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Abstract— This paper proposes a novel Coordinate-Descent
Augmented-Lagrangian (CDAL) solver for linear, possibly
parameter-varying, model predictive control (MPC) problems.
At each iteration, an augmented Lagrangian (AL) subproblem
is solved by coordinate descent (CD), exploiting the structure
of the MPC problem. The CDAL solver enjoys three main
properties: (i) it is construction-free, in that it avoids explicitly
constructing the quadratic programming (QP) problem associ-
ated with MPC; (ii) is matrix-free, as it avoids multiplications
and factorizations of matrices; and (iii) is library-free, as it
can be simply coded without any library dependency, 90-lines
of C-code in our implementation. To favor convergence speed,
CDAL employs a reverse cyclic rule for the CD method, the
accelerated Nesterov’s scheme for updating the dual variables,
a simple diagonal preconditioner, and an efficient coupling
scheme between the CD and AL methods. We show that CDAL
competes with other state-of-the-art methods, both in case of
unstable linear time-invariant and linear parameter-varying
prediction models.

Index Terms— Augmented Lagrangian method, coordinate
descent method, model predictive control

I. INTRODUCTION

Model predictive control (MPC) has been widely used for
decades to control multivariable systems subject to input and
output constraints [1]. Apart from small-scale linear time-
invariant (LTI) MPC problems whose explicit MPC control
law can be obtained [2], deploying an MPC controller in
an electronic control unit requires an embedded Quadratic
Programming (QP) solver. In the past decades, the MPC
community has made tremendous research efforts to develop
embedded QP algorithms [3], based on interior-point meth-
ods [4], [5], active-set algorithms [6], [7], gradient projection
methods [8], the alternating direction method of multipliers
(ADMM) [9], [10], and other techniques [11]–[15].

A demanding requirement for industrial MPC applications
is code simplicity, for easily being verified, validated, and
maintained on embedded platforms. In this respect, the
interior-point and active-set methods require more compli-
cated arithmetic operations in their algorithm implementa-
tions when compared to first-order optimization methods
like gradient projection and ADMM. The first-order opti-
mization methods are quite appealing in embedded MPC
since their embedded implementations could only involve
additions and multiplications (no divisions, square roots,
etc.). However, most of the proposed approaches require
that the MPC-to-QP transformation is explicitly constructed
for consumption by the solver, such as for preconditioning,
estimating the Lipschitz constant of the cost gradient, and
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factorizing matrices. This may not be an issue for linear
time-invariant (LTI) MPC problems, in which the MPC-
to-QP construction and other operations on the problem
matrices can be done off-line. But for some linear parameter-
varying (LPV) or for linear time-varying MPC problems
in which the linear dynamic model, cost function and/or
constraints change at run time, an explicit online MPC-to-
QP construction increases the complexity of the embedded
code and computation time. Avoiding an explicit MPC-to-QP
construction, can be called as construction-free property of
an MPC solver. The barrier interior-point FastMPC solver [4]
and the active-set based BVLS solver [15] are construction-
free; they directly use the model and weight matrices to
define the MPC problem without constructing a QP problem.
Their complicated implementations are not matrix-free as in-
volving Cholesky or QR factorizations arithmetic operations
during iterations. The well-known simple and efficient first-
order method OSQP [10] is not construction-free and matrix-
free when applied to solve LPV-MPC problems, as it requires
that matrix factorizations are computed and cached on each
sampling time. The OSQP utilizes its own LDLT solver to
perform matrix factorizations, thus being library-free.

A. Contribution

By combining the coordinate descent (CD) and augmented
Lagrangian (AL) methods, in this paper we develop a
construction-free, matrix-free, and library-free solver for LTI
and LPV MPC problems that is particularly suitable for
embedded industrial deployment.

Coordinate descent has received extensive attention in
recent years due to its application to machine learning [16]–
[18]. In this paper, we will exploit the special structure
arising from linear MPC formulations when applying CD.
In [19]–[21], the authors also use AL to solve linear MPC
problems with input and state constraints using the fast
gradient method [22] to solve the associated subproblems.
The Lipschitz constant of the cost gradient and convexity
parameters [19] are needed to achieve convergence, and
computing them requires in turn the Hessian matrix of the
subproblem, and hence constructing the QP problem. As the
Hessian matrix of the AL subproblem is close to a block
diagonal matrix, this suggests the use of the CD method to
solve such a QP subproblem, due to the fact that CD does not
require any problem-related parameter. Moreover, only small
matrices are involved in running the CD method, namely
the matrices of the linear prediction model and the weight
matrices. As a result, the proposed CDAL algorithm does not
require the QP construction phase and is extremely simple



to implement. In addition, each update of the optimization
vector has a computation cost per iteration that is quadratic
with the state and input dimensions and linear with the
prediction horizon.

