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Learning disturbance models for offset-free reference tracking
Pablo Krupa, Mario Zanon, Alberto Bemporad

Abstract—This work presents a nonlinear control framework
that guarantees asymptotic offset-free tracking of generic ref-
erence trajectories by learning a nonlinear disturbance model,
which compensates for input disturbances and model-plant mis-
match. Our approach generalizes the well-established method of
using an observer to estimate a constant disturbance to allow
tracking constant setpoints with zero steady-state error. In this
paper, the disturbance model is generalized to a nonlinear static
function of the plant’s state and command input, learned online,
so as to perfectly track time-varying reference trajectories under
certain assumptions on the model and provided that future refer-
ence samples are available. We compare our approach with the
classical constant disturbance model in numerical simulations,
showing its superiority.

Index Terms—Offset-free reference tracking, nonlinear model
predictive control, extended Kalman filter, disturbance model

I. INTRODUCTION

Control techniques can be grouped in two main categories:
model-based and model-free techniques. The latter ones can
achieve the control objective without necessarily taking ad-
vantage or needing a model of the system. Examples can be
PID control [1] and model-free reinforcement learning [2].
However, these methods have some limitations, such as the
difficulty to guarantee stability or safety with respect to given
constraints without a model. This motivates the introduction
of model-based techniques. Among them, Model Predictive
Control (MPC) is a well-known optimization-based technique
[3], [4]. At each sample time, MPC solves a finite-horizon
optimal control problem using a prediction model and the
new measurement (or estimate) of the system state. In MPC,
offsets with respect to the desired reference might occur due to
mismatches between the prediction model and the (unknown)
system dynamics, or due to unmeasured disturbances.

Offset-free MPC schemes are used to reject both model
mismatch and unknown disturbances, leading, as the name
suggests, to offset-free tracking of the desired reference.
Most of these schemes rely on using an augmented state-
disturbance model (see [5] for other formulations), leading
to an augmented state that is estimated in order to reject the
disturbance. Several works have been done in the field of linear
and nonlinear MPC to attain offset-free tracking of piecewise-
constant references, leading to an established theory; see [5]–
[9]. However, new results in this field are still abundant. For
instance, in [10] the authors use a gated recurrent unit neural
network to identify the system and use it as a prediction model
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for achieving offset-free tracking of constant references. In
[11], the authors use a NARX neural network for the same
purposes as [10]. In [12], an artificial neural network is used
to model the disturbances at steady-state, but in the context
of linear MPC. In [13], the authors propose an approach for
the generation of a disturbance model by taking advantage
of sufficient observability conditions and solve a semi-infinite
program offline in order to retrieve a disturbance model that
can be used online for offset-free nonlinear MPC. In [14], the
authors propose a modifier-adaptation approach that achieves
offset-free tracking for periodic reference trajectories.

In this paper, we present theoretical conditions under which
offset-free tracking of time-varying reference trajectories can
be achieved by exploiting a nonlinear disturbance model in
the context of nonlinear control. We extend previous results
in offset-free tracking into a more general form, where we
assume to have a preview of future reference signals in
order to also achieve offset-free tracking of non-constant
reference trajectories; in contrast to previous results, which
consider constant references or periodic reference trajectories,
cf. [5]–[14]. We establish theoretical conditions for offset-free
tracking using a nonlinear static disturbance model, which is
learned online. Thus, we can see this approach as “grey-box”,
since it mixes an offline white-box state-space model of the
system with the online estimation of a set of parameters for
the nonlinear disturbance function. Although the theoretical
assumptions for offset-free tracking may be restrictive in a
general case, we show how the proposed theoretical framework
can provide good results when applied to the frequently used
combination of a nonlinear MPC with an Extended Kalman
Filter (EKF) as a state observer. In particular, we present
numerical results that show how this setup can be used to train
a disturbance model online, leading to offset-free tracking of
generic reference trajectories if the disturbance model satisfies
the required theoretical assumptions. Furthermore, we show
results using a recurrent neural network as the disturbance
model, which we train online following a similar approach
to [15]. The experiments indicate that, even when the theo-
retical assumptions are not fully satisfied, the proposed distur-
bance model can outperform the classical constant disturbance
model [5], [8], in the context of nonlinear offset-free MPC.

The paper is organized as follows. In Section II we present
the problem formulation along with the assumptions and the-
oretical results that lead to offset-free tracking of time-varying
reference trajectories. We then show now the combination
of nonlinear MPC and EKF can be applied to this control
objective in Section III. In particular, we show that the EKF
can be used to learn the parameters of the disturbance model
online, achieving very good tracking results even when the
theoretical assumptions presented in Section II are not fully
satisfied. We conclude with Section IV.
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Notation: Given a set S ⊆ Rn, int(S) denotes its interior.
x(k|j) ∈ Rn is the estimate of x ∈ Rn at time k ∈ N given the
information available at time j ∈ N. The natural numbers N
include 0, and Nj

i
.
= {i, i+1, . . . j− 1, j}. Given x ∈ Rn and

some positive semidefinite matrix Q ∈ Rn×n, ∥x∥2Q = x⊤Qx.

II. OFFSET-FREE REFERENCE TRACKING

We consider the problem of achieving offset-free refer-
ence tracking of an unknown nonlinear system. We establish
sufficient conditions under which a nonlinear controller and
observer can achieve this goal using a nonlinear nominal
model augmented with a suitably selected disturbance model.

