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Stabilizing Model Predictive Control of Hybrid Systems

M. Lazar, W. P. M. H. Heemels, S. Weiland, and A. Bemporad

Abstract—In this note, we investigate the stability of hybrid systems in
closed-loop with model predictive controllers (MPC). A priori sufficient
conditions for Lyapunov asymptotic stability and exponential stability are
derived in the terminal cost and constraint set fashion, while allowing for
discontinuous system dynamics and discontinuous MPC value functions.
For constrained piecewise affine (PWA) systems as prediction models, we
present novel techniques for computing a terminal cost and a terminal
constraint set that satisfy the developed stabilization conditions. For
quadratic MPC costs, these conditions translate into a linear matrix
inequality while, for MPC costs based on 1, -norms, they are obtained
as norm inequalities. New ways for calculating low complexity piecewise
polyhedral positively invariant sets for PWA systems are also presented.
An example illustrates the developed theory.

Index Terms—Hybrid systems, Lyapunov stability, model predictive con-
trol (MPC), piecewise affine systems.

I. INTRODUCTION

One of the problems in model predictive control (MPC) that has re-
ceived an increased attention over the years consists in guaranteeing
closed-loop stability for the controlled system. The usual approach to
ensure stability in MPC is to consider the value function of the MPC
cost as a candidate Lyapunov function. Then, if the system dynamics
is continuous, the classical Lyapunov stability theory [1] can be used
to prove that the MPC control law is stabilizing. For a comprehensive
overview on stability of receding horizon control in discrete-time we
refer the reader to [2] and the references therein.

The recent development of MPC for hybrid systems, which are in-
herently discontinuous and nonlinear, requires a reconsideration of the
stability results, as it was also pointed out in the excellent survey [2].
Attractivity was proven for hybrid systems in closed-loop with model
predictive controllers in [3] and [4]. However, proofs of Lyapunov sta-
bility only appeared in the literature recently; for particular classes
of hybrid systems and MPC cost functions, see, for example, [5]–[7].
In these works, either continuous piecewise affine (PWA) systems are
considered, [5], [6] which are in fact Lipschitz continuous systems or,
in [7], asymptotic stability is established via the results of [2], where
continuity of the MPC value function is assumed. Note that this prop-
erty does not hold in general for the MPC value function, when hybrid
systems, such as PWA systems, are employed as prediction models [4].

In this article we present a priori verifiable conditions that guarantee
stability of discrete-time nonlinear, possibly discontinuous, systems in
closed-loop with MPC controllers. We develop a general theorem on
asymptotic stability in the Lyapunov sense that unifies most of the pre-
vious results on stability of MPC. This theorem applies to a wide class
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of hybrid systems and MPC cost functions, and it does not require con-
tinuity of the MPC value function nor of the system dynamics. Effi-
cient methods for calculating the terminal cost, for both quadratic and
1, 1-norm MPC costs, and the terminal constraint set are developed
for the class of discontinuous PWA systems, with the origin not neces-
sarily in the interior of one of the regions in the state–space partition.
New algorithms for calculating low complexity piecewise polyhedral
positively invariant sets for PWA systems are also presented.

The remainder of the manuscript is organized as follows. Section II
describes the MPC problem setup. The general stability results for
MPC of hybrid systems are presented in Section III. New methods for
computing the terminal cost are derived in Section IV, while Section V
contains the new algorithms for computing low complexity piecewise
polyhedral invariant sets for PWA systems. An example is given in Sec-
tion VI and conclusions are summarized in Section VII.

A. Notation and Basic Definitions

Let , +, and + denote the field of real numbers, the set of
nonnegative reals, the set of integers and the set of nonnegative integers,
respectively. We use the notation �c to denote the set fk 2 jk � cg
for some c 2 . For a set P � n, we denote by @P the boundary
of P , by int(P) its interior and by cl(P) its closure. A polyhedral set
is a convex set obtained as the intersection of a finite number of open
and/or closed half-spaces. A piecewise polyhedral set is a set obtained
as the union of a finite number of polyhedra. For a vector x 2 n, we
use kxk to denote an arbitrary Hölder vector p-norm defined for 1 �
p � 1. For a positive–definite matrix Z , Z1=2 denotes the Cholesky
factor, which satisfies (Z1=2)

>
Z(1=2) = Z1=2(Z1=2)

>
= Z and,

�min(Z) and �max(Z) denote the smallest and the largest eigenvalue
of Z , respectively. For a matrix Z 2 m�n with full-column rank,
Z�L

�
= (Z>Z)

�1
Z> denotes its left Moore–Penrose inverse, which

satisfies Z�LZ = In and kZk denotes the corresponding induced
matrix norm. A real-valued scalar function ' : + ! + belongs
to class K if it is continuous, strictly increasing and '(0) = 0. For
definitions of Lyapunov stability, asymptotic stability, and exponential
stability, we refer the reader to [1] and [9].

