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Stabilizing Linear Model Predictive Control
Under Inexact Numerical Optimization

Matteo Rubagotti, Panagiotis Patrinos, and Alberto Bemporad

Abstract—This note describes a model predictive control (MPC) formu-
lation for discrete-time linear systems with hard constraints on control
and state variables, under the assumption that the solution of the asso-
ciated quadratic program is neither optimal nor satisfies the inequality
constraints. This is common in embedded control applications, for which
real-time constraints and limited computing resources dictate restrictions
on the possible number of on-line iterations that can be performed within
a sampling period. The proposed approach is rather general, in that it
does not refer to a particular optimization algorithm, and is based on
the definition of an alternative MPC problem that we assume can only
be solved within bounded levels of suboptimality, and violation of the
inequality constraints. By showing that the inexact solution is a feasible
suboptimal one for the original problem, asymptotic or exponential sta-
bility is guaranteed for the closed-loop system. Based on the above general
results, we focus on a specific dual accelerated gradient-projection method
to obtain a stabilizing MPC law that only requires a predetermined
maximum number of on-line iterations.

Index Terms—Embedded control, model predictive control (MPC), nu-
merical optimization, real-time control.

I. INTRODUCTION

The use of model predictive control (MPC) [1] has recently ex-
panded from traditional applications in the process industry to fields
like mechatronics, automotive, and aerospace, thanks to the increas-
ingly available computing power, and to fast optimization algorithms.
The most common formulation of an MPC problem is based on a linear
model, linear constraints on inputs and states, and quadratic stage and
terminal costs. The resulting optimization problem to be solved on line
is translated into a quadratic program (QP), for which fast solvers are
available, such as active-set methods [2], [3], interior-point methods
[4], [5] and semismooth Newton methods [6]. However, one of the
main issues in the practical implementation of embedded controllers is
the certification of the worst-case execution time. The recent research
on real-timeMPC aims at designing optimization algorithms that give
an acceptable suboptimal solution in an a-priori bounded number
of iterations, for which the bounds are much tighter than for the
previously-mentioned solvers (see, e.g., [7, Section IA]). To achieve
this goal, different variants of fast gradient methods, first proposed by
Nesterov [8], [9] have been applied to MPC [7], [10], [11]. In [12]
the authors proposed an accelerated dual gradient projection method
based on [8], called GPAD (see also [13]–[15]). Although GPAD is a
dualmethod, bounds on the maximum number of iterations required to
achieve specified levels of primal suboptimality and constraint viola-
tion are provided as complexity certificates. In case a primal method is
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used (e.g., [7]), the suboptimal solution will not violate the inequality
constraints, and closed-loop stability can be proved [16]. On the other
hand, dual methods (e.g., [14]) can be successfully applied to more
general MPC formulations (with polytopic mixed constraints on states
and inputs), but they have the drawback of providing inexact solutions
(i.e., the inequality constraints are violated) for the primal problem.
Solutions to this drawback (which, however, do not provide a-priori
bounds on the maximum number of iterations valid for the entire
region of attraction) were recently proposed in [17], [18]. The main
contribution of the present work is to prove asymptotic/exponential
stability of closed-loop systems in a given domain of attraction in
case an optimization solver is used that only gives a solution within
prescribed tolerances on suboptimality and constraints violation.
These are typically related to the maximum number of iterations that
can be executed within a sampling period, such as in the algorithms
of [14], [15]. Taking the selected tolerances into account, the original
MPC problem is modified so that stability is enforced by design, in
spite of the possible low quality of the solution, at the same time
guaranteeing bounds on performance loss with respect to the standard
MPC formulation (i.e., the problem one would solve exactly).

II. BASIC NOTATION

Let , , and denote the sets of positive reals,
non-negative reals, positive integers and non-negative integers, re-
spectively. Given two integers , let ,
and . Given , let denote its Euclidean
norm. Given , the notation refers to component-wise
inequalities. Given , is its transpose, its
spectral radius. We write ( ) if is symmetric
positive semidefinite (positive definite). For , we use

and to indicate its minimum and maximum
eigenvalues, respectively. Also, . Given a set

, its interior is denoted by . Given , we define
.

