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Abstract—This paper addresses the problem of satisfying pointwise-in- ! Privund Mowlinear System |
time input and/or state hard constraints in nonlinear control systems. The |  ~~ oot TTTTmmmmmmmmmm
approach is based on conceptual tools of predictive control and consists of
adding to a primal compensated nonlinear system a Reference Governor
(RG). This is a discrete-time device which on-line handles the reference to Fig. 1. Control scheme with RG.
be tracked, taking into account the current value of the state in order to
satisfy the prescribed constraints. The resulting hybrid system is proved
to fulfill the constraints as well as stability and tracking requirements. 1l. PROBLEM FORMULATION AND ASSUMPTIONS
Index Terms—Constraint satisfaction problems, nonlinear systems, Consider the following nonlinear system:
optimization methods, predictive control, reference input signals.
a(t) = (x(t), w(t))
y(t) = H(x(t),w(t)) (1)
I. INTRODUCTION oft) = x(t)
In recent years the field of feedback control of dynamic systems w(t)

with inpUt and/or state-related constraints has received Considera@Sresen’[ing’ in generaL a (non”near) p|ant under (non"near) feed-
attention [1], [2]. Most of this research has addressed regulatigack, wherex(t) € R" is the state vector, which collects both plant
problems for systems subject to input saturation. More recentiyad controller statesy(t) € R” is the reference input, which in
moving horizon optimal control [3]-[5] and model predictive controthe absence of constraints would coincide with a desired reference
[6], [7] have proved to be effective tools to deal with tracking.(t) € R’; andy(t) € RP is the output vector which shall track
problems with input/state constraints. These methods are based, o). Since input and/or state variables of the plant can be expressed
the receding horizorphilosophy: a sequence of future control actiongs a function ofz(#) andw(t), without loss of generality we define

is chosen according to a prediction of the future evolution of¢) ¢ R**P as the vector to be constrained within a givenet

the system and applied to the plant until new measurements ar@ssumption 1:C is compact and has a nonempty interior.
available. Then, a new sequence is evaluated which replaces thgompactness of is nonrestrictive since in practice the desired
previous one. Each sequence is evaluated by means of an optimizagigBrences and state variables are bounded. Since we are interested in

procedure, which takes into account two objectives: maximize t%erating on Vector&’ u_yl]l in C, we restrict the properties required
tracking performance and protect the system from possible constraigt(1) to the projections of on the z-space

violations. However, when applied to models described by nonlinear
differential equations, this requires the on-line solution of high- X & {r €R": weR, {4"} € C}
dimensional nonlinear optimization problems. Unlike other receding w

horizon approachgs which attempt to. solve stabilization, track?ngmd the projection on the-spaceV, which is defined analogously. It
and constraint fulfillment at the same time, we assume that a p””i‘é"easy to show that compactnesgdfplies that botht andW are
controller has already been designed to stabilize the system pact. System (1) is required to fulfill the following assumptions.
provide nice tracking propertieim the absence of constraint3he Assumption 2:Vw € W, there exists a unique equilibrium state
constraint fulfillment task is left to aeference governofRG), a 20 € X.
nonlinear device which is added to the prlm_a_l compensated nonllnefiwe denote by
system. Whenever necessary, the RG modifies the reference supplied
to the primal control system so as to enforce the fulfillment of the X(): R®P — R" @)
constraints. The RG operates in accordance with the receding horizon o ) . ) N
strategy, mentioned above, by selecting on-line optimal referenitl funCt'OQ |m/pI|C|ltI¥ defined byb(X(-),) = 0 anFi definer,, =
input sequences which, in order to drastically reduce the requiréd®): ¢w = [z w']’. Notice that in generab € W # c. € C.
computational burden, are parameterized by a scalar quantity. Assumption 3:The mapping®(x, w) : X' x W+ R" is contin-
Studies along similar lines can be found in [8]-[14] for lineal'@Us in (x,w). o _

control systems. The present paper extends these ideas to nonlinexPSider now an arbitrarily small scalar> 0, and define the
continuous-time systems and is organized as follows. In Section'®lowing set:
we formulate the problem, specify the assumptions on the primal Wi & {fw €W : Blc,.,8) CC} ©)
system, and present the RG strategy. Section Ill is devoted to the -
derivation of interesting properties of the RG. Computational aspeetbereB(c.,, §) denotes the closed balk € R™? : |c—cy]| < 6}.
are considered in Section IV, and a simulative example is reportée restrict the set of reference inputswhich can be supplied by
in Section V. assuming the information as depicted in Fig. 2.