A. The real system

We assume that the controlled process is described by the
discrete-time nonlinear dynamics

xp(k + 1) = fp(xp(k), u(k)),

yp(k) = gp(xp(k)),
(1)

where xp ∈ Rnxp , u ∈ Rnu and yp ∈ Rp, denote, respectively,
the state, input and output of the process and k ∈ N is
the sampling instant. We assume that we do not know the
functions fp : Rnxp × Rnu → Rnxp and gp : Rnxp → Rp.
We also assume that only input and output measurements are
available, i.e., we cannot directly access the state vector xp(k),
whose dimension nxp

may also be unknown.
Our aim is to design a controller that makes the output yp(k)

of plant (1) track a given generic reference signal {r(k)}∞k=0,
under the following input and output constraints

u(k) ∈ U , yp(k) ∈ Y, ∀k ∈ N, (2)

where U ⊆ Rnu , Y ⊆ Rp are nonempty. Since the objective
is to achieve offset-free tracking, we make the following two
standing assumptions, which are obvious requirements to be
able to track the time-varying reference r(k) asymptotically
with zero error while satisfying the system constraints.

Assumption 1. The reference signal {r(k)}∞k=0 satisfies
r(k) ∈ int(Y), ∀k ∈ N. Furthermore, there exist trajectories
{xpr(k)}∞k=0 and {ur(k)}∞k=0 such that

xpr(k + 1) = fp(xpr(k), ur(k)), (3a)
r(k) = gp(xpr(k)), (3b)

and ur(k) ∈ U for all k ∈ N.

Assumption 2. Let {r(k)}∞k=0 satisfy Assumption 1 and
{xpr(k)}∞k=0, {ur(k)}∞k=0 denote a corresponding pair of state
and input trajectories. There exists a nonempty set X 0

p ⊆ Rnxp

of initial states such that for each xp(0) ∈ X 0
p there exists an

input trajectory {u(k)}∞k=0, u(k) ∈ U , for which (1) satisfies
lim
k→∞

xp(k)− xpr(k) = 0 and yp(k) ∈ int(Y) for all k ∈ N.

Assumption 1 is a necessary condition for perfect tracking
under strict feasibility of the corresponding input and output
trajectories. The assumption requires the reference trajectory
r(k) to be a feasible reference for the real system dynam-
ics (1) and constraints (2). Since the real system dynamics
are unknown, this might be difficult to verify in general.

However, in many practical settings it may be possible to
verify Assumption 1 due to sufficient knowledge of the real
system or to historical data. Assumption 2 is an unrestrictive
assumption stating that there exist some set of initial states
from which the system can be asymptotically steered to
the reference. In practice this is not restrictive, since it is
commonly assumed that systems are controlled starting from a
viable initial state that is close enough to the desired reference.

B. Control-oriented model and estimation

As is often the case in model-based controllers, we consider
a nominal prediction model with disturbance d ∈ Rnd :

x(k + 1) = f(x(k), u(k), d(k)),

d(k) = h(x(k), u(k), θ(k)),

y(k) = g(x(k), d(k)),

(4)

where x ∈ Rnx is the state of the prediction model, u ∈ Rnu

and y ∈ Rp are, respectively, the input and the output of (1),
and f : Rnx × Rnu × Rnd → Rnx , g : Rnx × Rnd → Rp are
parametrized by θ ∈ Rnθ . Vector d ∈ Rnd is a disturbance that
affects the model and is generated by a parametric disturbance
function h : Rnx ×Rnu ×Rnθ → Rnd whose parameters θ are
estimated online. We note that we make no assumption on the
dimension nx with respect to the dimension nxp

.
Model (4) is the combination of a nominal model of the

system f , g, obtained offline, and the disturbance function
h of the parameter vector θ that is learned online. We note
that the use of a prediction model learned offline is the
typical approach in model-based controllers, such as MPC [3].
Functions f and g may be obtained, for instance, from system
identification, leading to a prediction model that balances
prediction accuracy and complexity. A consequence of this
balance is a mismatch between the prediction model and the
real system dynamics (1), which generally leads to offset when
tracking a given reference. In offset-free MPC for piecewise-
constant references, this is solved by augmenting the nominal
prediction model f , g, with a disturbance d ∈ Rnd that is
estimated online, see, e.g., [6, §2.3]. In this paper, we augment
the nominal prediction model f , g, with a disturbance function
h whose parameters θ will be learned online using an estimator
to achieve offset-free tracking. The approach is analogous
to the one used in offset-free MPC for piecewise-constant
references, but with the additional complexity of h required
to achieve this goal for time-varying references.

Model (4) enables a trade-off between offline identification,
which captures the most relevant plant dynamics, and online
model adaptation to cope with unknown disturbances and
model-plant mismatches. For instance, if a nominal model

x(k + 1) = fn(x(k), u(k)), y(k) = gn(x(k)),

is obtained from system identification, then f and g can be ob-
tained as f = fn+hx and g = gn+hy , with suitably selected
disturbance functions hx(·), hy(·). We consider model (4) to
provide a more general problem setup.

In order to achieve offset-free tracking, we consider the
following two assumptions on model (4).
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Assumption 3. Function g is continuous, function f is con-
tinuous with respect to (x, d), and function h is continuous
with respect to (x, θ).