III. STANDARD MPC FORMULATION

Consider the discrete-time LTI state-space model

(1)

where , , , and the state vector is assumed
to be available for feedback. The state and input values can be repre-
sented in a single vector

and are required to satisfy the constraint

(2)

with , and , , .
Note that (2) implies that is nonempty, closed, and . We
additionally require to be compact. The representation of in (2) is
without loss of generality [19], since it can represent any polytope that
contains the origin in its interior.
The problem of regulating to the origin while satisfying (2)

point-wise in time can be solved by a standard MPC law for linear
systems. In particular, the procedure described in the remainder of this
section is a starting point for the subsequent theoretical development.
Given two weight matrices and

, we define the stage cost .
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Assumption 1: Matrices , , , satisfy one of the following:
a) The pair is stabilizable, , and .
b) The pair is stabilizable, is such that ,

, the pair is detectable, .
Clearly, Assumption 1a is more restrictive than Assumption 1b. In
both cases, we define the linear auxiliary control law, ,
where is the gain associated to the infinite-horizon linear
quadratic regulator (IH-LQR) defined by matrices , , , and . By
applying , we obtain the closed-loop system

(3)

where . By the theory of IH-LQR, Assumption 1
implies . The terminal cost is defined as ,
where is the solution of the algebraic Riccati equation
associated with the IH-LQR. Finally, we define the terminal set

(4)

with , , which is assumed to be a (not neces-
sarily maximal) positively invariant set in

(5)

for the closed-loop system (3), i.e.

(6)

The MPC law is determined by solving the optimization problem

(7)

where , . The finite-
horizon cost function is

(8)

the parametric constraint set is given by

(9)
(10)

while is the prediction horizon. The set of states for which
a feasible solution of (7) with prediction horizon exists is referred
to as . It is well known that for , the (unique) optimal
state-input sequence , associated to problem (7), can be obtained
by solving a quadratic program (QP). Then, according to the receding
horizon principle, only the first control move is applied to the
system at time , while the optimization process with the same predic-
tion horizon is repeated at time . If Assumption 1 holds, and
the control law associated with the optimal sequence

is applied at each , the set is positively invariant
for the resulting closed-loop system, and the origin is an asymptoti-
cally stable equilibrium point for the closed-loop system with domain
of attraction equal to (also exponentially stable if Assumption 1a
holds). This result is an extension of results in [1] to the case of mixed
constraints.

IV. MPC FORMULATION FOR INEXACT SOLVERS
The standard MPC formulation requires finding, at each time instant
, the optimal solution of (7). In this section we formulate a modifica-
tion of problem (7) to determine a stabilizing control law even if the so-
lution is suboptimal and violates the constraints, assuming that bounds
on both inaccuracies are given. After fixing the maximum constraint
violation , and the maximum level of suboptimality

a priori, a problem with tightened constraints, as described in the fol-
lowing, is obtained. Then, given the QP solver, the needed number of
iterations required to solve it within the given bounds is determined:
typically, the need for smaller values of these parameters leads to a
larger number of numerical iterations. Given the available sampling
time, the designer can therefore find the maximum allowed number of
iterations, so as to reduce the conservativeness and obtain a solution
which is as close as possible to that of (7). In Section VI, we provide
a detailed explanation of how these parameters are obtained, based on
the specific solver presented in [14].
Assumption 2: The parameter is chosen so as to satisfy

(11)

Given and , we define the tightened sets

(12)

Remark 1: The first term in the min in (11) implies that
, while the second term implies that ,

which by [20, Lemma 3],[21, Theorem 2.1], ensures that the maximal
–contractive set for (3) contains the origin in its interior (see,

e.g., [19] for the formal definition of contractive set). As ,
it is always possible (in principle) to find an small enough to satisfy
Assumption 2. However, this requirement influences the settings of the
numerical solver (typically, more iterations of the solver are required
in order to obtain a smaller ).
A different terminal set with respect to is defined as

(13)

with and , and is a (not necessarily maximal)
-contractive set in

(14)

for the closed-loop system (3), i.e.