To improve the convergence speed of CDAL, we propose
four techniques: a reverse cyclic rule for CD, Nesterov’s
acceleration [22], preconditioning, and an efficient coupling
between CD and AL. While the use of a reverse cyclic rule
in CD still preserves convergence, when the MPC problem is
solved by warm-starting it from the shifted previous optimal
solution, the gap between the initial guess and the new
optimal solution is mainly caused by the last block of vari-
ables, and computing the last block at the beginning tends to
reduce the overall number of required iterations to converge,
as we will verify in the numerical experiments reported in
this paper. We employ Nesterov’s acceleration scheme for
updating the dual vector to improve computation speed and a
heuristic preconditioner that simply scales the state variables.
In addition, an efficient coupling scheme between CD and
AL method is proposed to reduce the computation cost of
each CD iteration. To analyze the role of each component
of CDAL and its computational performance with respect to
other solvers (FastMPC, µAO-MPC, OSQP, and MATLAB’s
quadprog), we conduct numerical experiments on an ill-
conditioned problem of LTI-MPC control of an open-loop
unstable AFTI-16 aircraft, and on LPV-MPC control of a
continuously stirred tank reactor (CSTR).

B. Notation

H � 0 (H � 0) denotes positive definiteness (semi-
definiteness) of a square matrix H , H ′ (or z′) denotes the
transpose of matrix H (or vector z), Hi,j denotes the element
of matrix H on the ith row and the jth column, Hi,·, H·,j
denote the ith row vector, and jth column vector of matrix
H , respectively. For a vector z, ‖z‖2 denotes the Euclidean
norm of z, z6=i the subvector obtained from z by eliminating
its ith component zi.

II. MODEL PREDICTIVE CONTROL

Consider the following MPC formulation for tracking
problems

min
1

2

T−1∑
t=0

‖Wy (yt+1 − rt+1)‖22 +
1

2
‖Wu (ut − urt )‖

2
2

+
1

2
‖W∆u∆ut‖22

s.t. xt+1 = Axt +But, t = 0, . . . , T − 1

yt+1 = Cxt+1, t = 0, . . . , T − 1

ut = ut−1 + ∆ut, t = 0, . . . , T − 1

xmin ≤ xt ≤ xmax, t = 1, . . . , T

umin ≤ ut ≤ umax, t = 0, . . . , T − 1

∆umin ≤ ∆ut ≤ ∆umax, t = 0, . . . , T − 1

x0 = x̄0, u−1 = ū−1 (1)

in which xt ∈ Rnx is the state vector, ut ∈ Rnu the input
vector, ∆ut = ut − ut−1 the vector of input increments,

yt ∈ Rny the output vector, rt and urt are the output and
input set-points, and x̄0 and ū−1 denote the current state
and the previous input vectors, respectively. We assume that
Wy = W ′y � 0, Wu = W ′u � 0, W∆u = W ′∆u � 0. The
formulation (1) could be extended to include time-varying
bounds on x and u along the prediction horizon, linear
equality constraints or box constraints on the terminal state
xT for guaranteed closed-loop convergence, as well as affine
prediction models. To simplify the notation, in the sequel we
consider the following reformulation of (1)

min
1

2

T∑
t=1

x̂′t(Ĉ
′Ŵ Ĉ)x̂t − x̂′t(Ĉ ′Ŵ r̂t) +

1

2
û′t−1W∆uût−1

s.t. x̂t+1 = Âxt + B̂ût, t = 0, . . . , T − 1

x̂min ≤ x̂t ≤ x̂max, t = 1, . . . , T

ûmin ≤ ût ≤ ûmax, t = 0, . . . , T − 1

x̂0 =
[ x̄0
ū−1

]
(2)

where x̂t = [ xt
ut−1 ] ∈ Rn̂x , n̂x = nx+nu, ût = ∆ut ∈ Rnu ,

Â = [A B
0 I ] ∈ Rn̂x×n̂x , B̂ = [BI ] ∈ Rn̂x×nu , Ĉ = [C 0

0 I ],
Ŵ =

[
Wy 0
0 Wu

]
, r̂t =

[
rt
urt−1

]
. The vector z of variables to

optimize is

z =
[
û′0 x̂′1 û′1 . . . û′T−1 x̂′T

]′ ∈ RT (n̂x+nu)

The inequality constraints on state and input variables, whose
number is 2T (n̂x + nu), are

z ≤ z ≤ z̄ ⇔
{
x̂min ≤ x̂t ≤ x̂max,∀t = 1, . . . , T
ûmin ≤ ût ≤ ûmax,∀t = 0, . . . , T − 1

where x̂min = [ xmin
umin

], x̂max = [ xmax
umax

], ûmin = ∆umin and
ûmax = ∆umax. At each sample step, the MPC problem (1)
can be recast as the following quadratic program (QP)

min
1

2
z′Hz + h′z

s.t. z ≤ z ≤ z̄
Gz = g (3)

where H = H ′ � 0, H ∈ Rnz×nz , nz = T (n̂x + nu),
h ∈ Rnz , G ∈ RTn̂x×nz , and g ∈ RTn̂x are defined as

H =


R 0 . . . 0 0
0 Q . . . 0 0
...