II. SETTING UP THE MPC OPTIMIZATION PROBLEM

Consider the discrete-time nonlinear system

xk+1 = g(xk; uk); k 2 + (1)

where xk 2 � n is the state and uk 2 � m is the control
action at the discrete-time instant k 2 +. g : n � m ! n is
an arbitrary, possibly discontinuous, nonlinear function. Note that the
class of nonlinear systems (1) contains certain classes of hybrid sys-
tems, such as PWA systems, due to the fact that g(�; �) may be discon-
tinuous. The sets and specify state and input constraints and it is
assumed that they are compact polyhedral sets that contain the origin
in their interior. We assume for simplicity that the origin is an equilib-
rium state for (1) with u = 0, meaning that g(0; 0) = 0. For a fixed
N 2 �1, let xk(xk;uk)

�
= (x1jk; . . . ; xNjk) denote the state se-

quence generated by system (1) from initial state x0jk
�
= xk and by

applying the input sequence uk
�
= (u0jk; . . . ; uN�1jk) 2

N , where
N �

= � . . . � . Furthermore, let T � denote a desired
target set that contains the origin in its interior. The class of admis-
sible input sequences defined with respect to T and state xk 2 is
UN(xk)

�
= fuk 2

N jxk(xk;uk) 2
N ; xNjk 2 T g.
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Problem II.1: Let the target set T � and N 2 �1

be given and let F : n ! + with F (0) = 0 and L :
n � m ! + with L(0; 0) = 0 be mappings. At time

k 2 + let xk 2 be given and minimize the cost function
J(xk;uk)

�
= F (xNjk)+

N�1
i=0 L(xijk; uijk), with prediction model

(1), over all input sequences uk 2 UN(xk).
In the MPC literature, F (�), L(�; �) and N are called the terminal

cost, the stage cost and the prediction horizon, respectively. We call an
initial state x0 2 feasible if UN(x0) 6= ;. Similarly, Problem II.1 is
said to be feasible for x 2 if UN(x) 6= ;. Let f(N) � denote
the set of feasible states with respect to Problem II.1 and let

VMPC : f(N)! + VMPC(xk)
�
= inf

u 2U (x )
J(xk;uk) (2)

denote the MPC value function corresponding to Problem II.1.
We assume that there exists an optimal sequence of controls
u
�
k

�
= (u�0jk; u

�
1jk; . . . ; u

�
N�1jk) for Problem II.1 and any state

xk 2 f (N). Hence, the infimum in (2) is a minimum and
VMPC(xk) = J(xk;u

�
k). Then, the MPC control law is defined as

u
MPC(xk)

�
= u

�
0jk; k 2 +: (3)

The stability results presented in this note also hold when the optimum
is not unique in Problem II.1, i.e., all results apply irrespective of which
optimal sequence is selected.

III. STABILIZATION CONDITIONS FOR MPC OF HYBRID SYSTEMS

In this section, we investigate the stabilization of the discontinuous
nonlinear system (1) using MPC. We will employ a terminal cost and
constraint set method, as the one used for smooth nonlinear systems
in [2], to guarantee stability for the closed-loop system (1)–(3). Typ-
ically, this method relies on continuity of VMPC(�) and of the system
dynamics (e.g., see [2, Sec. III]). This property is no longer guaranteed
in the case of discontinuous dynamical systems, such as hybrid systems
[4]. Actually, in the survey [2] it was pointed out that all the concepts
and ideas used in MPC should be reconsidered in the hybrid context.

A. Main Result

Let h : n ! m be an arbitrary, possibly discontinuous, nonlinear
function with h(0) = 0 and let

�
= fx 2 jh(x) 2 g. The fol-

lowing theorem was obtained as a kind of general and unifying result,
based on previous results regarding stability of discrete-time nonlinear
MPC.