(15)

Notice that, by Assumption 2, such a set exists non-empty. The set
can be described as

(16)

which is analogous to the definition of the sets in (12). The modified
finite-horizon optimal control problem takes the form

(17)

where

The set is defined as the set of states for which there
exists a feasible solution of (17). For every , the unique optimal
solution of (17) is denoted by .
For every , we suppose that a vector can

be computed, satisfying the following assumption:
Assumption 3: For every , vector

is such that

(18a)
(18b)
(18c)
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(18d)
(18e)

where , .
For each , let denote the set of all vectors

satisfying conditions (18), and the set of all
corresponding to vectors .
Remark 2: Conditions (18c)-(18d) imply that leads to a viola-

tion of each of the linear inequalities, , ,
which is no larger than . Also, (and conse-

quently ) is nonempty for any , since it contains .

We next state a useful result, which follows mainly from (18e) and
from well-known results in MPC, and the proof of which is omitted
due to space limitation.
Lemma 1: Let Assumptions 1–3 hold. Then

(19)

for all , and all with .

Theorem 2: Let Assumptions 1–3 be satisfied, and consider the
closed-loop system

(20)

where . Then, the following hold:
i) recursive feasibility for (17) is ensured, i.e., the set is a pos-
itively invariant set;

ii) , ;
iii) if Assumption 1a is satisfied, converges exponentially to a

closed set , , for all ;
iv) if Assumption 1a is satisfied, and is small enough so that

(21)

for some , (e.g., ), the origin is an
exponentially stable equilibrium with domain of attraction ;

v) if Assumption 1b is satisfied, and , the origin is an asymp-
totically stable equilibrium with domain of attraction .
Proof:
i) We first prove positive invariance of for (20), i.e.,

. This can be stated equivalently
as and . There-
fore, it suffices to find a vector ,

.
Consider any , along with any , where

, with ,
, and the “shifted” vector

, where

(22a)
(22b)
(22c)

Then, , where the first equality
follows by (22a), the second by (18b), and the third by (20). By
(22a) and (18b),

, . Also, from (22a) and (18c), ,
. Furthermore, from (18d), . Using (15),

(22b), (22c) we get and .
Therefore, .

ii) Since is invariant, and , from
(18c) one has , .

iii) To prove exponential convergence to a set including the origin
(defined as , ), it is necessary
to prove that there exist and , s.t.

(23)

This is proved by finding a Lyapunov function , s.t.

(24a)
(24b)

where , , and , . By
slightly modifying the results in [22, Theorem 2.5], it is easy
to prove that (24a)-(24b) imply (23), with ,

, (omitted due to space
limitation).
Keeping this in mind, we choose as candidate Lyapunov
function. One can easily obtain that

. On the other hand, from
Lemma 1 it follows that

. Following [1, Proposition
2.18], all needed assumptions are satisfied to state that

s.t. .
Condition (24a) is then satisfied with and

. To prove that also (24b) holds,
we recall that , and then .
Then, recalling (18a), we have,

(25)

(26)
(27)

where the first equality follows by (22), and the second by
the fact that is the gain given by the IH-LQR, which
implies
(see, e.g., [1]). As a consequence, (24b) holds with

, and . Therefore, the value of in
(23) is known, and converges exponentially to the set

.
iv) We distinguish two cases. If , (27) becomes

, which holds for all , and
then condition (24b) holds with , and .
On the other hand, if and (21) holds for some

one has that, for , (27) can be written as

. Since (and implies
by Lemma 1), for we have

. Being , condition (24b) is sat-
isfied , with , and . In both cases,
the fulfillment of (23) follows with ,

(being and ),
and , thus proving exponential stability of the origin with
domain of attraction .

v) Also in this case,
. Also,

. Analogously to (25) and recalling
that , we get

. Summing up, and
for , and

for . In [1, Sec. 2.6], it is
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proved that, if these equations hold for a generic nonlinear
system, and if the system is input/output-to-state stable [1,
Def. 2.40] (which is satisfied in our case, since Assumption 1b
imposes detectable) then the origin is an asymptotically
stable equilibrium point with domain of attraction .