Assumption 4. Let {r(k)}∞k=0 satisfy Assumption 1 and
{ur(k)}∞k=0 denote a corresponding input trajectory. There
exists θr ∈ Rnθ and a state trajectory {xr(k)}∞k=0 such that

xr(k + 1) = f(xr(k), ur(k), dr(k)),

dr(k) = h(xr(k), ur(k), θr),

r(k) = g(xr(k), dr(k)), ∀k ∈ N.
(5)

Assumption 3 is a mild technical requirement for the proofs
reported in the sequel. We note that Assumption 3 might be
insufficient for many controllers and/or observers from the
literature, which might require additional assumptions on the
functions of model (4). Assumption 4 guarantees that, limited
to perfect tracking conditions, model (4) is versatile enough
to reproduce the output reference signal r(k) when excited
by the same associated reference input ur(k). Note that in
the case of constant references r(k) ≡ r̄ if ur(k) ≡ ūr and
x̄pr are such that x̄pr = fp(x̄pr, ūr), r̄ = gp(x̄pr), then,
Assumption 4 always holds for the classical additive output
disturbance model [5] x(k+1) = f(x(k), u(k)), d(k) = θ(k),
y(k) = g(x(k))+d(k), as any x̄r, θ̄r such that x̄r = f(x̄r, ūr)
and θ̄r = r̄ − g(x̄r) makes (5) be satisfied, where clearly θ̄r
represents a term to correct the plant/model mismatch of the
output vector at steady-state. For this reason, Assumption 4 is
usually not explicitly reported in the literature on offset-free
MPC, while we need to introduce it here to handle the more
general time-varying reference setting. Choosing a disturbance
model h(·) such that Assumption 4 is known to be satisfied
may not be possible in many practical settings due to a lack
of knowledge of the real system dynamics. However, as we
illustrate in the numerical results of Section III-C, the use of a
general-purpose disturbance model can provide good tracking
performance, even if Assumption 4 is not fully satisfied.

To estimate the state x(k) and parameters θ(k) online, we
rely on an observer that delivers the estimates[

x(k|k)
θ(k|k)

]
=

[
x(k|k − 1)
θ(k|k − 1)

]
+ ω(k, e(k)), (6a)

based on the output prediction error

e(k)
.
= yp(k)− g(x(k|k − 1), d(k|k − 1)), (6b)

where the measurement-update function ω : N×Rp → Rnx+nθ

provides the correction term due to the output prediction error.
We assume that the time-update function of the observer is

d(k|k − 1) = h(x(k|k − 1), u(k), θ(k|k − 1)), (6c)
d(k|k) = h(x(k|k), u(k), θ(k|k)), (6d)[

x(k + 1|k)
θ(k + 1|k)

]
=

[
f(x(k|k), u(k), d(k|k))

θ(k|k)

]
. (6e)

The following assumption is a standard requirement for any
well-posed observer, cf., e.g., [6, Assumption 9].

Assumption 5. The observer-update function ω satisfies
ω(k, 0) = 0, for all k ∈ N, and ω is continuous with respect
to its second argument in a neighborhood of the origin.

Remark 1 (Comparison with constant disturbance models).
The case of constant disturbance models (see, e.g., [6])

x(k + 1) = F (x(k), u(k), d(k)), y(k) = G(x(k), d(k)),

d(k + 1) = d(k),
(7)

is a special case of the general disturbance model (4), obtained
by setting nθ = nd, f(x, u, d) = F (x, u, d), g(x, d) =
G(x, d), d(k) = θ(k) and h(x, u, θ) = θ. Vice versa, given
the model in (4), one can obtain the model in (7) by setting
nd = nθ, d(k) = θ(k), F (x, u, d) = f(x, u, h(x, u, d)),
and G(x, d) = g(x, h(x, u, d)). It is therefore apparent that
the two disturbance modeling frameworks are mathematically
equivalent. However, our framework has the advantage of
being more structured, as it explicitly models the disturbance
vector as the output of a parametric nonlinear model of the
state and input vectors, with θ being the vector of disturbance
model parameters, while in (7), the underlying modeling
assumption is that the disturbance is an unknown constant,
which is fully justified by the fact that the emphasis is on
compensating steady-state errors when tracking constant set-
points. We remark also that in [6] the authors assume that the
number nx of model states is equal to the order nxp

of the
plant state xp, while in this paper we do not make such an
assumption. We do not even assume that nxp

is known.

C. Nonlinear controller

We assume that a nonlinear controller

u(k) = κ(x(k), r(k), θ(k)), (8)

κ : Rnx × Rp × Rnθ → U , has been designed fulfilling the
following assumption.

Assumption 6. Consider any {r(k)}∞k=0 satisfying Assump-
tion 1 and any constant value θ(k) ≡ θ̄. Let {∆x(k),∆θ(k)}
be vanishing perturbations, i.e.,

lim
k→∞

∆x(k) = 0, lim
k→∞

∆θ(k) = 0.

Then, applying u(k) = κ(x(k) +∆x(k), r(k), θ(k) +∆θ(k))
makes the output of the nominal model (4) track the reference
asymptotically without errors, i.e.,

lim
k→∞

g(x(k), d(k))− r(k) = 0, (9)

with y(k) ∈ int(Y) for all k ∈ N.