Assumption III.1: There exist �1(�), �2(�) 2 K, a neighborhood
of the origin N � f (N) and a function h(�) such that T � ,
with 0 2 int( T ), is a positively invariant set [8] for system (1) in
closed-loop with uk = h(xk), k 2 +

L(x; u) � �1 (kxk) for all x 2 f (N)

and all u 2 (4a)

F (x) � �2 (kxk) for all x 2 N and (4b)

F (g (x; h(x)))� F (x)

+ L (x; h(x)) � 0 for all x 2 T : (4c)

Theorem III.2: Fix N 2 �1 and suppose that Assumption III.1
holds. Then, the following hold.

i) If Problem II.1 is feasible at time k 2 + for state xk 2 ,
then Problem II.1 is feasible at time k + 1 for state xk+1 =
g(xk; u

MPC(xk)). Moreover, T � f (N).
ii) The origin of the MPC closed-loop system (1)–(3) is asymp-

totically stable in the Lyapunov sense for initial conditions in
f(N).

iii) If Assumption III.1 holds with �1(s)
�
= as�, �2(s)

�
= bs� for

some constants a; b; � > 0, then the origin of the MPC closed-
loop system (1)–(3) is exponentially stable in f(N).

Proof: Since the proof of this theorem can be obtained from
Assumption III.1 by following the standard steps indicated, for
example, in the survey [2], we only present the Lyapunov stability
proof (which differs from the proof given in [2]) and we refer the
reader to [9] for a complete proof. First, we recall that statement
i) is proven by observing that the shifted sequence of controls
uk+1

�
= (u�1jk; . . . ; u

�
Njk; h(xN�1jk+1)) is feasible at time k + 1,

where xN�1jk+1
�
= x�Njk and � denotes the optimum control actions

or predicted state-trajectory at time k. By optimality and Assumption
III.1, it follows that VMPC(x) � �1(kxk) for all x 2 f (N),
VMPC(x) � �2(kxk) for all x 2 N , where N

�
= T \ N , and that

VMPC(g(x; u
MPC(x)))�VMPC(x) � ��1(kxk) for all x 2 f (N).

Since is assumed to be compact and f (N) � , it follows that
f(N) is bounded. From i), it follows that f (N) is a positively

invariant set for the MPC closed-loop system (1)–(3). Let xk be the so-
lution of (1)–(3), obtained from the initial condition x0 at time k = 0.
Choose an � > 0 such that the ball B�

�
= fx 2 njkxk � �g satisfies

B� � N . Due to �1(�); �2(�) 2 K we can choose for any 0 < " � �

a � 2 (0; ") such that �2(�) < �1("). For any x0 2 B� � f (N),
due to positive invariance of f(N), we have

. . . � VMPC(xk+1) �VMPC(xk) � . . . � VMPC(x0)

��2 (kx0k) � �2(�) < �1("):

Since VMPC(x) � �1(") for all x 2 f (N) n B" it follows that
xk 2 B" for all k 2 +. Hence, the origin of the MPC closed-loop
system (1)–(3) is Lyapunov stable.

Note that the hypothesis of Theorem III.2 does not require that
VMPC(�) or g(�; �) are continuous, not even on a neighborhood of the
origin. It only implies continuity at the point x = 0.

B. The Class of Piecewise Affine Systems

The remainder of the article focuses on discrete-time discontinuous
piecewise affine systems, i.e.,

xk+1 = g(xk; uk)
�
= Ajxk+Bjuk+fj ; if xk2
j ; j2S (5)

which is a sub-class of the discontinuous nonlinear system (1). Also,
we take the nonlinear function h(�) as a piecewise linear (PWL) state-
feedback, i.e.,

h(x)
�
= Kjx; if xk 2 
j ; j 2 S: (6)

Here, Aj 2
n�n, Bj 2

n�m, fj 2 n, Kj 2
m�n, and j 2 S

with S
�
= f1; 2; . . . ; sg a finite set of indexes and s denotes the number

of affine sub-systems in (5). The collection f
j jj 2 Sg defines a par-
tition of , meaning that [j2S
j = and int(
i)\ int(
j) = ; for
i 6= j. Each 
j is assumed to be a polyhedron (not necessarily closed).
Let S0

�
= fj 2 Sj0 2 cl(
j)g and let S1

�
= fj 2 Sj0 62 cl(
j)g, so

that S = S0[S1. We assume that the origin is an equilibrium state for
(5) with u = 0 and we require that fj = 0 for all j 2 S0. This implies
continuity at the point x = 0 and not on a neighborhood of the origin.
The class of hybrid systems described by (5) contains PWA systems
which may be discontinuous over the boundaries of the regions 
j and
it allows that the origin lies on the boundaries of multiple regions 
j ,
j 2 S .