Remark 3: Problem (17) can be seen as a way to obtain a feasible
suboptimal solution to problem (7), in the presence of known bounds
on suboptimality, , and on constraint violation, . Note that, as is in-
creased, the imposed contractions of the predicted evolution lead to a
progressive shrinking of , which in turn leads to conserva-
tive results. This effect is strongly system-dependent: for instance, the
shrinking of is more dramatic if the uncontrollable part of matrix
has large eigenvalues. On the other hand, as both and tend to

zero, the solution of problem (17) tends to the solution of problem (7),
and tends to .

V. PERFORMANCE BOUNDS

In this section we will derive suboptimality bounds of the finite-
horizon cost , corresponding to a suboptimal MPC law satisfying
Assumption 3, compared to the value function of the original MPC
problem (7). From these results, performance bounds based on the
closed-loop infinite-horizon cost are provided. To be able to perform
such a comparison, we require the following:
Assumption 4: The terminal set in (7) is the maximal positive

invariant set for (3) in , cf. (5), while the terminal set in (17) is
the –maximal contractive set for (3) in , cf. (14).
The proof of the next lemma follows by [21, Theorem 4.1], [20,

Lemma 3] and it is omitted due to space limitations.
Lemma 3: If Assumptions 1, 2 and 4 hold, then there exists a finite

integer such that

(28a)
(28b)

where and , for all satisfying
(11).
We remark that the –maximal contractive set for (3) is the

maximal positive invariant set for [20,
Lemma 3], therefore it can be computed using well-known techniques
[21, Algorithm 3.1]. If Assumptions 1, 2 and 4 hold, due to Lemma
3, problem (7) can be expressed as

(29)
where

(30a)
(30b)

The Lagrangian associated with (29) is

(31)

while the set of dual optimal solutions of (29) is

(32)

Similarly, for satisfying (11), problem (17) can be expressed as

(33)

where

(34a)

(34b)

and with the Lagrangian of (33) being

(35)

while the set of dual optimal solutions of (33) is

(36)

It is immediate to see that for any , since
the set of feasible solutions of (33) is a subset of that of (29). The next
theorem provides refined lower and upper bounds on .
Theorem 4: Let Assumptions 1, 2 and 4 hold. Then, for any
, and any ,

(37)

Proof: Problems (29), (33) are convex quadratic programs, thus
strong duality holds for any , , respectively. Therefore,
by the Lagrangian Saddle Point Theorem (see e.g., [23, Prop. 6.2.4]) for
any , the unique solution of (29), , and any
satisfy the saddle point inequality

(38a)

for all , , while for any , the unique solution
of (33), , and any satisfy

(38b)

for all , . Choose any and set
in the left part

of (38a), and
in the right part of (38b). Then

, where the first inequality follows by (38), the first
equality by (31), (35), the second equality by (30), (34), the last
inequality by and

, and
the last equality by the nonnegativity of . Hence, the right part
of inequality (37) is proved.
To prove the left part, set

in the right
part of (38a) and in
the left part of (38b), and follow exactly the same steps to arrive
at

, where the last inequality follows
by and
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.
Now we are ready to provide suboptimality estimates for a

.
Theorem 5: Let Assumptions 1–4 hold. Then, for any

(39)

for all satisfying (21).
Proof: One has

, where the last equality follows
from (18a), (37).
For a feedback law , we introduce the infinite-

horizon cost corresponding to

where , . The following
theorem gives performance bounds for the infinite-horizon cost of the
system in closed loop with any in terms of the value
function of the original problem.
Theorem 6: Let Assumptions 1–4 hold and . Then

(40a)

(40b)

Proof: Since (27) is satisfied with , by [24, Proposition
2.2], we have . Invoking Theorem 4 proves (40a).
Equation (40b) follows from Lemma 1.