Assumption 4 (Reference Input Conditioning)he class of refer-

ence inputs is restricted to a convex, nonempty, and compact set
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i and
P, ."-.. hl ’ :.
e W w(t)=wp, Yt e kT, (k+ 1)T].
A
_' H Notice that by minimizing3® one attempts to minimizgw — r||?
I ___.-'"-- / and thereford|y — r[|>. A parameter3, or a constant reference,
! '|."|'ﬂl f_,--" 4 satisfying the constraints in (6) will be referred to admissible
W ,.-" e Assumption 8 (Feasible Initial Condition)The initial statez(0)
'J}H_ f,, i is such that there exists at least one admissible virtual constant
Mo reference inputwy € Ws.
For instance, Assumption 8 is satisfied for an equilibrium state
Fig. 2. SetsW, Ws, and W. x(0) = x., corresponding tav, € Ws.
summarized as the unique constraint . MAIN RESULTS
ceECs2C ﬂ (X x Ws) (4) Lemma 1: Suppose that Assumptions 1-3 hold. Then, the function

X : W — X defined in (2) is continuous.

Proof: Consider a generia* € W. By contradiction, suppose
> 0 such thatvi € N there exists a reference input € W,
lw: — w*]] < %, and[|zw;, — zw-|| > € 2w, = X(wi), vur =

((w™). By Assumption 2, the sequen¢e.,, } C X. By Assumption
1, X is compact, and hence there exists a subsequ{an@ga} con-
verging to a pointt € X, with ||z — zw+|| > ¢, or equivalentlyz #
xy+. Because of the continuity ok, 0 = lim;—oc ®(2w,, w;) =
®(z, w™), which contradicts Assumption 2. O

The next proposition shows that, for constant desired reference
trajectories, the RG yields a converging reference input.

Proposition 1: Suppose that(t) = r, V¢t > 0, and Assumptions 3
and 4 hold. Then there exigdisn, . w(t) £ w. € Ws. In addition,
each component of vecter(t) is monotonically convergent.

Proof: If wy = », then3(kT) = 0 is admissible vk € N.

whereCs is compact. We fix5 > 0 such thatCs is nonempty. In
order to derive the properties proved in Section Ill, (1) is suppos%d
to satisfy some extra assumptions. ¢
Assumption 5:For all piecewise constant reference input signal
w(t) € Ws, t € [0,400), and for all initial states:(0) € X, there
exists a unigue solution(t, (0),w(t)) of (1) definedvt € [0, +c0).
In the following we shall denote by(¢,x(0),w) the solution
corresponding to a constant referencg) = w, Vt € [0, +00).
Assumption 6 (Converging Input Converging State Stabilitygt
w(t) — w € Ws and each component of vecter(t) be monotoni-
cally convergent. Thenfz(0) € X, limy— oo 2(t, 2(0), w(t)) = 24 .
In particular, Assumption 6 ensures that is an asymptotically
stable solution ofi(t) = ®(x(t), w).
Assumption 7 (Uniform-ins Stability): Let w(t) = w € W;.
l?f)n'\:zﬁ|;t7({tzgirz)efitﬁ(?;V(Z ;u(c);?;;a;”;(}?? zull < Therefore, w(t) = vt > 0, and Woo = 7/ (the RG behaves
The aim of this paper is to design an RG, a discrete-time devifg 2" da}ll-pass filter). Supposa)A;é r. Since §(kT) 2 0, Wk =
which, based on the current statét) and desired reference(t), ' T Two—rp [0 — 7], wheredy = [lw, — ]| By construction, at
generates the reference inpuft) so as to satisfy the constraint (4)tlme (k+ 1)2T, B :21 IS adm|55|2ble, a2nd heno%((k +1)7T) < L.
and minimize the tracking error. As depicted in Fig. 1, the RG ca-Flh_en’O < dk“_ = A2 ((k+DT)d; < d VA € N, and hence thAere
be seen as a reference filter which modifies the desired referenc8XIStS doe = limx—oo di. Consequentlylim, w@ = Wee =
whenever this, if directly supplied to (1), causes constraint violatioh ™ T, =slwo — 7] BY compactness OfVs, wee € W fOHOV\,’S' D
Since the filtering action requires a finite computational timehe Next Lemma 2 a_nd Eroposmon 2 show that_o is the admissible
RG operates in discrete-time in that it is applied evety periodT, reference input which is closest toalong the line segmentwo +
T > 7. The reference inpub(¢) is generated on-line in a predictive(1 —p)r, p € [0.1]. , ,
manner: during the time intervat — 7, ¢] a virtual reference input Lemma 2: Su_ppose that ASSUIT]PtIOﬂS 1-5 and 7 hold. ‘ConS|der
signal {w(t + o)}, ¢ € (0,40c) is selected in such a way that™© reference Inputav,, w, € We. wa # wp. L7et o(kT) =
the corresponding predicted evolutiety + o, «(t), w(t + o)) lies "o + Af € &, and lety such thatB(c.,,n) C C. Then there
within Cs. Yo > 0. Then, according to @eceding horizorstrategy, €XISts @7 > 0, dependent onu, and, such th?t reference input
the virtual signal is applied during the following intenl ¢ + 7]; e + 7(ws — wa) is admissible for all| Az < 5a(n/2) and for
at timet 47 a new selection is performed. For the sake of notationd! 0 < 7 < 7. , ] ,
simplicity, we shall consider hereafter= 0. However, a significant _Pro_of: Let o = “(j77/2_) In a_lccordance W't_h Assumption 7. By
delay - > 0 can be considered in the following developments b§ontnuity of the mappingY (w) in w, there exists & = A(wa. 1),
suitable changes. <A< lwe — wa| SlAJCh tfj\at,Vu; € Ws, |lwa —w| <A =
For reasons that will be clearer soon, we restrict our attention 1§ = wll < 5. Lety = =g andy such thal) < v < 5; by
the class of virtual constant reference input signals, introduced Agsumption 4, the reference input £ w, +~(ws —w,) lies within