If the PWA system (5) is employed as prediction model, the op-
timization problem corresponding to Problem II.1 is a mixed integer
quadratic programming (MIQP) problem in the case of quadratic MPC
costs, and a mixed integer linear programming (MILP) problem in the
case of 1,1-norm MPC costs. These problems can be solved using the
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hybrid toolbox (HT) [10] or the multi parametric toolbox (MPT) [11].
Note that if a MIQP (MILP) problem is feasible, the global optimum
is attained because, in principle, a MIQP (MILP) consists of a finite
number of QP (LP) problems (see, for example, [4]). Then, due to the
fact that each QP (LP) (with bounded feasible set) attains its optimum,
the existence of an optimum for the MIQP (MILP) problem is guaran-
teed (although it may not be unique). Hence, the standing assumption
employed in Section II on existence of optimal control sequences holds
for PWA prediction models and the result of Theorem III.2 applies.

Although we focus on PWA systems of the form (5), the results pre-
sented in the sequel have a wider applicability since it is known [12]
that PWA systems are equivalent under certain mild assumptions with
other relevant classes of hybrid systems, such as mixed logical dynam-
ical systems and linear complementarity systems, and they can approx-
imate nonlinear systems arbitrarily well.

C. The Problem Statement Reconsidered

For a given stage cost L(�; �), the fundamental stability result for
MPC of hybrid systems provided by Theorem III.2 comes down to
computing a terminal cost F (�), a function h(�) and a terminal set T

such that Assumption III.1 holds. This is a nontrivial problem, which
depends on the type of system dynamics and MPC cost.

For example, in the particular case of PWA systems and quadratic
MPC costs this problem has only been solved partially, in [7], i.e., by
employing a common quadratic Lyapunov function for system (5) in
closed-loop with uk = h(xk), k 2 +. This is known to be conser-
vative (see, for example, [13]) because there are PWA systems which
only admit a piecewise quadratic (PWQ) Lyapunov function (see also
[9, Sec. 3.7] for an example where the method of [7] fails). In the case
of MPC costs based on 1, 1-norms, to the authors’ knowledge, there
is no systematic method available for solving this problem. A complete
solution to the problem of calculating the terminal cost is presented in
Section IV.

The problem of computing the terminal set T boils down to com-
puting positively invariant sets for PWA systems, which is a notoriously
difficult problem. An algorithm for calculating the maximal positively
invariant set [8] for PWA systems was recently presented in [14]. How-
ever, it is known that the maximal positively invariant set inside a given
compact set is a piecewise polyhedral set for PWA systems, which can
be very complex (i.e., it may consist of the union of a very large number
of polyhedra, which in principle can be infinite, if the algorithm does
not converge). This in turn influences the computational complexity of
the MIQP (MILP) MPC optimization problem. Hence, it would be de-
sirable to obtain a tradeoff between the size of the terminal constraint
set and its complexity. Section V deals with this issue.

Note that once a quadratic or 1, 1-norm terminal cost F (�), a non-
linear function h(�) of the form (6) and a piecewise polyhedral terminal
set T that satisfy Assumption III.1 for system (5) have been calcu-
lated, it is well-known [4] that the set of feasible states f (N) can be
obtained explicitly for a fixed value of the prediction horizonN 2 �1

using either the HT [10] or the MPT [11]. This may help in selecting a
suitable prediction horizon N .

IV. COMPUTATION OF THE TERMINAL COST

In this section, we provide solutions to the problem of computing a
terminal costF (�) and a function h(�) of the form (6) for both quadratic
and 1, 1-norm MPC costs.

A. Quadratic MPC Costs

Consider the case when quadratic forms are used to define the
cost function, i.e., F (x) = kP

1=2
j xk

2

2
= x>Pjx if x 2 T \ 
j

and L(x; u) = kQ1=2xk
2

2
+ kR1=2uk

2

2
= x>Qx + u>Ru.

Without significant loss of generality, for quadratic MPC costs we
assume that T � [j2S 
j . In this case, Pj ; Q 2 n�n and
R 2 m�m are assumed to be positive–definite and symmetric
matrices. For the aforementioned stage and terminal costs, it holds that
L(x; u) � x>Qx � �min(Q)kxk

2
2 for all x 2 n and all u 2 m,

and F (x) � maxj2S �max(Pj)kxk
2
2 for all x 2 n. Therefore,

conditions (4a) and (4b) are trivially satisfied with �1(kxk)
�
=

�min(Q)kxk
2
2 and �2(kxk)

�
= maxj2S �max(Pj)kxk

2
2. Next, we

provide methods for calculating the matrices f(Pj ; Kj)jj 2 S0g such
that inequality (4c) is satisfied for the PWA system (5).