...
. . .

...
...

0 0 . . . R 0
0 0 . . . 0 Q

,
R = W∆u

Q = Ĉ ′Ŵ Ĉ

G =


B̂ −I 0 0 . . . 0 0 0

0 Â B̂ −I . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . Â B̂ −I



h =


−Ĉ′Ŵ r̂1
−Ĉ′Ŵ r̂2

...
−Ĉ′Ŵ r̂T

, g =


−Âx̂0

0
...
0


Clearly matrix G is full row-rank. Note that
A,B,C,Wy,Wu,W∆u and the upper and lower bounds



on x, u, and ∆u in (1) may change at each controller
execution.

III. ALGORITHM

A. Augmented Lagrangian Method

We solve the convex quadratic programming problem (3)
by applying the augmented Lagrangian method. The bound-
constrained Lagrangian function L : Z × RT×n̂x → R is
given by

L(z,Λ) =
1

2
z′Hz + z′h+ Λ′(Gz − g)

where Z = {z ≤ z ≤ z̄} and Λ ∈ RTn̂x is the vector of
Lagrange multipliers associated with the equality constraints
in (3). The dual problem of (3) is

max
Λ∈RTn̂x

φ(Λ) (4)

where φ(Λ) = minz∈Z L(z,Λ). Assuming that Slater’s
constraint qualification holds, the optimal value of the primal
problem (3) and of its dual (4) coincide. However, φ(Λ) is
not differentiable in general [23], so that any subgradient
method for solving (4) would have a slow convergence
rate. Under the AL framework, the augmented Lagrangian
function

Lρ(z,Λ) =
1

2
z′Hz+ z′h+ Λ′(Gz− g) +

ρ

2
‖Gz− g‖2 (5)

is used instead, where the parameter ρ > 0 is a penalty
parameter. The corresponding augmented dual problem is
defined as:

max
Λ∈RTn̂x

φρ(Λ) (6)

where φρ(Λ) = minz∈Z Lρ(z,Λ) is differentiable provided
that H + ρG′G � 0. The dual problem (4) and the
augmented dual problem (6) share the same optimal solu-
tion [24, see chapter 2 subsection 2.2], and most important
dρ(Λ) is concave and differentiable, with gradient [23], [25]
∇φρ(Λ) = Gz∗(Λ) − g, where z∗(Λ) denotes the optimal
solution of the inner problem minz∈Z Lρ(z,Λ) for a given
Λ. Moreover, the gradient mapping ∇φρ : RT×n̂x → RT×n̂x
is Lipschitz continuous, with a Lipschitz constant given by
Lφ = ρ−1 [26].

Let Fρ(z; Λk) = 1
2z
′HAz + (hkA)′z, where hkA = 1

ρh +

G′Λk − G′g, and HA = 1
ρH + G′G has the block-sparse

structure

HA =



φ1 φ2 0 0 0 . . . 0 0 0
φ′2 φ3 φ4 φ5 0 . . . 0 0 0
0 φ′4 φ1 φ2 0 . . . 0 0 0
0 φ′5 φ′2 φ3 φ4 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . φ3 φ4 φ5

0 0 0 0 0 . . . φ′4 φ1 φ2

0 0 0 0 0 . . . φ′5 φ′2 φ6


and φ1 = 1

ρR + B̂′B̂, φ2 = −B̂′, φ3 = 1
ρQ +

(
I + Â′Â

)
,

φ4 = Â′B̂, φ5 = −Â′, φ6 = 1
ρQ + I . Since G is full rank,

matrix HA � 0. According to [24], the AL algorithm can be
formulated in scaled form as follows:

zk+1 = argmin
z∈Z

Fρ(z; Λk) (7a)

Λk+1 = Λk + (Gzk+1 − g) (7b)

which involves the minimization step of the primal vector z
and the update step of the dual vector Λ. As shown in [24],
the convergence of AL can be assured for a large range
of values of ρ. Typically, the larger the penalty parameter,
the faster the AL algorithm is to converge, but the more
difficult (7a) is to solve, due to a larger condition number
of the Hessian matrix of subproblem (7a). The convergence
rate of the AL algorithm (7) is O(1/k) according to [27].
To improve the speed of the AL method, [28] proposed
an accelerated AL algorithm, whose iteration-complexity
is O(1/k2) for linearly constrained convex programs, by
using Nesterov’s acceleration technique. The accelerated AL
algorithm is summarized in Algorithm 1.

Algorithm 1 Accelerated augmented Lagrangian method
[28]
Input: Initial guess z0 ∈ Z and Λ0; maximum number Nout

of iterations; parameter ρ > 0.