[13], which are parameterized by the scataand defined by Ws. By taking[|Az|| < 5, [|(t) = || < [Jew, —zw, | +[]Az]] <
w(kT + o, 3)= r(kT) + plw((k — 1)T) — r(kT)] «, and by Assumption flc(kT + o, 2(kT), wy) — cw., || = [Je(ET +

S wa. Vo >’ 0. ke N ©) o, 2(kT),wy) — 2w, || < n, Yo > 0. Therefore, each reference,

w(=T)= 'ulri’ T is admissible at timéT. O

) Proposition 2: Suppose that(¢) = », ¥t > 0, and Assumptions
where N = {0,1,---}. At each timekT a parametep(kT) € R, 1-8 hold. Therim;_ .. w(t) = w, € Ws with
and the corresponding constant reference input£ wg(kT), are

selected in accordance with the optimization criterion - llw = 7))
. Wy = arg min .
arg min g q 52 ' pg[o,u subject tow = 7 + plwo — ] € W

B(kT) = < subj. toc(kT + o, 2(kT), w(kT + 0,3)) € Cs, (6)
Yo € (0,40). wherew, € Ws is an admissible reference input at time= 0.

@)
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Proof: By Proposition 1 there existdm;— .. w(t) = we € it coocdinstes Tonpues
Ws, and the convergence is component-by-component monotoni?
Suppose by contradictiom.. # w,. By Assumption 6, there exists
a time to such that||z(to, #(0), w(t0)) — 2w || < «(%). Hence,
by Lemma 2, there exists a constaft > 0 such thatw. =
Waso +v(wr — w4 ) is admissible at timey, Vv such thad) < v < 7.
Then,||w(t) —r|| < ||wy —r||. Sincer, w(t), w,, ws are collinear,

it follows that ||w(t) — wel| = ||w(t) — wyl| + |lwy — weol| > g 04 i -0 K i
Ylw, — ws|| > 0, V& > to, which contradicts the hypothesis Time () Tinme (3}
limy— oo w(t) = woo. O

