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Nonlinear Control of Constrained Linear Systems
via Predictive Reference Management

Alberto BemporadStudent Member, IEEEAlessandro Casavola, and Edoardo Mogedlow, IEEE

Abstract—A method based on conceptual tools of predic- This last instance is a peculiar and important potential feature
tive control is described for solving set-point tracking prob- of predictive control. In fact, taking into account the current
lems wherein pointwise-in-time input and/or state inequality con- value of both the state vector and the reference, a potential

straints are present. It consists of adding to a primal compensated or virtual reference evolution can be desianed on-line so as
system a nonlinear device, called command governor (CG), whose virtu volut 9 !

action is based on the current state, set-point, and prescribed 0 possibly make the related input and state responses fulfill
constraints. The CG selects at any time a virtual sequence pointwise-in-time inequality constraints. However, this mode
among a family of linearly parameterized command sequences, of operation, whereby the reference is made state-dependent,
by solving a convex constrained quadratic optimization problem, 5y ces an extra feedback loop that complicates the stability
and feeds the primal system according to a receding horizon . .

control philosophy. The overall system is proved to fulfill the analysis of the (_)verall c_:ontrol system. Th.|s has been one of the
constraints, be asymptotically stable, and exhibit an offset-free '€asons for which on-line reference design, though advocated
tracking behavior, provided that an admissibility condition on for a long time as one of the key potential advantages of
the initia] stgte is satisfied. ThOUgh the CG can be tailorgd for predictive control [6], [8]-[10], has received to date rare
the application at hand by appropriately choosing the available consideration in applications.

design knobs, the required on-line computational load for the | t dicti trol tati t
usual case of affine constraints is well tempered by the related n most cases, prediclive control computations amoun

relatively simple convex quadratic programming problem. to numerically solving on-line a high-dimensional convex
quadratic programming problem. Though this can be tackled

with existing software packages [11], it is a quite formidable
computational burden if, as in predictive control, on-line
solutions are required. In order to lighten computations, it is
l. INTRODUCTION important to know when and how it is possible to borrow

N RECENT years there have been substantial theoretit@m predictive control the concept of on-line reference

advancements in the field of feedback control of dynamfdanagement so as to tackle constrained control problems by
systems with input and/or state-related constraints. For 8ghemes requiring a lighter computational burden. The main
account of pertinent results see [1] and [2], which also includ@®al of the present paper is to address this issue by laying
relevant references. Most of this work has addressed the pd@wn guidelines for synthesizingpmmand governor¢CG),
regulation problem withime-invariantconstraint sets, partic- based on predictive control ideas. A CG is a nonlinear device
ularly input saturation constraints. This paper aims at studyiM@ich is added to a primal compensated control system.
constrained tracking problems, wherein the reference to bee latter, in the absence of the CG, is designed so as to
tracked is possibly time-varying. In some cases such probleffyform satisfactorily in the absence of constraints. Whenever
can be recast as pure regu|ati0n prob|ems Subje(ﬁme- necessary, the CG modifies the input to the primal control
varying constraint sets. However, such a time dependence §gstem so as to avoid violation of the constraints. Hence, the
verely limits, in practice, the potential of many of the existin§G action is finalized to let the primal control system operate
approaches. A convenient framework to deal with constrainé@early within a wider dynamic range than that which would
tracking problems in the presence of time-varying referenced@sult with no CG. Preliminary studies along these lines have
the predictive control methodology [3]-[7]. Predictive controllready appeared in [12] and [13]. For CG’s approached from
wherein the receding horizon control philosophy is usefifferent perspectives, the reader is referred to [14]-[19].
selects the control action by possibly taking into account the The paper is organized as follows. Section Il presents the
future evolution of the reference. Such an evolution can be Rblem formulation and defines the CG based on the concept
known in advance, as in applications where repetitive taskb @ virtual command sequence. Some of the CG stability
are executed, e.g., industrial robots; 2) predicted, if a dynan#id performance features are also considered in Section I.

model for the reference is given; or 3) planned in real tim§_ecti0n Il discusses solvability aspects related to the CG
optimization problem and addresses the important practical

issue of reducing to a fixed and off-line computable finite
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[I. PROBLEM FORMULATION AND CG DESIGN In (7), c(k,z,8) denotes the-response at timé& to v(-,6)
from the even{0, z). If the inclusion (7) is satisfied for some
6 € O, z is said to beadmissible (z, 8) an executablepair,
andv(-, #) avirtual command sequence for the stateNotice

that (6) ensures that

Consider the following linear time-invariant system:

{ z(t+1) = ®x(t) + Gg(t)
y(t) = Hxz(?) (1)
o(t) = H.x(t) + Dy(t).