1. Set α1 ← 1; Λ̂0 ← Λ0;
2. for k = 1, 2, · · · , Nout do
2.1. zk ← argminz∈Z Fρ(z; Λ̂k−1);
2.2. Λk ← Λ̂k−1 + (Gzk − g);
2.3. if ‖Λk − Λ̂k−1‖22 ≤ ε, stop;

2.4. αk+1 ←
1+
√

1+4α2
k

2 ;
2.5. Λ̂k ← Λk + αk−1

αk+1
(Λk − Λk−1);

3. end.

For solving the strongly convex box-constrained QP (7a),
the fast gradient projection method was used in [19], [21].
Inspired by the fact that the Gauss-Seidel method in solving
block tridiagonal linear systems is efficient [29], in this paper
we propose the use of the cyclic CD method to make full
use of block sparsity and avoid the explicit construction of
matrix HA. Note that in the gradient projection method or
fast gradient projection method [21], the Lipschitz constant
parameter deriving from matrix HA needs to be calculated or
estimated to ensure convergence. Therefore, for linear MPC
problems that change at runtime such methods would be
less preferable than cyclic CD. In this paper, by making full
use of the structure of the subproblem, we will implement
a cyclic CD method that requires less computations, as we
will detail in the next section.

B. Coordinate Descent Method

The idea of the CD method is to minimize the objective
function along only one coordinate direction at each iteration,
while keeping the other coordinates fixed [30]. In [31], the
authors showed that the CD method is convergent in convex



differentiable minimization problems, and the rate of con-
vergence is at least linear. We first give a brief introduction
of the CD method to solve (7a). Under the assumption
that the set of optimal solutions is nonempty and that the
objective function Fρ is convex, continuously differentiable,
and strictly convex with respect to each coordinate, the CD
method proceeds iteratively for k = 0, 1, . . . , as follows:

choose ik ∈ {1, 2, . . . , nz} (8a)
zk+1
ik

= argmin
zik∈Z

Fρ(zik , z
k
6=ik ; Λ̂k) (8b)

where with a slight abuse of notation we denote by
Fρ(zik , z

k
6=ik ; Λ̂k) the value Fρ(z; Λ̂k) when z6=ik = zk6=ik

is fixed. The convergence of the iterations in (8) for k →∞
depends on the rule used to choose the coordinate index ik.
In [31], the authors show that the almost cyclic rule and
Gauss-Southwell rule guarantee convergence. Here we use
the almost cyclic rule, that provides convergence according
to the following lemma:

Lemma 1 ( [31]): Let
{
zk
}

be the sequence of
coordinate-descent iterates (8), where every coordinate
index is iterated upon at least once on every N successive
iterations, N ≥ nz . The sequence

{
zk
}

converges at least
linearly to the optimal solution z∗ of problem (7a).
In this paper we will use the reverse cyclic rule

ik = nz − (kmodnz)

to exploit the fact that the shifted previous optimal solution
is used as a warm start. The chosen rule clearly satisfies
the assumptions of Lemma 1 for convergence. The imple-
mentation of one pass through all nz coordinates using
reverse cyclic CD is reported in Procedure 2. In Proce-
dure 2, the Lagrangian variable Λ̂ ∈ RT×n̂x is divided
into {λ̂0, . . . , λ̂t−1, . . . , λ̂T−1}, where λ̂t−1 ∈ Rn̂x . For a
given symmetric M ∈ Rns×ns � 0, d ∈ Rns , the operator
CCD[s,s̄] {M,d} used in Procedure 2 represents one pass
iteration of the reverse cyclic CD method through all ns
coordinates sns , . . . , s1 for the following box-constrained QP

min
s∈[s,s̄]

1

2
s′Ms+ s′d (9)

that is to execute the following ns iterations

for i = ns, . . . , 1

si ←
[
si − 1

Mi,i
(Mi,·s+ di)

]s̄i
si

end

(10)

where [si]
s̄i
si

is the projection operator

[si]
s̄i
si

=

 s̄i if si ≥ s̄i
si if si < si < s̄i
si if si ≤ si

(11)

Note that in Procedure 2, Steps 2, 3, 4.1, and 4.2 all involve
the same operator CCD. In Procedure 3, we exemplify an
efficient way to evaluate such an operator for Step 4.2 of
Procedure 2, as the approach is similar for evaluating Steps 2,
3, and 4.1, where σ records the sum of squared coordinate
variations.

Procedure 2 Full pass of reverse cyclic coordinate descent
on all block variables
Input: Λ̂ = {λ̂0, . . . , λ̂T−1}, U = {û0, · · · , ûT−1}, X =
{x̂0, x̂1, · · · , x̂T }; MPC settings Â, B̂, Q, R, ûmin, ûmax,
x̂min, x̂max; parameter ρ > 0.