Note that Assumption 6 implies that u(k) ∈ U by definition,
and that the closed-loop system constituted by (4) and (8) is
intrinsically robust to vanishing state perturbations affecting
both the evolution of the nominal model and the state-feedback
signals to the controller. Such a view of the actual control
system is depicted in Fig. 1, which shows our reinterpretation
of the control system as a state-feedback loop with state
(x(k|k− 1), θ(k|k− 1)), output y(k|k) and input u(k) gener-
ated by the controller (8) under the feedback perturbations[

∆x(k)
∆θ(k)

]
= ω(k, e(k)), (10)

caused by the real plant through the measurement-update
mapping (6a) of the observer. Clearly, when e(k) = 0 the
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Fig. 1: Interpretation of the closed-loop system from the point of view of the nominal model, where the plant is seen as a disturbance
generator whose effect is compensated by the disturbance model.

Note that Assumption 2 has not been explicitly mentioned
in the proof of Theorem 1, but in light of the result of the
theorem, the condition xp(0) 2 Xp0 is a necessary requirement
for (11) and (12) to hold.

We finally remark that the assumption in (11) might be
perceived as rather strong. However, note that Assumption 4
guarantees that model (5) can perfectly reproduce the in-
put/output signals from the plant (1) under perfect tracking
conditions for a particular value of ✓̄ and Assumption 6
guarantees that the controller can make the model track the
reference for the same ✓̄. Therefore, assumption (11) amounts
to having a well-chosen disturbance model and well-designed
state observer. Note that this is a common assumption in the
literature on offset-free MPC (see, e.g., [6, Assumption 9]).

III. OFFSET-FREE EKF-BASED NONLINEAR MPC

The convergence result proved in the previous section is
rather general and conceptual. We next show how the result
is applied to the frequently used combination of the Extended
Kalman Filter (EKF) as state observer and Nonlinear MPC
(NMPC) as controller. Additionally, the reference signal given
to the NMPC controller is generated from the future reference
previews using the estimated parameters ✓ of the disturbance
model obtained from the EKF.

A. Observer: Extended Kalman Filter

Model (4) can be interpreted as a combined model in
which fn(x, u)

.
= f(x, u, 0) and gn(x)

.
= g(x, 0) capture a

nominal model (either physics-based or black-box) estimated
off-line from a set of input/output data {u(k), y(k)}, and the
disturbance model is used for on-line adaptation to match the
data measured from the real plant. In particular, by assuming
that function g is differentiable, f is differentiable with respect
to (x, d), and h with respect to (x, ✓), one can estimate

(x(k), ✓(k)) by the following EKF with measurement updates

dy(k|k � 1) = hy(x(k|k � 1), ✓(k|k � 1)), (13a)
e(k) = y(k)� g(x(k|k � 1), dy(k|k � 1)), (13b)
B(k) = C(k)P (k|k � 1)C 0(k) +Qy(k), (13c)
M(k) = P (k|k � 1)C 0(k)B(k)�1, (13d)


x(k|k)
✓(k|k)

�
=


x(k|k � 1)
✓(k|k � 1)

�
+M(k)e(k), (13e)

dy(k|k) = hy(x(k|k), ✓(k|k)), (13f)
P (k|k) =

�
I �M(k)C(k)

�
P (k|k � 1), (13g)

and time update

dx(k|k) = hx(x(k|k), u(k), ✓(k|k)), (13h)
x(k + 1|k) = f(x(k|k), u(k), dx(k|k)), (13i)
✓(k + 1|k) = ✓(k|k), (13j)
P (k + 1|k) = A(k)P (k|k)A0(k) +Q(k), (13k)

where

C(k) =
h⇣

@g
@x + @g

@dy

@hy

@x

⌘
@g
@dy

@hy

@✓

i
x(k|k�1),✓(k|k�1), (13l)

A(k) =

"⇣
@f
@x + @f

@dx

@hx
@x

⌘
@f
@dx

@hx
@✓

0 I

#

x(k|k),✓(k|k),u(k),

(13m)

Q(k) =


Qx(k) 0

0 Q✓(k)

�
, (13n)

and Qx(k), Q✓(k), and Qy(k) are positive semidefinite ma-
trices representing, respectively, the covariance matrices of
process noise ⇠(k) 2 Rnx , parameter noise ⇠✓(k) 2 Rn✓ , and
output noise ⇣(k) 2 Rp according to the following extension
of model (5)

x(k + 1) = f(x(k), u(k), d(k)) + ⇠x(k),

y(k) = g(x(k), d(k)) + ⇣(k),

d(k) = h(x(k), u(k), ✓(k)) + ⇠✓(k),

(14)

that is merely used to design the observer (13).

4

time update

1Plant
yp(k)

measurement
update

?

?

time update

Observer

e(k)
u(k)

output equation
x(k|k-1)

𝜃(k|k-1)

x(k|k)

𝜃(k|k)

r(k)

x(k+1|k)time update
measurament 

update

output equation
y(k|k-1)

𝜃(k+1|k)

Fig. 1: Interpretation of the closed-loop system from the point of
view of the nominal model, where the plant is seen as a generator
of the “disturbance” e(k) whose effect is rejected by the observer
thanks to the disturbance model.

measurement update block becomes an all-pass filter having no
effect on the control loop, which recovers its nominal behavior
given by the evolution of the model equations (4) under the
input u(k) generated by (8). In other words, the dynamics of
the plant become completely irrelevant in the way the state
observer and controller evolve when e(k) = 0. Indeed, the
following theorem shows that if e(k) vanishes asymptotically
then the output yp(k) of plant (1) perfectly tracks r(k).