Lemma 3: Under the hypotheses of Proposition 2, there existsgy. 3. Response without RG.
stopping timet, such thatw(t) = w, for all + > #,.
Proof: Since by Proposition 2limg_.owr = w., by
Assumptions 6 and 7 there exists an indek such that||+(MT, Zwll < XVt > fo. Letw € W; such that]jz., — zu-|| < a/3,
2(0),w(MT)) — 2w,.|| < a8) which implies ||c(M +o, T° =T(a/3,27(0).w") and definer(t) = x(t, 2(0), w), x*(t) =

e(MT), w,) = o, || = |e(MT+0,2(MT), w,) =z, || < & x(t, :v*(())?w*). By Result 1, setiingy = 6/2, there exists a
Yo € R, or, equivalently, that, is admissible at time, = M7T.0 7 = 7(T*~a/3*) such that]|x(0) — I:(O)H < 7 ||1*U —w' <
Next Theorem 1 summarizes the previous results. v = le@) — 2" @) < §, Vt € [0.T7]. Then,[[z(T") — x| <

Theorem 1: Supposer(t) = r, V¢t > 0, and Assumptions 1-8 [[#(T7) — 2" (D)|| + [[+™(T) — ww+[| + [lrws — 2wl < 5+5 +
hold. Then, after a finite tim& the RG generates a constant referencg < «, which implies |lz(t) — x| < A for all + > T~
input w(t) = w,, wherew, is given by (7). Consequently, (1) is Hence, T'(A\, z(0),w) < T*. In conclusion, there exists an index
asymptotically driven from:(0) to x.,, with no constraint violation. Jo such thatvj > jo, [l (0) — 2™ (0)[| < v, |lw; — w™|| < v,

Notice that when € W;, the RG has no effect on the asymptotid|Zw,; — zw« || < §, andT (X, 2;(0),w;) < T". This contradicts the
behavior ofy(#), which instead depends on the original trackingssumptiorim; .. (X, ;(0),w;) = +o0. O
properties of the primal system (1). By (3) and Assumption 4, Theorem 2 proves tlat exists and

satisfies the inequalitf .. < T'(6).

A. Finite Constraint Horizon
The optimization criterion (6) requires that the constraifi” + IV. COMPUTATIONS

. x(kI'),ws) € Cs is checked for allr > 0. In this section, we 1, qrqer to implement the RG described in the previous sections,
shqw that it suffices to verify this condition over a finite predlctlorghe optimization (6) is solved by using a bisection algorithm over
honzo.n.(.(),Tx]. . ) . ) the intervall0, 1]. Testing the admissibility of a givefi requires the
Deflnltlon_l (Constraint Horizon): The . (_:onstralr_lt horizon numerical integration of (1) from initial state(x7). The fulfillment
Too 18 deflned asj the shortest prediction h°”Z°“ such thg ihe constraints(kT+a, x(kT),ws) € C is checked at integration
c(t+o.u(t),w) € Co Yo > 0 & ¢t +o.u(l),w) € Co.  gops |etN denote the number of parametedswhich can be
V0 < 0 < Too, Val(t) € X, Y € Ws. _evaluated during one RG peridd For a givenT’, N is determined
In order to prove that SlfCh E’o e>_<|sts, we recall the following by both the desired integration accuracy and the constraint horizon
result [15, pp. 58-60] for time-invariant systems. T-.. Since admissibility of3 = 0 is always tried first, the optimal
Result 1 (Variation of Solutions w.r.t. Initial Conditions and Pa’ﬁ(kT) is evaluated with a worst case precisioreof ¥~ Because
rameters): Consider genericz*(0) € X and 'L_”* € Ws. L?t C is generic and the plant is nonlinear, no convexity properties of
n > 0. < & and D, the set of allc satisfyingz € X, he set of admissiblg can be invoked. Then, the adopted bisection
w € B(w",n) CW. Suppose we havé continuous and bounded 4y rithm only provides local minima. However, this does not affect
on D,,. Then, there exists a > 0 such that for all:(0), w safisfying e convergence results proved in Section III. In fact, if at tiraéter
[[(0) =" (0)[] <, [lw—w"|| < the solutionz(t, +(0), w) €XiSts - eyajyations no admissible < 1 is found, 3(¢) = 1 is selected,
over any bounded mtgv:{il),{*], and as(z(0),w) — (@™(0),w™), \yhich is admissible by construction. Consequently, Proposition 1 still
z(t, 2(0), w) — a(t,27(0),w”) uniformly over[0,T"]. - holds. By Lemma 2, an admissible intenjal— ¥, 1] can be found
Note that Assumption 3 and compactnesstoandWV imply that  ager 4 finite time. ForV large enough, the bisection method can
®(z,w) is bounded on¥’ x W. ! therefore find admissiblgé < 1, and hence the proof of Proposition 2
Whenuw(t) = w, Theorem 2 proves that, for_a flxe_d_sca)_ab 0, holds. Sinced = 0 is always tested, Lemma 3 and Theorem 1 hold as
the statex () converges to the balB(x.,A) in a finite ime T" ) 1t 5 clear that if global minimization procedures were adopted
which is not dependent of the initial stat¢0) € X and reference in selecting3(¢), better tracking properties might be achieved at the