1. σ ← 0;
2. {x̂T , σ} ← CCD

x̂T∈[x̂min,x̂max]
{ 1
ρQ + I,−λ̂T−1 − Âx̂T−1 −

B̂ûT−1 − Ĉ ′Ŵ r̂T , σ};
3. {ûT−1, σ} ← CCD

ûT−1∈[ûmin,ûmax]
{ 1
ρR + B̂′B̂, B̂′(λ̂T−1 +

Âx̂T−1 − x̂T ), σ};
4. for t = T − 2, T − 3, . . . , 0 do
4.1. {x̂t+1, σ} ← CCD

x̂t+1∈[x̂min,x̂max]
{ 1
ρQ + I + Â′Â,−(λ̂t +

Âx̂t+B̂ût)+Â′(λ̂t+1+B̂ût+1−x̂t+2)−Ĉ ′Ŵ r̂t, σ};

4.2. {ût, σ} ← CCD
ût∈[ûmin,ûmax]

{ 1
ρR + B̂′B̂, B̂′(λ̂t + Âx̂t −

x̂t+1), σ};
5. end.

Output: Û , X̂ , σ.

Procedure 3 Evaluation of CCD in Step 4.2 of Procedure 2

Input: λ̂t, ût, x̂t, x̂t+1; MPC settings Â, B̂, R, ûmin, ûmax;
parameter ρ > 0; update amount σ ≥ 0.

1. V ← λ̂t + Âx̂t + B̂ût − x̂t+1;
2. for i = nu, . . . , 1 do
2.1. s← 1

ρRi,·ût + (B̂·,i)
′V ;

2.2. θ ←
[
ût,i − s

1
ρRii+(B̂′B̂)ii

]ûmax,i
ûmin,i

;

2.3. ∆← θ − ût,i;
2.4. σ ← σ + ∆2;
2.5. ût,i ← θ;
2.6. V ← V + ∆B̂·,i;
3. end.

Output: ût, σ.

C. Preconditioning

Preconditioning is a common heuristic for improving the
computational performance of first-order methods. The op-
timal design of preconditioners has been studied for several
decades, but such a computation is often more complex
than the original problem and may become prohibitive if it
must be executed at runtime. Diagonal scaling is a heuristic
preconditioning that is very simple and often beneficial [32],
[33]. In this paper, we propose to make the change of state
variables x̄ = Ex̂, where E ∈ Rn̂x×n̂x is a diagonal matrix
whose ith entry is

Ei,i =
√
Qi,i + Â′·,iÂ·,i (12)

and replace the prediction model x̂t+1 = Âx̂t + B̂ût by

x̄t+1 = Āx̄t + B̄ût



Procedure 4 Modified Procedure 3 to efficiently couple CD
and AL
Input: λt, ût; MPC settings Â, B̂, R, ûmin, ûmax; parameter
ρ > 0; update amount σ ≥ 0.

1. for i = nu, . . . , 1 do
1.1. s← 1

ρRi,·ût + (B̂·,i)
′λt;

1.2. θ ←
[
ût,i − s

1
ρRii+(B̂′B̂)ii

]ûmax,i
ûmin,i

;

1.3. ∆← θ − ût,i;
1.4. σ ← σ + ∆2;
1.5. ût,i ← θ;
1.6. λt ← λt + ∆ · B̂·,i;

2. end.

Output: ût, λt, σ.

where Ā = EÂE−1 and B̄ = EB̂. The weight matrix Q
and constraints [x̂min, x̂max] are scaled accordingly by setting
Q̄ = E−1QE−1 and x̄min = E−1x̂min, x̄max = E−1x̂max.

D. Efficient coupling scheme between CD and AL method

We are now ready to couple CD and AL to solve the posed
MPC problem (1) efficiently. We first note that updating ût
and x̂t+1 for all t involves computing a similar temporary
vector V in Procedure 3. As V is in fact the next update of
the dual vector Λ in Algorithm 1, we modify Procedure 3 as
shown in Procedure 4. The overall solution method described
in the previous subsections is summarized in Algorithm 5,
that we call CDAL. Note that the main update of the La-
grangian variables in Algorithm 5 is placed early in Step 3.1,
unlike in Algorithm 1,due to the use of the proposed efficient
coupling scheme. The AL (outer) iterations are executed for
maximum Nout iterations, the CD (inner) iterations for at
most Nin iterations. The tolerances εout and εin are used to
stop the outer and inner iterations, respectively. Algorithm 5
is matrix-free and library-free, and we could implement it in
90 lines of C code.