Theorem 1. Consider the closed-loop system constituted
by (1) under the control law u(k) = κ(x(k|k), r(k), θ(k|k)),
where x(k|k) and θ(k|k) are obtained by (6). Let Assump-
tions 1–6 hold. Then, for any initial plant state xp(0) ∈ X 0

p ,
convergence of the nonlinear observer (6), i.e.,

lim
k→∞

e(k) = 0, (11)

implies asymptotic perfect tracking

lim
k→∞

yp(k)− r(k) = 0. (12)

Moreover, u(k) ∈ U for all k ≥ 0 and there exists a time
index kf ≥ 0 such that yp(k) ∈ Y for all k ≥ kf .

Proof. Consider the perturbed dynamical system

x(k+1|k) = f(x(k|k−1)+∆x(k), u(k), d(k|k−1)+∆d(k)),

θ(k+1|k) = θ(k|k−1)+∆θ(k),

u(k) = κ(x(k|k−1)+∆x(k), r(k), θ(k|k−1)+∆θ(k)),

where ∆x(k), ∆θ(k) are given by (10) and ∆d(k) =
h(x(k|k−1)+∆x(k), u(k), θ(k|k−1)+∆θ(k))−d(k|k−1).
Since, by Assumption 5, the observer feedback ω is continuous
with respect to the output estimation error in a neighborhood
of the origin and limk→∞ e(k) = 0, then from (6a) we have
that the perturbations ∆x(k) → 0 and ∆θ(k) → 0 as k → ∞.
By Assumption 3, function h is continuous with respect to x
and d, so that also ∆d(k) → 0. Hence, by Assumptions 4
and 6, we have that g(x(k|k−1), d(k|k−1))−r(k) → 0 and,
finally, since yp(k) − y(k|k − 1) = e(k) → 0, also that the
actual tracking error

yp(k)−r(k) = yp(k)− y(k|k − 1) + y(k|k − 1)− r(k)

= e(k) + g(x(k|k − 1), d(k|k − 1))− r(k) → 0.

Since, by Assumption 1, r(k) ∈ int(Y) and yp(k)−r(k) → 0,
then there exists kf ∈ N such that yp(k) ∈ Y , ∀k ≥ kf . ■

Note that Assumption 2 has not been explicitly mentioned
in the proof of Theorem 1, but in light of the result of the
theorem, the condition xp(0) ∈ X 0

p is a necessary requirement
for (11) and (12) to hold.

We finally remark that the assumption in (11) might be per-
ceived as rather strong. However, note that Assumption 4 guar-
antees that model (4) can perfectly reproduce the input/output
signals from the plant (1) under perfect tracking conditions
for a particular value of θ̄ and Assumption 6 guarantees that
the controller can make the model track the reference for the
same θ̄. Therefore, assumption (11) amounts to having a well-
chosen disturbance model and a well-designed state observer.
Note that this is a common assumption in the literature on
offset-free MPC (see, e.g., [6, Assumption 9]).

III. OFFSET-FREE EKF-BASED NONLINEAR MPC
We now show how the result from the previous section

may be applied to the frequently used combination of the
Extended Kalman Filter (EKF) as observer and Nonlinear
MPC (NMPC) as controller, where the EKF is used to learn
the parameters of the disturbance model to reduce the tracking
error and potentially lead to offset-free tracking under a
suitable selection of the disturbance model.

A. Observer: Extended Kalman Filter

When considering the EKF, we take the following particu-
larization of the prediction model (4):

x(k + 1) = f(x(k), u(k), dx(k)),

dx(k) = hx(x(k), u(k), θ(k)),

dy(k) = hy(x(k), θ(k)),

y(k) = g(x(k), dy(k)),

(13)

where the disturbance d is split into the process disturbance
dx ∈ Rndx and the output disturbance dy ∈ Rndy , and the
disturbance function h into hx : Rnx×Rnu×Rnθ → Rndx and
hy : Rnx ×Rnθ → Rndy . Clearly, model (4) can be recovered
from (13) by taking d = [d⊤x d⊤y ]

⊤ ∈ Rnd and h similarly. We
note that d is split so that the measurement-update of the EKF
does not depend on the value of u(k), as seen in the sequel.

Model (13) can be interpreted as a combined model in
which fn(x, u)

.
= f(x, u, 0) and gn(x)

.
= g(x, 0) capture a

nominal model (either physics-based or black-box) estimated
off-line from a set of input/output data {u(k), y(k)}, and the
disturbance model is used for on-line adaptation to match the
data measured from the real plant.

