
1
k

∑k

t=1
`i(x

t
i, f̂i(x̂

t
−i, ξi)), and therefore it shall happen that

θ̄i ∈ Ai. Recall, indeed, that the parameter update reads as
θk+1
i = argminξi∈Rpi

1
k

∑k

t=1
`i(x

t
i, f̂i(x̂

t
−i, ξi)), where equal-

ity follows by virtue of the global optimality assumed and the
tie-break rule T (·) in place. Thus, for the sake of contradiction,
let us assume that limk→∞ θ

k
i = θ̃i with θ̃i /∈ Ai.

To start we note that, by combining the definition of
limit [52, Def. 5.4] and the properties of the loss function
stated in Standing Assumption 4.1, along with those of the
affine surrogates f̂i described in §IV-D, limk→∞ x

k
i = x̄i and

limk→∞ x̂
k
−i = x̄−i so that (x̄i, x̄−i) ∈ Ω directly imply that

limk→∞ `i(x
k
i , f̂i(x̂

k
−i, θ̃i)) = v > 0, for any θ̃i /∈ Ai, while

for all θ̃i ∈ Ai instead, limk→∞ `i(x
k
i , f̂i(x̂

k
−i, θ̃i)) = 0. Since

we are assuming that limk→∞ θ
k
i = θ̃i, by considering a generic

θki obtained from (6) we know that for any ε̃ > 0 there exists
some M̃ := M̃(ε̃) ≥ 0 so that |`i(xki , f̂i(x̂

k
−i, θ

k
i ))−v| ≤ ε̃, i.e.,

−ε̃+ v ≤ `i(xki , f̂i(x̂
k
−i, θ

k
i )) ≤ ε̃+ v, for all k ≥ M̃ . On the

other hand, we also know from limk→∞ `i(x
k
i , f̂i(x̂

k
−i, θ̃i)) = 0

that for any ε̄ > 0 there exists some M̄ := M̄(ε̄) ≥ 0 so that
`i(x

k
i , f̂i(x̂

k
−i, θ̃i)) ≤ ε̄ for all k ≥ M̄ .

Without loss of generality, let us then pick ε̃ = v/2 so that
−`i(xki , f̂i(x̂

k
−i, θ

k
i )) ≤ −v/2, and fix ε̄ < ε̃ = v/2, which is

always possible by continuity and k sufficiently large. Under
this latter condition, precisely k > max{M̃, M̄}, evaluating
the summation of the difference of the loss functions in θ̄i and
θki at iteration k, with each term ∆`ti,k := `i(x

t
i, f̂i(x̂

t
−i, θ̃i))−

`i(x
t
i, f̂i(x̂

t
−i, θ

k
i )), leads to:

1

k

k∑
t=1

∆`ti,k =
1

k

min{M̃,M̄}−1∑
t=1

∆`ti,k +

max{M̃,M̄}−1∑
t=min{M̃,M̄}

∆`ti,k

+

k∑
t=max{M̃,M̄}

∆`ti,k

 .

While the first term in the summation is constant for fixed
ε̄ and ε̃ (and therefore for fixed M̄ and M̃ ), namely∑min{M̃,M̄}−1

t=1
∆`ti,k =: α, the second and third elements can

always be upper bounded by (k− ρ̄)ε̄− (k− ρ̃)v/2 +β, where
ρ̄, ρ̃ ≥ 0 and β ∈ R are constants depending on the values M̃
and M̄ take. Specifically, if M̄ < M̃ , ρ̄ = M̄ , ρ̃ = M̃ and
β < 0, whereas if M̄ ≥ M̃ , ρ̄ = M̃ , ρ̃ = M̄ and β > 0. Thus,
taking the limit for k →∞ yields inequality:

lim
k→∞

1

k

k∑
t=1

∆`ti,k ≤ lim
k→∞

1

k
[α+β+(k− ρ̄)ε̄−(k− ρ̃)v/2] < 0

in view of ε̄ < ε̃ = v/2, meaning that we can always find some
iteration index such that the cost obtained with some θ̃i ∈ Ai is
strictly smaller than the one obtained with θki updated through
the rule in (6), and assumed to be convergent to some θ̃i /∈ Ai.
This clearly represents a contradiction and hence concludes
the proof. �

Proof of Proposition 4.4: Let us prove that r(x, θ) =∑
i∈N ‖xi − (νk+1

i )>x−i − ck+1
i ‖22 satisfies Assumption 3.1

and 3.2. Since Ω is a nonempty polytope, it is convex and
bounded. Moreover, function r is quadratic and positive
semidefinite, and therefore continuous and convex w.r.t. x,
for all θ ∈ Rp. In addition, r(x, θ) can be expressed also as:

r(x, θ) = ‖A(x)θ − b(x)‖22
= θ>A(x)>A(x)θ + 2b(x)>A(x)θ + b(x)>b(x)

where A(x), b(x) are suitably defined affine functions of x,
which is a quadratic positive semidefinite function w.r.t. to θ,
and therefore convex and differentiable for all x ∈ Ω. Thus,

sup
x∈Ω

∣∣∣∣∂r(x, θ)∂θ

∣∣∣∣ = max
x∈Ω

∣∣2A(x)>A(x)θ +A(x)>b(x)
∣∣

= max
i=1,...,q

± {2A(vi)
>A(vi)θ +A(vi)