VI. DESCRIPTION OF THE OPTIMIZATION ALGORITHM

In this section we consider and briefly summarize the Dual Accel-
erated Gradient Projection (GPAD) algorithm proposed in [12] (see
also [13], [14]). This algorithm belongs to the category covered by the
theoretical results of this note. In particular, it guarantees a bounded
and in a finite number of iterations, and ensures by design
that for all , without the need of employing a
dual-mode strategy.
Problem (17) can be expressed as

(41)

where with ,
, defined as , while

. The dual function

is Lipschitz-continuous, with Lipschitz constant equal to . The
tightest Lipschitz constant for can be computed by forming ex-
plicitly the Hessian of quadratic dual cost as in [13] and calculating
its spectral norm. Alternatively, one can either compute the Frobenius
or 1-norm of the Hessian of or use the results in [11]. Algorithm 1
is based on the accelerated gradient method of [8] applied to the dual
problem .

Algorithm 1 Accelerated Dual Gradient Projection (GPAD)

. . .

Step 1
Step 2
Step 3
Step 4 If , stop
Step 5

Step 6 . . Go to Step 1.

The only complicated part of Algorithm 1 is Step 2. If Problem
(41) is posed in condensed form, i.e., the equality constraints corre-
sponding to the state equations have been eliminated (off-line), then
Step 2 consists of a matrix-vector product which requires oper-
ations. One can do even better, by viewing Step 2 as an unconstrained
linear-quadratic optimal control problem, and applying the modified
Riccati approach proposed in [12], which requires only flops to
compute .
Note that this is a simplified version of the algorithm proposed in

[12]. The following theorem provides an upper bound on the maximum
number of iterations to compute a solution satisfying Assumption 3,
with . Since the initial dual iterate is equal to the zero vector,
GPAD is doing always better than optimal, so that one has to care only
about -feasibility, and this is the only termination criterion employed
at Step 4. The following theorem gives complexity, stability, and per-
formance guarantees for Algorithm 1.
Theorem 7: Let Assumptions 1, 3 and 4 hold. For any , and
satisfying (11), Algorithm 1 will terminate after at most

(42)

iterations, with , where

(43)

The corresponding MPC law produced by Algorithm
1 renders the origin asymptotically stable (if Assumption 1a holds)
or exponentially stable (if Assumption 1b holds) for the closed-loop
system (20) with region of attraction , while the closed-loop infi-
nite-horizon performance satisfies

(44a)

(44b)

Proof: By Step 2 of Algorithm 1, and linearity of the equality
constraints describing , one has that for all

, i.e., requirement (18b) is always fulfilled. In [14, Cor. 6] it is
shown that for all , therefore requirement
(18a) is fulfilled with , for every . Furthermore, that (18e) is
satisfied, comes from the fact that, since , one has

as well in Step 1. Therefore, is equal to the
solution of the unconstrained problem, which is optimal for (17) if
, due to Lemma 1. In that case, Algorithm 1 terminates at Step 4,

for , since is feasible for (17). That the algorithm needs
no more than iterations to achieve -infeasibility, and thus satisfies
requirements (18c), (18d) is shown in [14, Th. 5, Cor. 7], proving that

. Now, the rest of the statements follow immediately
by Theorems 2 and 6.
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TABLE I
COMPLEXITY CERTIFICATION ANALYSIS ( ,