Let Qji
�
= fx 2 
j j9u 2 : Ajx + Bju + fj 2 
ig, (j; i) 2

S0 � S0, let1 St0
�
= f(j; i) 2 S0 � S0jQji 6= ;g and consider the

PWL sub-system of the PWA system (5)

xk+1 = Ajxk +Bjuk; if xk 2 T \ 
j ; j 2 S0: (7)

Letting uk be the state-feedback (6) in (7), Acl
j

�
= Aj + BjKj and

substituting the resulting closed-loop system and F (�) in (4c) yields
that it is sufficient to find Pj > 0, Kj , j 2 S0 that satisfy

Pj � A
cl
j

>

PiA
cl
j �Q�K

>
j RKj > 0 8(j; i) 2 St0 (8)

for (4c) to be satisfied with strict inequality. Next, we present three
methods that can be used to solve efficiently the nonlinear matrix in-
equality (8) via semidefinite programming.

Lemma IV.1: Let f(Pj ; Kj ; Zj ; Yj ; Gj)jj 2 S0g with Zj , Pj pos-
itive definite and symmetric, and Gj invertible for all j 2 S0 denote
unknown variables that are related according to Zj = P�1j in (10) and
(11), and Yj = KjGj in (12), Yj = KjP

�1
j and Kj = YjG

�1
j , j 2

S0. Furthermore, let �j
�
= AjZj +BjYj and let �j

�
= AjGj +BjYj .

Then, the following matrix inequalities are equivalent:

Pi 0

0 Pj� Acl
j
>
PiA

cl
j �Q�K

>
j RKj

>0 8(j; i)2St0

(9)
Zj Zj Y >j �>j
Zj Q�1 0 0

Yj 0 R�1 0

�j 0 0 Zi

>0 8(j; i) 2 St0; (10)

Zj �>j R Yj
>

Q Zj

>

�j Zi 0 0

R Yj 0 I 0

Q Zj 0 0 I

>0 8(j; i)2St0

(11)
Gj+G

>
j �Zj G>j Y >j �>j

Gj Q�1 0 0

Yj 0 R�1 0

�j 0 0 Zi

>0 8(j; i)2St0:

(12)

Proof: The equivalences (9), (10) and (9), (11) are proven by
applying the Schur complement to (10) and (11), respectively, making
the change of variables Zj = P�1j , Yj = KjP

�1
j , and pre- and post-

multiplying with
Pi 0

0 Pj
(see [9, Sec. 3.4] for a complete proof).

The equivalence (9) , (12) is proven in a similar way by applying
the Schur complement to (12) and exploiting the matrix inequality
G>j Z

�1
j Gj � Gj +G>j � Zj for all j 2 S0.

After solving any of the previous LMIs, the terminal weights Pj
and the feedbacks Kj are simply recovered as Pj

�
= Z�1j and Kj

�
=

1The set of pairs of indexes S can be easily determined offline by solving
s linear programs, where s is the number of elements of S
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YjZ
�1
j , j 2 S0 for (10) and (11), and asPj

�
= Z�1j andKj

�
= YjG

�1
j ,

j 2 S0 for (12).
Note that solving any of the LMIs of Lemma IV.1 boils down to

searching for a PWQ Lyapunov function. Conservativeness of (9) can
be further reduced by employing anS-procedure technique, see [9, Sec.
3.4] for details.

B. MPC Costs Based on 1, 1-Norms

Consider the case when 1,1-norms are used to define the cost func-
tion, i.e., F (x) = kPjxk if x 2 T \ 
j and L(x; u) = kQxk +
kRuk, where k � k denotes the 1-norm or the 1-norm, for brevity of
notation. Here, Pj 2 p�n, Q 2 q�n, and R 2 r�n are assumed
to be matrices that have full-column rank. In this setting, we no longer
require that T � [j2S 
j . Since Q has full-column rank there ex-
ists a positive number  such that kQxk � kxk for all x 2 n.
Then, it follows that L(x; u) � kQxk � kxk for all x 2 n and all
u 2 m, and that F (x) � maxj2S kPjkkxk for all x 2 n. Hence,
conditions (4a) and (4b) are trivially satisfied with �1(kxk)

�
= kxk

and �2(kxk)
�
= maxj2S kPjkkxk.