In particular, one can estimate (x(k), θ(k)) by using an EKF
with measurement update

dy(k|k − 1) = hy(x(k|k − 1), θ(k|k − 1)),

e(k) = yp(k)− g(x(k|k − 1), dy(k|k − 1)),

B(k) = C(k)P (k|k − 1)C ′(k) +Qy(k),

M(k) = P (k|k − 1)C ′(k)B(k)−1,[
x(k|k)
θ(k|k)

]
=

[
x(k|k − 1)
θ(k|k − 1)

]
+M(k)e(k),

dy(k|k) = hy(x(k|k), θ(k|k)),
P (k|k) =

(
I −M(k)C(k)

)
P (k|k − 1),

(14a)
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and time update

dx(k|k) = hx(x(k|k), u(k), θ(k|k)),
x(k + 1|k) = f(x(k|k), u(k), dx(k|k)),
θ(k + 1|k) = θ(k|k),
P (k + 1|k) = A(k)P (k|k)A′(k) +Q(k),

(14b)

where

C(k)=
[(

∂g
∂x+

∂g
∂dy

∂hy

∂x

)
∂g
∂dy

∂hy

∂θ

] ∣∣∣
x(k|k−1),θ(k|k−1)

,

A(k)=

[(
∂f
∂x+

∂f
∂dx

∂hx

∂x

)
∂f
∂dx

∂hx

∂θ

0 I

] ∣∣∣∣∣
x(k|k),θ(k|k),u(k)

,

Q(k)=

[
Qx(k) 0

0 Qθ(k)

]
,

(14c)

and Qx(k), Qθ(k), and Qy(k) are positive semidefinite matri-
ces representing, respectively, the covariance matrices of the
process noise, parameter noise and output noise.1

B. Controller: Nonlinear MPC

Consider the NMPC formulation

min
x,u

N−1∑
j=0

ℓ(xj , uj , xr(k+j), ur(k+j))

+ Vf(xN , xr(k+N), θ(k|k))
s.t. x0 = x(k|k),

xj+1 = f(xj , uj , dj), j ∈ NN−1
0 ,

dj = h(xj , uj , θ(k|k)), j ∈ NN−1
0 ,

yj = g(xj , dj), j ∈ NN−1
0 ,

yj ∈ Y, uj ∈ U , j ∈ NN−1
0 ,

xN ∈ Xf(xr(k +N), θ(k|k)),

(15)

where ℓ is the stage cost, Vf the terminal cost, and Xf the
terminal set. The corresponding control law is u(k) = u∗

0,
where u∗

0 is the first control move obtained from the optimal
solution (x∗, u∗, d∗, y∗) of (15). Design conditions for ℓ, Vf

and Xf under which Assumption 6 is satisfied are well known
for the time-invariant case, i.e., when θ(k|k) is constant at
all time instants k, see [3], [16]. However, due to the time-
varying nature of θ(k|k) and r(k), additional care should be
taken when designing Vf and Xf so as to guarantee stability
and recursive feasibility, as well as to provide robustness under
vanishing perturbations. Due to space considerations, we leave
these technical details out of the scope of this paper, instead
relying on taking the classical stage cost

ℓ(x, u, xr, ur) = ∥x− xr∥2Wx
+ ∥u− ur∥2Wu

,

and a terminal equality constraint, i.e., Xf = {xr(k+N)}, with
Vf = 0. This NMPC setting, in general, does not guarantee a
priori closed-loop stability and recursive feasibility properties
when the prediction model changes. However, if the mismatch
between the process (1) and the nominal model (4) is small and
θ(k|k) changes slowly, such properties may occur in practice.

1We note that the EKF (14) implicitly assumes that model (13) is at least
differentiable in its arguments.

At each sample time k, (15) requires reference signals
xr(k+ j), j ∈ NN

0 , and ur(k+ j), j ∈ NN−1
0 , that satisfy the

prediction model for the current estimate of the disturbance
parameters θ(k|k). In order to compute these signals for
the output reference trajectory {r(k + j)}∞j=0, consider the
following infinite-horizon reference optimization problem

min
x̂r,ûr

∞∑
j=0

ℓr(x̂r(k + j), ûr(k + j)) (16)

s.t. r(k + j) = g(x̂r(k + j), d̂r(k + j)),

x̂r(k + j + 1) = f(x̂r(k + j), ûr(k + j), d̂r(k + j)),

d̂r(k + j) = h(x̂r(k + j), ûr(k + j), θ(k|k)),
ûr(k + j) ∈ U ,

where x̂r = {x̂r(k + j)}∞j=0 and ûr = {ûr(k + j)}∞j=0 are,
respectively, the state and input reference sequences associated
with the reference trajectory {r(k + j)}∞j=0, and the cost
function ℓr : Rnx × Rnu → R is any convex function that
can be used to make the selection unique in case of multiple
solutions. A typical choice is to take

ℓr(x̂(k + j), û(k + j)) = ∥û(k + j)− ud(k + j)∥2, (17)

where {ud(k)}∞k=1 is a sequence describing a desired input
trajectory of the system, which is often available since inputs
are typically related to aspects such as energy consumption.
An ideal choice is to take ud(k) = ur(k), where ur(k) is the
reference signal given by Assumption 1, if available.

At each sample time k, the reference signals xr(k+ j) and
ur(k+ j) of (15) are taken from the optimal solution of (16).
In a practical setting, to avoid having to solve an infinite-
horizon optimization problem, we can modify (16) to only
consider M ∈ N future samples of the reference signal, i.e., to
consider problem (16) for j ∈ NM

0 , instead of j ∈ N∞
0 , where

M ≥ N , since (15) requires N future samples of the reference.
A special case of (16) is a constant set-point r(k+ j) ≡ r(k),
∀j ∈ N, for which a feasible solution x̂r, ûr is given by solving
the steady-state equations

r(k) = g(x̂r(k), d̂r(k)),

x̂r(k) = f(x̂r(k), ûr(k), d̂r(k)),

d̂r(k) = h(x̂r(k), ûr(k), θ(k|k)).
(18)

Another interesting instance of (16) is the special case of
periodic reference signals with period T , i.e., reference signals
satisfying r(k + j + T ) = r(k + j), ∀j ∈ N. In this case,
problem (16) would consider j ∈ NT−1

0 , instead of j ∈ N∞
0 ,

and include the additional constraint x̂r(k) = x̂r(k + T ).