IV. NUMERICAL EXAMPLES

We test the performance of the CDAL solver against other
solvers in two numerical experiments. The first one is the ill-
conditioned AFTI-16 control problem [34], [35] based on
LTI-MPC, used in the Model Predictive Control Toolbox
for MATLAB [36]. The main goals of this experiment
include investigating whether our proposed simple heuristic
preconditioner, reverse cyclic rule, and Nesterov’s accelera-
tion scheme are helpful, and provide a detailed comparison
with other solvers. The second experiment demonstrates the
benefits of the construction-free property in LPV-MPC of a
CSTR [37], in which the prediction model is obtained by
linearizing a nonlinear model of the process at each sample
step. The reported simulation results were obtained on a
MacBook Pro with 2.7 GHz 4-core Intel Core i7 and 16GB
RAM. Algorithm 5 is executed in MATLAB via a C-mex
interface.

Algorithm 5 Accelerated reverse cyclic CDAL algorithm for
linear (or linearized) MPC
Input: primal/dual warm-start U = {û0, û1, · · · , ûT−1},
X = {x̂0, x̂1, · · · , x̂T }, Λ−1 = Λ0 = {λ0, λ1, · · · ,
λT−1}; MPC settings {Â, B̂, Ĉ, Wy , Wu ,W∆u, ∆umin,
∆umax, umin, umax, xmin, xmax}; Algorithm settings
{ρ,Nout, Nin εout, εin}

1. Obtain preconditioned X̄ = {x̄0, · · · , x̄T }, Ā, B̄, Q̄,
x̄min, x̄max according to Section III.C

2. α1 ← 1; Λ̂0 ← Λ0;
3. for k = 1, 2, · · · , Nout do
3.1. for t = 0, . . . , T − 1 do

3.1.1. λkt = λ̂k−1
t + Āx̄t + B̄ût − x̄t+1;

3.2. for kin = 1, 2, · · · , Nin do
3.2.1. U, X̄, σ ← Procedure 2 with use of Procedure 4;
3.2.2. if σ ≤ εin break the loop;

3.3. if ‖Λk − Λ̂k−1‖22 ≤ εout stop;

3.4. αk+1 ←
1+
√

1+4α2
k

2 ;
3.5. Λ̂k ← Λk + αk−1

αk+1
(Λk − Λk−1);

4. Recover X from X̄
5. end.

Output: U,X,Λ

A. AFTI-16 Benchmark Example

The open-loop unstable linearized AFTI-16 aircraft model
reported in [34], [35] is

ẋ =

 −0.0151 −60.5651 0 −32.174
−0.0001 −1.3411 0.9929 0
0.00018 43.2541 −0.86939 0

0 0 1 0

x
+

 −2.516 −13.136
−0.1689 −0.2514
−17.251 −1.5766

0 0

u
y =
[

0 1 0 0
0 0 0 1

]
x

The model is sampled using zero-order hold every 0.05 s.
The input constraints are |ui| ≤ 25◦, i = 1, 2, the output
constraints are −0.5 ≤ y1 ≤ 0.5 and −100 ≤ y2 ≤ 100. The
control goal is to make the pitch angle y2 track a reference
signal r2. In designing the MPC controller we take Wy =
diag([10,10]), Wu = 0, W∆u = diag([0.1, 0.1]), and the
prediction horizon is T = 5.

To investigate the effects of the three techniques (re-
verse cyclic rule, acceleration, and preconditioning) that we
have introduced to improve the efficiency of the CDAL
algorithm, we performed closed-loop simulations on eight
schemes with fixed ρ = 1. These are: 0-CDAL, the basic
scheme, without acceleration and reverse cyclic rule; R-
CDAL, the scheme with the Reverse cyclic rule; A-CDAL,
the Accelerated scheme; AR-CDAL, the Accelerated scheme
with the Reverse cyclic rule, and their respective schemes
with preconditioner, namely P-0-CDAL, P-R-CDAL, P-A-
CDAL, and finally CDAL, that includes all the proposed
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Fig. 1: Linear AFTI-16 closed-loop performance

techniques. The stopping criteria are defined by εin = 10−6,
εout = 10−4, and Nout, Nin are set to the large enough value
5000 in order to guarantee good-quality solutions.

The computational load associated with the above schemes
is listed in Table I, in which the last column represents
the closed-loop performance, which is the average value
1
T

∑T−1
t=0 ‖Wy (yt+1 − rt+1)‖22 +

∥∥Wu

(
ut+1 − urt+1

)∥∥2

2
+

‖W∆u∆ut‖22 of the MPC cost over the duration T of
the closed-loop simulation and is almost the same for all
schemes. The associated closed-loop trajectories are reported
in Figure 1, which shows that the pitch angle correctly tracks
the reference signal from 0◦ to 10◦ and then back to 0◦, and
that both the input and output constraints are satisfied.