Let Qji
�
= fx 2 
j j9u 2 : Ajx + Bju + fj 2 
ig, (j; i) 2

S � S and let St
�
= f(j; i) 2 S � SjQji 6= ;g. Substituting (5) and

F (�) in (4c) yields that it is sufficient to find f(Pj ; Kj)jj 2 Sg that
satisfy for all x 2 T and all (j; i) 2 St

kPi ((Aj +BjKj)x+ fj)k�kPjxk+kQxk+kRKjxk � 0 (13)

for (4c) to be satisfied. Consider now the following norm inequalities,
for all (j; i) 2 St:

Pi(Aj +BjKj)P
�L
j + QP

�L
j + RKjP

�L
j � 1�ji (14)

and

kPifjk � jikPjxk 8x 2 T \ 
j (15)

where ji 2 [0; 1), (j; i) 2 St. Note that, because fj = 0 for all
j 2 S0, (15) trivially holds if S = S0.

Theorem IV.2: Suppose (14), (15) is solvable in (Pj ; Kj ; ji)
where Pj has full-column rank and ji 2 [0; 1) for (j; i) 2 St. Then,
(Pj ; Kj) with j 2 S is a solution of the norm inequality (13).

Proof: Since f(Pj ; Kj ; ji)j(j; i) 2 Stg satisfy (14) we have
that for all (j; i) 2 St

Pi(Aj+BjKj)P
�L
j + QP

�L
j + RKjP

�L
j +ji�1�0: (16)

Right multiplying the inequality (16) with kPjxk and using the in-
equality (15) yields

0 � Pi(Aj +BjKj)P
�L
j kPjxk+ QP

�L
j kPjxk

+ jikPjxk+ RKjP
�L
j kPjxk � kPjxk

� Pi(Aj +BjKj)P
�L
j Pjx + QP

�L
j Pjx

+ kPifjk+ RKjP
�L
j Pjx � kPjxk

� kPi(Aj +BjKj)x+ Pifjk+ kRKjxk

+ kQxk � kPjxk: (17)

Hence, inequality (13) holds.
A way to solve the norm inequalities (14) is to minimize the cost

J1 (fPj ; Kj jj 2 Sg)
�
= max

(j;i)2S
Pi(Aj +BjKj)P

�L
j

+ QP
�L
j + RKjP

�L
j

if the resulting value function is less than 1. Alternatively, one can solve
an optimization problem with a zero cost subject to the nonlinear con-
straint J1(fPj ; Kj jj 2 Sg) < 1. These are nonconvex nonlinear opti-
mization problems, which can be solved using black-box optimization
solvers, such as fmincon and fminunc of Matlab. The nonlinear nature
of these optimization problems is not critical for online implementa-
tion, since they are solved offline.

Once the matrices Pj and the numbers ji satisfying (14) have been
found, one still has to check that they also satisfy inequality (15), pro-
vided that S 6= S0. For example, this can be verified by checking the
inequality kPifjk � ji minx2 \
 kPjxk, (j; i) 2 St. To over-
come the difficulty of solving (14) and (15) simultaneously, one can
require that T � [j2S 
j is a positively invariant set only for the
PWL sub-system (7), as done for quadratic MPC costs. In this case,
Theorem IV.2 can be reformulated as follows.

Corollary IV.3: Suppose that the inequality

Pi(Aj +BjKj)P
�L
j + QP

�L
j + RKjP

�L
j � 1;

(j; i) 2 St0 (18)

is solvable in (Pj ; Kj) for Pj with full-column rank and that T �
[j2S 
j . Then, (Pj ; Kj) with j 2 S0 is a solution of the norm in-
equality (13).

V. COMPUTATION OF THE TERMINAL CONSTRAINT SET

In this section, we present new methods for computing low com-
plexity piecewise polyhedral positively invariant sets for PWA systems.
Consider the closed-loop system (7) with the feedback gains calculated
using one of the methods from Section IV, i.e.,

xk+1 = (Aj +BjKj)xk = A
cl
j xk if xk 2 
j ; j 2 S0: (19)

In the first method, we consider the autonomous switched linear system
corresponding to (19)

xk+1 = A
cl
j xk; j 2 S0: (20)