) AND PERFORMANCE
BOUNDS FOR THE MASSES EXAMPLE

Bounds on dual optimal solutions such as the one of (43) are called
Uniform Dual Bounds (UDBs) in [12], [14].
Remark 4: According to Theorem 7, GPAD reaches -feasibility in

iterations, while the complexity estimate to achieve

the same level of suboptimality for the dual cost, which is the standard

result found in the literature (see, e.g., [8]) is of order ,

which may be much larger.
Remark 5: The bound on dual optimal solutions, , must be valid

on the entire , in order to be able to guarantee stability and invari-
ance of for the closed-loop system. In [14, Sec. VI.B], it is shown
that a tight upper bound to can be computed by solving a Linear
Programwith Linear Complementarity Constraints (LPLCC) for which
specialized efficient algorithms exist for its solution. However, the time
needed to solve the resulting LPLCCmay grow rapidly with the dimen-
sion of the problem. Notice that the techniques proposed in [11], [12],
lead to bounds which are valid only on a subset interior of , since
they are based on Slater’s condition, and thus cannot be used to derive
an iteration bound on the entire .

VII. SIMULATION EXAMPLES

A. Masses Example

The setup for this example is similar to [5]. It consists of a sequence
of objects of equal mass serially connected to each other, by
spring-dampers of equal spring constant and damping coefficient
, and to walls on either side. Between two consecutive masses
there is an actuator exerting tensions. The discrete-time LTI model
is obtained after discretization with sampling period of 0.5 s, and it
consists of states and inputs. Each state
of the system is constrained to lie in , while each input in

. The weight matrices are , and the length
of the horizon is . Table I gives bounds on the maximum
number of iterations on , according to Theorem 7, for number
of masses and accuracy .
For each value of , is the theoretical bound given by (42), with a
tight upper bound on [cf. (43)] computed by solving the LPLCC
described in [14, Sec. VI.B], while is the maximum number of
iterations encountered by simulating the closed-loop system from
500 random initial states belonging to . One can observe that the
theoretical bound for the specific example is quite tight. Furthermore
in Table I, the theoretical bound for the infinite horizon perfor-
mance of the closed-loop system, given by Theorem 6, is compared
against the practical one, which is the one obtained by simulating the
system in closed-loop with Algorithm 1. Specifically, the theoretical
relative performance bound
is compared against the measured relative bound given by

TABLE II
COMPLEXITY CERTIFICATION ANALYSIS ( ,

)

. Another significant conclu-
sion that can be drawn from Table I is that the iteration bounds ,
decrease as increases. For embedded applications, this means that
according to hardware specifications and sampling time, one can select
the appropriate value of that will guarantee stability and invariance
of the corresponding closed-loop system. However, the price to pay is
a smaller , and performance degradation, which however appears
to be insignificant according to Table I.

B. Random Systems

The next example presents results for 50 random systems, with
, , , , , input constraints
, and mixed constraints , being .
Table II gives results on the maximum number of iterations on ,
according to Theorem 7, for accuracy

. As before, for each value of , is the theoretical bound and
is the maximum number of iterations encountered by simulating the

closed-loop system from 500 random initial states belonging to .
The corresponding quartiles of , are presented in Table II. Two
main observations are in order. The number of iterations decreases as
decreases, as in the previous example, while the theoretical bound
becomes less tight as decreases.
Additional simulation examples can be found in [25].

VIII. CONCLUSION

This note has proposed an MPC formulation for constrained linear
systems with guaranteed stability despite the use of inexact QP solvers.
Given the optimal control problem, the QP solver is applied to a modi-
fied problem with tightened constraints, so as to obtain a suboptimal
solution of the original problem that enjoys guarantees of recursive
feasibility and asymptotic (or exponential) stability in a finite and a
priori determined number of iterations. Performance bounds are ob-
tained to analyze the level of suboptimality of the computed solution
with respect to the optimal solution of the original problem. Simula-
tion examples show the potential of the proposed approach under hard
real-time constraints when a simple dual gradient projection method
(GPAD) is used to solve QPs.
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