Since each MPC execution requires different numbers of
inner and outer iterations, the average (“avg”) and maximum
(“max”) number of iterations (or CPU time) are computed
over the entire closed-loop execution. It can be observed that
the maximum and average number of inner-loop iterations
of R-CDAL are smaller than that of 0-CDAL (especially
the maximum number), while their outer-loop iterations are
almost the same, which shows that the reverse cyclic rule
provides a significant improvement. Although A-CDAL has
fewer outer-loop iterations, it has more inner-loop iterations
than 0-CDAL on average. It therefore does not result in
a significant reduction in total computation time. We can
see that AR-CDAL achieves fewer iterations both in the
inner loop and outer loop and has better average and worst-
case computation performance. It can also be seen from
Table I that preconditioning significantly reduces the number
of outer-loop iterations.

Next, we investigate the effect on computation efficiency
of parameter ρ, that we expect to tend to trade off feasibility
versus optimality. In particular, we expect larger values of
ρ to favor feasibility, i.e., provide more inner-loop itera-
tions and less outer-loop iterations, and vice versa. The
computational performance results obtained by performing

TABLE I: Computational performance of different schemes

method sum of inner iters outer iters time (ms) cost
avg max avg max avg max

0-CDAL 8577 79615 339 2104 4.9 55.3 42.3
R-CDAL 7298 72693 340 2103 4.3 53.2 42.5
A-CDAL 7437 57026 45 297 4.0 41.1 42.5
AR-CDAL 6207 51884 44 205 3.8 39.5 42.5
P-0-CDAL 3467 13386 33 171 2.1 11.4 42.5
P-R-CDAL 1757 13430 33 171 1.0 10.9 42.5
P-A-CDAL 3299 12161 13 60 1.7 9.7 42.5
CDAL 1543 12508 13 60 0.85 9.5 42.5

closed-loop simulations using the final CDAL algorithm for
different values of ρ between 0.01 and 1 are listed in Table II.
When the parameter value is between 0.01 and 0.1, the
CDAL algorithm has very similar computational burden.

To further illustrate the efficiency of CDAL, Table II
also lists the results obtained by using other solvers. Here
the fastMPC solver is also a construction-free solver which
provides a free C-mex code. We also made comparison with
the µAO-MPC solver v1.0.0-beta [38], which is based on
an augmented Lagrangian method together with Nesterov’s
gradient method. The µAO-MPC differs from CDAL in the
way the subproblems are solved, and the outer loop not
involving an acceleration scheme. The state-of-the-art first-
order method for QP, the OSQP solver v0.6.2 [10], and
MATLAB’s built-in QP solver (quadprog) are also used for
comparison. For a fair comparison, each solver setting is
chosen to at least ensure each shares the same objective cost
and constraint violation. When the parameter ρ of the CDAL
is 0.01, the CDAL is faster than the other solvers. Regarding
the µAO-MPC, OSQP and quadprog solver, we split between
QP problem construction time (including the required matrix
factorizations) and pure solution time. Note that in this case,
the controller is LTI-MPC, and hence the MPC problem
construction and matrix factorizations required by these
non-construction-free solvers can be performed offline. On
the other hand, in case of LPV-MPC problems the total
computation time would be spent online and the embedded
code would also include routines for problem construction
and matrix factorization functions. Instead, CDAL does not
require any construction nor factorizations, thus making the
solver very lean and fast also in a time-varying MPC setting,
as investigated next.

B. Nonlinear CSTR Example

To illustrate the performance of CDAL when the lin-
ear MPC formulation (1) changes at runtime we consider
the control of the CSTR system [37], described by the
continuous-time nonlinear model

dCA
dt = CA,i − CA − k0e

−EaR
T CA

dT
dt = Ti + 0.3Tc − 1.3T + 11.92k0e

−EaR
T CA

y = CA

(13)

where CA is the concentration of reagent A, T is the
temperature of the reactor, CA,i is the inlet feed stream
concentration, which is assumed to have the constant value



TABLE II: Computational load of CDAL with different
values of ρ and comparison with other solvers

Solver solver setting time (ms) cost
avg max

CDAL ρ = 1 0.85 9.5 42.561
ρ = 0.5 0.72 7.1 42.590
ρ = 0.2 0.53 4.2 42.612
ρ = 0.1 0.47 3.8 42.619
ρ = 0.05 0.42 3.3 42.618
ρ = 0.01 0.41 3.2 42.618

FastMPC maxit = 5, k = 0.1 0.54 4.2 42.627

µAO-MPC µ = 0.05 7.0* 68.1* 42.627
in iter=100,ex iter=100 8** 69**

OSQP N = 5000, ε = 10−6 0.6* 10.1* 42.627
1.5** 13.8**

quadprog default 10.3* 20.6* 42.622
11** 22**

* : pure solution time, without including matrix factorization
** : total time (MPC construction + solution)