Note that we removed the switching rule from (19), turning the
PWL system (19) into a switched linear system (20) under arbitrary
switching. It is easy to prove that a set which is positively invariant
for the switched linear system (20) under arbitrary switching is also a
positively invariant set for the PWL system (19). Since we require that
T � \f[j2S 
jg and is not convex in general, we consider

a new set instead, , taken as a reasonably large compact polyhedral
set (that contains the origin in its interior) inside \ f[j2S 
jg.
For an arbitrary set we define Q1

j ( )
�
= fx 2 njAcl

j x 2 g. Note
that if is a polyhedron that contains the origin, then Q1

j ( ) has the
same properties and, if is compact, then Q1

j ( ) is closed (see [8]
for proofs). Consider now the sequence of sets

0 = i =
j2S

j
i ; i = 1; 2; . . . (21)

where j
i

�
= Q1

j ( i�1) i�1, i = 1; 2; . . ..
Theorem V.1: The following properties hold with respect to the se-

quence of sets (21).
i) The maximal positively invariant set contained in the safe set

for system (20) under arbitrary switching is a convex set that
contains the origin and is given by

P =

1

i=0

i = lim
i!1

i: (22)
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ii) If an algorithm based on the recurrent sequence of sets (21) ter-
minates in a finite number of iterations then the set P defined in
(22) is a polyhedral set.

iii) If there exists a �-contractive set [8] with 0 < � < 1 for system
(20) under arbitrary switching that contains the origin in its in-
terior, then an algorithm based on the recurrent sequence of sets
(21) terminates in a finite number of iterations and 0 2 int(P).

iv) The setP defined in (22) is a positively invariant set for the PWL
system (19).

Proof:
i) If x 2 P , then x 2 i for all i. Hence, we have that Acl

j x 2

i�1 for all j 2 S0 and all i � 1. Then, Acl
j x 2 P for all

j 2 S0. So, P is a positively invariant set for system (20) with
arbitrary switching. In order to prove that the set P is maximal
let P � = 0 be a positively invariant set for system (20)
with arbitrary switching. In order to use induction, we assume
that P � i for some i (note that this holds for i = 0). Due
to the positive invariance of P , for any x 2 P we have that
Acl

j x 2 P � i for all j 2 S0. Hence, x 2 i+1. Thus,
P � i+1 and by induction P � i for all i, which yields P �
1

i=0 i = P . Now, we prove that P is a convex set. Assume
thatP is the maximal positively invariant set for system (20) with
arbitrary switching. Then, we have thatP is a positively invariant
set for any linear subsystem in (20) and thus, it follows from [16]
that the convex hull of P is also a positively invariant set for any
linear system in (20). Hence, the convex hull of P is a positively
invariant set for system (20) under arbitrary switching. Since
is a convex set, it follows that the convex hull of P is included
in . By maximality, the convex hull of P is also included
in P and thus, P is convex. As the origin is an equilibrium for
xk+1 = Acl

j x, 8j 2 S0, P contains the origin.
ii) Assume that the algorithm (21) terminates in i� steps. Then, it

follows directly from i � i�1 for all i > 0 that i = i for
all i � i� and P = i . Since is a polyhedral set and from
the fact that the intersection of polyhedra produces polyhedra, it
follows that the sets j

0

�
= Q1

j ( ) are polyhedra for all
j 2 S0. Then it follows that the set 1 is a polyhedral set and,
for the same reason, i, i = 2; 3; . . ., are polyhedral sets. Then,
it follows that P is also a polyhedral set.

iii) Let E denote a �-contractive set with 0 < � < 1 for system (20)
under arbitrary switching that contains the origin in its interior.
Then there exist c2 > c1 > 0 such that c1E c2E . Since
c2E is �-contractive, we have that any state trajectory starting on
the boundary or in the interior of c2E reaches in i discrete-time
steps the set�ic2E . Hence, there exists an i� such that all the state
trajectories starting inside c2E lie in c1E within i� dis-
crete-time steps. Since c1E is �-contractive and thus, positively
invariant, it follows that if a state trajectory stays i� discrete-time
steps inside , then it stays in forever. Hence, i � P and
thus, i = P . As c1E � P ,P contains the origin in its interior.

iv) This follows directly from i).
Note that an algorithm based on (21) comes down to computing s0

one-step controllable sets Q1
j ( i�1) at each iteration, which is com-

putationally more efficient than computing the maximal positively in-
variant set.

Next, we present another method for computing low complexity
piecewise polyhedral positively invariant sets for PWA systems, which
relies on the result of Theorem IV.2. Let

P
�
= [j2S fx 2 
j jkPjxk � cg (23)

for some c > 0, where fPj jj 2 Sg are the weights of the terminal
cost and k � k denotes the 1, 1-norm. If P is used as the terminal set

in Problem II.1, c must be taken less than or equal to supf� > 0jfx 2

j jkPjxk � �g � g to satisfy Assumption III.1.