Remark 2. In a practical setting, it may not be possible to
choose a r(k) that is known to satisfy Assumptions 1 and 2 due
to a lack of knowledge of the real plant dynamics (1). In this
case, the use of nonlinear MPC formulations with artificial
reference [17], [18], could be used to provide convergence to
the closest admissible reference trajectory to the given r(k).
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(a) Polynomial disturbance model (b) Constant disturbance model (c) FNN disturbance model

Fig. 2: Van der Pol plant. Closed-loop tracking of a piecewise-constant reference using different disturbance models.

(a) Polynomial disturbance model (b) Constant disturbance model (c) FNN disturbance model

Fig. 3: Van der Pol plant. Closed-loop tracking of a generic reference trajectory using different disturbance models.

(a) Polynomial disturbance model (b) Constant disturbance model (c) FNN disturbance model

Fig. 4: CSTR plant. Closed-loop tracking of a generic reference trajectory using different disturbance models.
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C. Numerical examples

This section contains numerical results showing the use
of the proposed disturbance model for offset-free tracking of
generic references. We start with an academic example, where
we show that a proper (but generally impractical) choice of
the disturbance model leads to a prediction error e(k) that
vanishes to 0, leading to perfect offset-free tracking. We then
show a more realistic case study, where we showcase the good
practical performance of the proposed disturbance scheme
when compared to the classical constant disturbance model.
The results highlight the practical merits of the theoretical
results presented in Section II, in that good offset-free results
can be obtained even if the satisfaction of Assumptions 4, 6
and (11) is not guaranteed a priori.

The results shown in this section use the MATLAB interface
of CasADi [19, version 3.6.0], using IDAS [20] as the nu-
merical integrator and IPOPT [21] as the optimization solver.

1) Van der Pol oscillator: We consider the Van der Pol os-
cillator system, whose dynamics are governed by the second-
order Ordinay Differential Equation (ODE)

d2v

dt2
= µ(1− βv2)

dv

dt
− v − ρu, (19)

where v ∈ R is its position coordinate, u ∈ R its control input,
and scalars µ = β = ρ = 1 are its parameters. We rewrite (19)
as an ODE dxp

dt = Fp(xp, u) by taking xp = (dvdt , v), and
obtain (1) by taking yp = v as the output and numerically
integrating Fp(·) with a sample time of ts = 0.5 seconds, i.e.,

xp(k + 1) =

∫ ts

0

Fp(ξ(t), u(k))dt, s.t. ξ(0) = xp(k). (20)

To obtain the prediction model (13), which is the particulariza-
tion of model (4) for its use with the EKF, we first take F̃p(·)
as a version of function Fp(·) where the system parameters
have been innecuratelly estimated to be µ = 0.8, β = 0.9 and
ρ = 0.8, and then numerically integrate F̃p(·)+hx(x, u, θ) as
in (20). We consider three disturbance models:

(i) Constant Disturbance Model (CDM). We take y = v+dy ,
hx = 0, hy = θ. This is the classical output distur-
bance model capable of achieving offset-free tracking for
piecewise-constant references [6], [8]. We include this
model to show the limitations of this approach when
considering non-constant reference trajectories.

(ii) Polynomial Disturbance Model (PDM). We take hy = 0,
and hx(x, u, θ) = (v̇θ, 0), where v̇θ is as a polynomial
with terms capturing all possible terms of the ordinary
differential equation of the plant, i.e., of (19). That is,
denoting v̇

.
= dv

dt and the i-th element of θ ∈ R10 as θi,

v̇θ = θ1 + θ2v̇ + θ3v̇
2 + θ4v + θ5v

2

+ θ6v̇v + θ7v̇
2v + θ8v̇v

2 + θ9v̇
2v2 + θ10u.

The idea of this disturbance model is to guarantee the
existence of a value of θ such that the prediction model
(13) perfectly captures the real system dynamics (19).
Therefore, this disturbance model guarantees the satisfac-
tion of Assumption 4. We include it to show how offset-
free tracking may be achieved by a suitable selection

Test Dist. model ndx ndy nθ Qx Qy Qθ

CDM 0 1 1 Inx 0.25Ip Inθ

Fig. 2, (4) PDM 2, (2) 0 10, (7) Inx 0.25Ip Inθ

FNN 2 1 97 Inx 0.25Ip Inθ

CDM 0 1 1 Inx 0.25Ip Inθ

Fig. 3 PDM 2 0 10 10−10Inx 0.25Ip 50Inθ

FNN 2 1 97 10−10Inx 0.25Ip 50Inθ

TABLE I: Dimensions and EKF parameters of each test.

of the disturbance model using the EKF and NMPC
framework, although in a real setting the availability of
such a disturbance model is unlikely.