>b(vi)}

where v1, . . . , vq are the vertices of Ω and the last inequality
follows since 2A(x)>A(x)θ + A(x)>b(x) is convex and
quadratic w.r.t. x and the maximum of a convex quadratic
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function over a polytope is attained at one of its vertices. For
all θ ∈ Rp, we thus obtain that:

max
x∈Ω

∣∣2A(x)>A(x)θ +A(x)>b(x)
∣∣

= max{2A(vi(θ))
>A(vi(θ))θ +A(vi(θ))

>b(vi(θ)),

− 2A(vj(θ))
>A(vj(θ))θ +A(vj(θ))

>b(vj(θ))} =: D(θ)

for some indices i(θ), j(θ) ∈ {1, . . . , q}. By relying on
Lemma 3.7 we hence obtain the desired result, since all its
assumptions are satisfied. �

Proof of Theorem 4.5: The convergence of each θki to some
θ̃i clearly implies that, in view of Standing Assumption 4.1,
also the associated composition mapping estimate converges,
i.e., for all i ∈ N , limk→∞ f̂i(x−i, θ

k
i ) = f̂i(x−i, θ̃i) with

f̂i(x−i, θ̃i) possibly different from the true action-reaction
mapping fi(x−i). Then, in view of Proposition 4.4, we
also have that limk→∞ x̂

k = x̃. This latter relation in turn
yields limk→∞ x

k = x̄, as the action-reaction mappings
fi(·) are single-valued and continuous in view of Standing
Assumption 2.2. Note that both sequences {x̂k}k∈N and
{xk}k∈N are feasible in view of (7) and the fact that each
xki is determined through fi(·) that implicitly accounts for
the common constraints Ω. Since x̂k is iteratively chosen
following the tie-break rule induced by 1

2
‖ · ‖22, as the set of

global minimizers in (7) may not be unique, it may happen
that x̃ 6= x̄. We now make use of a local exact approximation
argument to show that limk→∞ ‖x̂k − xk‖2 = 0, and hence
that the two limit points above coincide, and actually yield,
by virtue of Lemma 4.2, a stationary action profile x? in the
sense of Definition 2.1.

In view of the definition of limit we can then always find
some k̄ ∈ N and µi > 0 such that a neighbourhood of x̄i,
say Bµi

(x̄i), contains infinitely many points [53], meaning that
xki ∈ Bµi

(x̄i) for all k ≥ k̄, i ∈ N . By virtue of the consistency
property proved in Lemma 4.2 it thus follows that the pointwise
approximation shall be exact, namely each θ̃i is so that, for all
i ∈ N , ‖f̂i(x̃−i, θ̃i)− fi(x̃−i)‖2 = 0 = ‖f̂i(x̃−i, θ̃i)− x̄i‖2.

Since (7) is solved at the global optimum at every k ∈ N, and
the single-valuedness of each fi(·), this latter relation readily
yields

∑
i∈N ‖x̃i − f̂i(x̃−i, θ̃i)‖22 =

∑
i∈N ‖x̃i − fi(x̃−i)‖22 =

0 =
∑

i∈N ‖x̃i− x̄i‖22, and hence ‖x̃i− x̄i‖2 = 0 for all i ∈ N .
This means that x̄ = x̃, and in view of Definition 2.1, they
coincide with a fixed point of the action-reaction mappings
fi(·), as

∑
i∈N ‖fi(x̄−i)− x̄i‖22 = 0, i.e., ‖fi(x̄−i)− x̄i‖2 = 0

for all i ∈ N , concluding the proof. �

B. Derivation of Kalman filter equations in (12)
The updates (12) are obtained by applying linear Kalman

filtering to the linear time-varying system (we omit the index i
for simplicity of notation): θk+1 = θk+ξk, xk = (φk)>θk+ζk,
where ξk, ζk are zero-mean white noise terms with covariance
βI and 1, respectively. The Kalman filter equations are:

Mk = P kφk/(1 + (φk)>P kφk)
θk+1/2 = θk +Mk(xk − (φk)>θk)
P k+1/2 = (I −Mk(φk)>)P k

= P k − P kφk(φk)>P k/(1 + (φk)>P kφk)
θk+1 = θk+1/2

P k+1 = P k+1/2 + βI.

Since P k+1/2φk = P kφk − P kφk(φk)>P kφk/(1 +
(φk)>P kφk) = P kφk/(1 + (φk)>P kφk) = Mk, we
obtain θk+1 = θk + P kφk/(1 + (φk)>P kφk)(xk − (φk)>θk).
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