input w € W;. ] o expense of an increased computational effort.
Theorem 2: Let Assumptions 1, 3, and 5-7 be satisfied. Then

for all A > 0 there exists a finite tim&'(\) such thatvc(0) =
[2'(0) w']" € Cs V. AN EXAMPLE

[|2(t, 2(0), w) — 2| < A, vt > T(N). (8) The performance of the RG presented in the previous sections has

) o . been tested by computer simulations on a two-link robot moving on
Proof: By Assumption 6 it is immediate to show that (8); horizontal plane.

is verified for someT'(\, x(0),w). Suppose by contradiction that

Sup,gyec, L(A w,2(0)) = +oc. Then, there exists a sequence .

{¢:(0)}>°, such thatlim, . T(\, i(0), w:) = +oc. By compact- A Nonlinear Model
ness ofCs, there exists a subsequen{:@(())}ji0 converging to a  Each joint is equipped with the following: a motor for providing
point ¢*(0) € Cs. By Assumption 7, there exists am = «()), input torque and encoders and tachometers for measuring the joint
independent ofv, such thatf|z(to) — zw|| < a < ||2(t, 2(t0), w) —  positionsd,, > and velocitied:, f-. By using Lagrangian equations,
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and by setting Lo coamilinates Parsmeier i)
F 1
f s
. 91 /_91 _ﬂ /_(7)1(] I'h.,. -
=la| =l =) =
2 o
wheref, 4, #24 denote the desired values for joint positions &nd7: -1 |.| -y 1 o = !
the motor torques, the dynamic model of the robot can be expressed Tisme (5] — Tiame {)
|2 +ow|| =7 I I . ] ]
X4 X4
where — S =ttt
H(:c): |:;111 ;112:| R A 1 T 1 1T 1
”22 122 . 03 08 o7 0% o |
hir =mil;, + I +mo [11 + 1o, + 201, FOS(m)] + I Thine ()
h12 = 77'1,211lr;2 COS(lfg) —|— 7712132 + IQ
hoo = mol>. + I, Fig. 4. Response with RGI{= 0.001 s).
2 2le, + 12
C(T) _ m,211132 sin(rn;;) |:—;L‘4 —xy — 4 :| . : Joiid enordipaies . Parameser Jidh
T2 0 | PRy
Individual joint PD controllers | r— . ~— ol
0.5
Fpi(xr — w1) + kaiaz o
T=—1"? 10
|:kp2(973 —wa) + kazs (10)
1 I
; ; ; il s 1 il 0% 1
provide reference tracking. As a general rule, to design controllers 1 Thme (s} T ()

be used in connection with an RG, in order to maximize the propertie . Tarques
of tracking one should try to select a primal controller which provides

a fast closed-loop response (1). Usually this corresponds to lar¢ 4
violations of the constraints, which therefore can be enforced b s afoeoaclood . — e LAY S

inserting an RG. In order to show that system (9) and (10) fulfills the i SEEEE == kit~ oty etk (i okt i 7
required assumptions, consider the following function: -5
’ -1 - - - - - i EE— el
V(:c) _ l |:rz:| H(x) |:frz:| 1 iR [ e 1] 04 05 06 0.7 [N] (ALY L
2 |ra T4 T (%}
1w, — 2 ! L lwy —
+ 2 |wa — 3 tp we — T3 Fig. 5. Response with RGI{= 0.05 s).
K, = kpr O >0 B. Simulations
0 Epe

Simulations have been carried out with the system parameters
which is a Lyapunov function for (9) and (10) [16]. Since itgeported in [17]. On-line optimization has been performed by using

derivative along the trajectories of the system is the bisection method mentioned in Section IV, and a standard fourth-
) order Runge—Kutta method with adaptive stepsize control has been
S £ 2 R ) adopted for numerical integration. Fig. 3 shows the closed-loop
Vie)=— K, <0 . ; , .
T4 x system behavior for a constant desired referen¢e) = 7. ra2(t) =
ka0 T.t € Ry, in the absence of the RG. In order to bound the input
Ka= >0 t ithin th
0 kg orques within the range

andV(z) = 0, iff + = [w, 0 we 0] Assumption 2 is satisfied. |71 < 60 Nm, 2] < 15 Nm 11