(iii) Feedforward Neural Network (FNN). We take hx as a
FNN with input (x, u) ∈ Rnx×nu , output dx ∈ Rnx , two
hidden layers with 6 neurons each, sigmoid activation
function for the hidden layers, and linear activation func-
tion for the output layer. We also take hy as a similar
FNN, but with input x ∈ Rnx , output dy ∈ Rp and
a single hidden layer with 4 neurons. The parameters
of the two FNNs, i.e., the weights and bias terms of
the layers, are stacked in vectors θx and θy , such that
θ = (θx, θy). We initialize θx and θy using the Xavier
initialization procedure [22] with zero bias terms. Inspired
by [15], this disturbance model is essentially a recurrent
neural network (RNN) that is trained online using the
EKF to capture the discrepancy between the dynamics
of the prediction model and the real system. We include
this disturbance model to show the good tracking perfor-
mance that can be obtained by using a FNN, which is
a reasonable choice in a practical setting where there is
limited information about the real system dynamics.

We construct the NMPC controller (15) with a prediction
horizon N = 5, taking a terminal equality constraint xN =
xr(k +N) and using the classical stage cost function

ℓ(x, u, xr, ur) = ∥x− xr∥2Wx
+ ∥u− ur∥2Wu

,

with Wx = 10Inx and Wu = Inu . The terminal cost Vf is not
included because it is not needed due to the use of the terminal
equality constraint. We don’t consider any constraints on the
input nor on the output of the system. At each sample time,
we solve problem (16) taking a prediction horizon of length N
(instead of ∞), to obtain the future N samples of the reference
trajectories xr(k+j) and ur(k+j) for the NMPC (15). We take
the stage cost function of (16) as (17), taking ud(k) = ur(k),
where ur(k) is the reference signal given by Assumption 1.

We perform two tests for each of the above disturbance
models, one using a piecewise-constant reference and another
for a generic reference trajectory. The results are shown,
respectively, in Fig. 2 and 3. Table I shows the parameters
of the EKFs (14) used in each of the tests. Fig. 2 shows
that all three disturbance models achieve offset-free tracking
of piecewise-constant references. This is a well-known result
in the case of the CDM [6], which does not hold for non-
constant reference trajectories as shown in Fig. 3b. On the
other hand, Fig. 3a shows how the proposed disturbance
model is capable of achieving offset-free tracking if Assump-
tions 1–6 are satisfied in practice and e(k) → 0. Indeed,
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the parameters θ of the disturbance model converge to θ =
(0, 0.2, 0, 0, 0, 0, 0,−0.28, 0, 0.2), which is the value for which
the prediction model (4) is equivalent to the real plant (1).
We note that in a real setting, a polynomial disturbance
model capable of capturing the exact system dynamics will
generally not be available. In this case, the use of a more
general disturbance model, such as a FNN, still provides better
reference tracking than a simple CDM, as illustrated in Fig. 3c.

2) Continuous stirred tank reactor: We now consider the
Continuous Stirred Tank Reactor (CSTR) system from the
MPC toolbox for MATLAB [23]. The two states of the system
are the temperature of the reactor Tr and the concentration CA

of the reactant A, the input is the temperature of the coolant
Tc and the output is CA. The control objective is to make
CA track a given reference trajectory. We obtain a discrete-
time plant model (1) by integrating its ODE as in (20) with
ts = 0.5 seconds. As in Section III-C1, we take the prediction
model (13) by changing some of the parameters of the plant
model (1). We consider the same disturbance models described
in Section III-C1, although in this case the PDM is taken as
a copy of the plant model (1) with parameters collected in θ.
We also take the same parameters for the reference generator
(16) and NMPC controller (15), with the exception of Wx,
which we take as Wx = diag(1, 0.1).

Fig. 4 shows the closed-loop results of the CSTR system
tracking a generic reference trajectory. The parameters of the
EFK are shown in Table I. Fig. 4a shows that the use of a
simple disturbance model designed to capture the discrepancy
between the real plant and the prediction model can lead
to near-perfect reference tracking. The CDM provides good
results when the reference changes slowly, as seen in the first
50 sample times of Fig. 4b. However, its performance degrades
significantly otherwise. Finally, once again, Fig. 4c shows how
a FNN can provide very good tracking results.

IV. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

We have presented sufficient conditions for offset-free track-
ing of time-varying references when considering a nonlinear
system with unknown dynamics controlled by a nonlinear
controller and observer. Offset-free tracking is achieved by
considering a nonlinear disturbance model whose parameters
are learned online by the observer. By combining a reasonably-
designed NMPC with EKF for state and parameter estimation,
we have shown that good tracking results can be obtained even
if all the theoretical assumptions are not fully satisfied.

Many research issues have been left open that require
future investigations. First, in order to guarantee offset-free
tracking, it would be important to characterize EKF and
NMPC schemes that, contrarily to the ones we have used
as described in Section III, guarantee the satisfaction of all
the assumptions presented throughout Section II; in particular
an NMPC scheme that is robust to vanishing perturbations in
spite of the time-varying nature of the reference and predic-
tion model. Second, one should propose disturbance models
that satisfy Assumption 4 by design. Finally, some of the
assumptions made in Section II could be relaxed; in particular,
the assumption of convergence to zero of the prediction error
made in Theorem 1 may be difficult to guarantee, even if

Assumptions 1-6 are satisfied, due to the lack, in general, of
a separation principle between NMPC and EKF design.
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