10.0 kgmol/m3. The disturbance comes from the inlet feed
stream temperature Ti, which has fluctuations represented by
Ti = 298.15 + 5 sin(0.05t) K. The manipulated variable is
the coolant temperature Tc. The constants k0 = 34930800
and EaR = −5963.6 (in MKS units). The reactor’s initial
state is at a low conversion rate, with CA = 8.57 kgmol/m3,
T = 311 K. The goal is to adjust the reactor state to
a high reaction rate with CA = 2 kgmol/m3, which is a
quite large condition. The controller manipulates the coolant
temperature Tc to track a concentration reference as well as
reject the measured disturbance Ti. Due to its nonlinearity,
the model in (13) is linearized online at each sampling step:

dx

dt
≈ f(xt, ut−1, p)+

∂f

∂x

∣∣∣∣
xt,ut−1,p

(x−xt)+
∂f

∂u

∣∣∣∣
xt,ut−1,p

(u−ut−1)

where f(x, u, p) is the mapping defined in (13) for x =
[CA T ]′, u = Tc, p = [CA,i Ti]

′. By setting Ac =
∂f
∂x

∣∣∣
xt,ut−1,p

, Bc = ∂f
∂u

∣∣∣
xt,ut−1,p

, ec = f(xt, ut−1, p) −
Atxt−Btut−1, we get the following linearized continuous-
time model

d

dt
x = Acx+Bcu+ ec

We use the forward Euler method with sampling time Ts =
0.5 minutes to obtain the following discrete-time model

xt+1 = Adxt +Bdut + ed

where Ad = I + TsAc, Bd = TsBc, ed = Tsec. Although
held constant over the prediction horizon, clearly matrices
Ad, Bd and the offset term ed change at runtime, which
makes the controller an LPV-MPC. Regarding the perfor-
mance index, we choose weights Wy = 1, Wu = 0,
W∆u = 0.1. The physical limitation of the coolant jacket
is that its rate of change ∆Tc is subject to the constraint
[−1, 1] K when considering the sampling time Ts = 0.5
minutes. The prediction horizon is T = 10 steps.

We compare again CDAL with fastMPC, µAO-MPC,
OSQP, and quadprog solvers in the LPV-MPC setting de-
scribed above. CDAL is run with εin = 10−6, εout = 10−4,
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Fig. 2: Nonlinear CSTR closed-loop performance

ρ = 0.01, and Nout = Nin = 5000. For a fair comparison,
each solver setting is chosen to at least ensure each shares
the same objective cost and constraint violation. The closed-
loop simulation results of CDAL and other solvers almost
coincide and are plotted in Figure 2, from which it can
be seen that CA tracks the reference signal well, and the
fluctuation of Ti is effectively suppressed. The computational
load and closed-loop performance associated with CDAL
and other solvers are reported in Table III. In this succes-
sive linearization-based MPC example, we found that the
problem-construction time has a comparable computation
time to the problem-solving time from the results of non-
construction-free solvers. If we only compare the solution
time, CDAL is faster than other solvers except for OSQP,
but in fact the MPC construction time must be included for
comparison, which leads to CDAL being faster than OSQP.
Because of the construction-free, matrix-free, and library-
free features, CDAL has an advantage in industrial embedded
deployment when the optimization problem associated with
MPC is constructed online and this operation has a cost that
is comparable to the solution time.

TABLE III: Computational performance of CDAL and other
solvers

Solver solver setting time (ms) cost
avg max

CDAL ρ, εin, εout = 0.01, 10−6, 10−4 0.3 0.6 0.02202
FastMPC maxit=5,k = 0.1 0.5 7.2 0.030170
µAO-MPC µ = 0.01 1.4* 10.1* 0.02202

in iter=100,ex iter=10 2.1** 15.2**

OSQP default 0.15* 0.37* 0.02219
0.6** 5.5**

quadprog default 1.6* 9.7* 0.02219
1.8** 13.3**

* : solution time
** : MPC construction time + solution time



V. CONCLUSION

This paper has proposed a construction-free, matrix-free,
and library-free MPC solver, based on a cyclic coordinate-
descent method in the augmented Lagrangian framework. We
showed that the method is efficient and competes with other
existing methods, thanks to the use of a reverse cyclic rule,
Nesterov’s acceleration, a simple heuristic preconditioner,
and an efficient coupling scheme. Compared to many QP
solution methods proposed in the literature, CDAL avoids
constructing the QP problem, which makes it particularly
appealing for some scenarios in which its online construction
is required and has a comparable computation time to solving
itself.

The proposed algorithm can be immediately extended to
handle linear time-varying systems, in which the plant-model
and/or cost-function matrices are allowed to vary over the
prediction horizon. Future research will investigate the use
of CDAL to solve nonlinear MPC problems and data-driven
MPC formulations in which the model is adapted online by
recursive system identification.
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[38] P. Zometa, M. Kögel, and R. Findeisen. µAO-MPC: A free code
generation tool for embedded real-time linear model predictive control.
In 2013 American Control Conference, pages 5320–5325. IEEE, 2013.