Moreover, in practice the reference inputt) is expressed by a \yhich has been represented by shadowed areas in Fig. 3, the RG is
finite numerical precision; therefore, ifi(#) monotonically tends applied. The initial conditiong, (0) = #2(0) = 0, 6,(0) = 6.(0) =
toward w, after a finite timew(t) = w, and hence Assumption 6 (- andwo = [0 0] satisfy Assumption 8. An RG perigh = 0.001

is verified as well. The fulfillment of Assumption 7 is proved ag ; constraint horizofi., = 0.4 s, N = 10 admissibility evaluations
follows. By contradiction, suppose that there existd & 0 such o heriod, and ~ 0 are selected as parameters of the RG. The set
that Vo > 0, there existsw andt,, with [|2(0) — .|| < a and g getermined by (11) and by further limiting the state and reference
lJe(tw, ©(0),w) — wu|| > A. Sinceynl < H(x) < 721 for Some inntin such a manner that only constraints (11) become active. The
positive i, 42, by denoting by, () andAar (1), respectively, g iting trajectories are depicted in Fig. 4. In Fig. 5, the RG period
the minimum and maximum eigenvalue df,, and by setting g jncreased ta = .05 s, which causes a transient chatter on the
73 = min{Am (), 1}, 70 = max{Au (Kp). s}, it follows that oot torques. The further constraint

#(tw, 2(0),w) — zu|| < ZV(2(tw)) < ZV(2(0)) < T2a for
any arbitrary positivex, a contradiction. |61 — 62] < 0.2 rad
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Iint coordinsies Prarsamesier [y [6]
i . i —.,
= v M | 7
i - __,..rﬂ . | 5 a : 8]
0.5 W
II|| 0.5 | 1.5 I:I;I 0.5 | L3 [°]
Jime (s} T (50
Tanjues
[ [10]
(N EEY
: [12]
of 02 03} 04 05 08 a7 0F 0% 1
Time (=} (13]

Fig. 6. Response with RG, torque constraints, and the consffaintf,| < (14]
0.2 rad. The generated reference input is depicted (thin line) together with
the joint trajectories (thick lines). [15]

is taken into account by the RG, and the related simulated trajectories
are depicted in Fig 6 withi () = 72(t) = 5, T = 0.001 s.
The slight chatter on the and torque trajectories is caused by[17]
the approximations involved in the optimization procedure described
in Section IV. The results described above were obtained on a 486
DX2/66 personal computer, using Matlab 4.2 and Simulink 1.3 with
embedded C code. The CPU time required by the RG to select a
single 3(¢) ranged between 7 and 18 ms.

VI.
For a broad class of nonlinear continuous-time systems and in-

CONCLUSION

put/state hard constraints, this paper has addressed the RG problem,

viz. the one of filtering the desired reference trajectory in such
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a way that a nonlinear primal compensated control system can ) ) . )
bstract—n this paper we continue the study of geometric/asymptotic

operate in .a Sta,‘ble .Way with Satisffictory trackin.g performance aH perties of adaptive nonlinear systems. The long-standing ques-
no constraint violation. The resulting computational burden turfign of whether the parameter estimates converge tostabilizing

out to be moderate and the related operations executable wittues—stabilizing if used in anonadaptivecontroller—is addressed in
current computing hardware. Alternatively, in some applications, tiee general set-point regulation case. The key quantifier of excitation in

trajectory generated by the RG can be computed off-line and sto
for subsequent task executions. Future developments of this rese

will

I%Hadaptive system is the rankr of the regressor matrix at the resulting
eqyilibrium. Our earlier paper showed that when eitherr =0 or r = p
. S oo IR re p is the number of uncertain parameters), the set of initial
be addressed toward numerical criteria for the determination ebnditions leading to destabilizing estimates is ofmeasure zerolntuition

the constraint horizon and to an independent parameterization of tliggests the same for the intermediate cade < r < p studied in this

components of the reference.
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paper. We present a surprising result: the set of initial conditions leading
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