Lemma V.2: Suppose that the hypothesis of Theorem IV.2 is satis-
fied. Then, the piecewise polyhedral setP defined in (23) is a positively
invariant set for the PWA system (5) in closed-loop with uk = h(xk),
k 2 +, and with h(�) as defined in (6).

Note that the setP defined in (23) is a sublevel set of the terminal cost
F (x) = kPjxk if x 2 
j , and it consists of the union of s polyhedra
(this is because each region 
j is assumed to be a polyhedron). If a
common terminal weight is used, i.e. Pj = P for all j 2 S , then the
set P defined in (23) is a polyhedral set.

Another method for computing low complexity positively invariant
sets for PWA systems that admit a (local) PWQ Lyapunov function is
presented in [15].

VI. ILLUSTRATIVE EXAMPLE

Consider the following open-loop unstable discontinuous 3-D PWA
system with four linear sub-systems:

xk+1 = Ajxk +Bjuk; if xk 2 
j ; j = 1; 2; 3; 4 (24)

subject to the constraints xk 2 = [�5; 5]3 and uk 2 =
[�2:5; 2:5], where 
j = fx 2 jEjx > 0g for j = 1; 3,

j = fx 2 jEjx � 0g for j = 2; 4 (here, all inequalities hold
componentwise)

A1=

�0:2523 0:4856 0:6467

0:5290 �0:2616 0:3128

�0:4415 �0:2713 �0:6967

B1=

0:5656

0:5460

0:9389

A2=

0:0647 0:1729 �0:6542

�0:3131 �0:6691 �0:6516

�0:3085 0:0613 0:0099

B2=

0:6543

0:5266

�0:0558

A3=

0:6402 �0:5409 �0:5629

�0:6693 �0:6874 0:1748

�0:2812 0:4898 �0:3526

B3=

0:7580

�0:8050

�0:4059

A4=

�0:3501 0:2590 0:6695

�0:4808 0:1905 0:3865

�0:1217 �0:2631 �0:0013

B4=

0:6961

�0:7619

�0:2590

E1=�E3=

0 0 0

0 1 0

0 0 1

E2= �E4=

0 0 0

0 1 0

0 0 �1

:

The state-space partition f
j jj = 1; 2; 3; 4g corresponding to
system (24) is plotted in Fig. 1. The weights of the MPC cost are
Q = 0:02I3 and R = 0:01 and the cost is defined using 1-norms.
The following solution to the inequality (14) was found using a
min–max formulation and the Matlab fminunc solver

P =

0:7029 3:8486 1:1501

4:1796 0:5642 1:6656

�1:4275 1:5026 5:3197

�1:3717 2:5343 �1:5468

K1 = [0:4699 0:1750 0:1591]

K2 = [0:4039 0:4239 1:1529]

K3 = [�0:7742 � 0:1436 � 0:1603]

K4 = [�0:0800 � 0:0405 � 0:2867]:

The terminal set (see Fig. 2 for a plot) has been obtained as in (23) for
c = 4. The resulting terminal set satisfies T � = [j2Sfx 2

j jKjx 2 g for the gains given above. The simulation results are
plotted in Fig. 2 for initial state x0 = [3:6 2 1]> and system (24)
in closed-loop with the MPC control (3), calculated for the matrices
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Fig. 1. State–space partition for the example.

Fig. 2. Simulation results: Closed-loop trajectory—circle solid line and ter-
minal constraint set—gray polyhedron.

P , Q and R given previously, N = 3 and with T as terminal set.
As guaranteed by Theorem III.2, the MPC control law (3) stabilizes
the open-loop unstable discontinuous system (24) while satisfying the
constraints.

VII. CONCLUSION

In this note, we derived sufficient a priori verifiable conditions for
Lyapunov asymptotic stability of model predictive control of hybrid
systems. We developed a general theory which shows that Lyapunov
stability can be achieved even if the considered Lyapunov function and
the system dynamics are discontinuous. In the particular case of con-
strained PWA systems and quadratic forms or 1,1-norms cost func-
tions, new procedures for calculating the terminal cost and the terminal
constraint set have been developed. Novel methods for calculating low
complexity piecewise polyhedral positively invariant sets for PWA sys-
tems have also been presented.
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