In(1) te Zy :=1{0,1,---}; z(t) € IR" is the state vector;
g(t) € IR?, the manipulable command input which, if noprovided thatz = ®x + Guv(0,6). In fact, from (6) it follows
constraints were present, would essentially coincide with tiigat c(k + 1,7,6) = c(k,z, ). Then, any state is admissible
output reference(t) € IR?; y(t) € IR?, the output which is along the trajectory corresponding to a virtual command
required to track(t); andc(t) € IR™, the constrained vector sequenceu(-, #). Consequently, no danger occurs of being
which has to fulfill the pointwise-in-time set-membershigrapped in a blind alley if (1) is driven by a virtual command

(z,0) is executable> 36 € © : (7, 0) is executable  (8)

constraint
ctyeC, VteZ, 2

sequence or its input switched from one to another virtual
command seguence.
For reasons which will appear clear soon, it is convenient

with ¢ C IR™= a prescribed constraint set. The problem is tw introduce the following sets for a giveh> 0:

design a memoryless device

g(t) := g(a(#), (1)) 3)

in such a way that under suitable conditions, the constraints
(2) are fulfilled and possibly(t) = =(¢). It is assumed that

1) ¢ is a stability matrix i.e., all its eigenvalues
are in the open unit disk

2) System (1) is offset-freei.e.,
H(I-2)'G =1,

(A1)

Cs:={ceC:Bs(c) CC}
with
Bs(c) :={ce R"™ :[[c—¢l| < 6} 9)
Ws:={w € IRP: ¢, € Cs}. (10)
Henceforth, we shall assume that there exists a possibly
vanishingly smallé > 0 such that
(A.3) W s is nonempty.

One important instance of (1) consists of a linear plant undgrom the foregoing definitions and (A.3), it follows tHat is

stabilizing linear state-feedback control. In this way,

X ) . the SY&losed and convex. In the developments that follow we shall
tem is compensated so as to satisfy stability and performa hsider the familyVe

where

requirements, regardless of the prescribed constraints. In order

to enforce the constraints, the CG (3) is added to the primal

compensated (1).

(11)
(12)

v(k,0) =7*p +w
6 :=[ w'] €0 :=RPxW;s

It is convenient to adopt the following notations for the

equilibrium solution of (1) to a constant commangt) = w:
Yw = Hxy, 4)

It is further assumed that

1) Cis bounded

2) C={ceR™ :q;(c) <0, €n,}, with
n,:=1{1,2,---,n,} andg; : R" — R
continuous and convex

3) C has a nonempty interior

(A.2)

(A.2) implies thatC is compact and convex.
Consider a#-parameterized familyo of sequences

Vo ={v(-,0):0 € © CIR"*}
v, 0) :=={v(k, 0)}ilo (5)

with the property of closure w.r.t. left time-shifts, viZd € ©,
there existd € © such that

v(k+1,0) =v(k,0), VYke Zy. (6)

Suppose temporarily tha(-, #) is used as an input to (1) from
the stater at time 0. The latter will be referred to as the event

(0,z). Assume that
C(-,.’IZ,Q) = {C(ka%e)}iozo cc. (7)

where v+ € [0,1) and the prime denotes transpose. The
rationale for (11), (12) hinges upon the requirement (&},

as given next in (20), be i€,vk € Z,, and the following
result whose straightforward proof is omitted.

Lemma 1: The family of command sequencesg-,#) =
{v(B)p + w2y, with § as in (11), (12) andy(-), a real-
valued asymptotically vanishing nonnegative sequence, owns
the property of closure w.r.t. left time-shifts (6) if and only if

(k) =+* ve[0,1). (13)
In such a case, (6) is satisfied with
b=[w w7 (14)

We consider next the-response:(-, z, ) to the command
sequence (11), (12). By straightforward manipulations we find

e(k) ==c(k,x,0) (15)

=c(k) + I'Icq)k[aj — Tptw] + (k) (16)

(k) =7 g + (1 =) (17)
k—1

(k) :==(1—7)H. Y _ 'y, (18)
:=0

In order to establish the existence of admissiiesponses
¢(-,z,0), consider the special case = z; with @ € Ws.
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Thus, we can make — x4, = 0 by the choiceu = @ —w. where ¢ is as in (12),[z]|§ = «'Vz, T, = ¥/, > 0,
Accordingly U, =¥, >0,¥, =¥, >0, andy(k,z(t),0) the output
c(k) = a(k) + (k) (19) response at timé to the commands(k, 8) = v*u + w from

‘ ‘ the event(0, z(¢)). It is easy to see that (22) has a unique
= _ Ak k )

&(k) =7"ca + (1= 7")ew. (20) " ynconstrained minimuré(t) € IR2” for everyz(t) € R" and
By the convexity ofC;, it follows that&(k) € Cs, Vk € Z,. 7(t) € IRP. Let V(z) be the set of alb € © such that(z, §)
Then, ¢(k) belongs toC, provided that||é(k)|| is sufficiently is executable

small for all £ € Z,. In this connection, by stability of (1) . oL

and giveny € [0,1), there are two positive real/ and A, Vi) ={0€0: c(,z,6)CC} (23)
A € [0,1) with A # v, such that for eaclr € IR™ one has Assume thatV(xz(t)) is nonempty, closed, and convex for

that [|@*z|| < MA*||z||,Vk € Z,. Then, it is possible to everyt € Z,. This implies that the following minimizer exists
show that there ar¢q = @ — w, [|% — w|| > 0 such that yniquely:
c(-,z, [(w—w) w])cCC. Infact, the following inequality
holds for allk € Z,: 0(t) =argmin{J(z(t),7(t),0) = (-, 2(),0) CC}

el < © = RaH M s = ol (@) =B Bty T OO 0
with 7(H.) the maximum singular value off.. Recall- Proposition 1 ensures.that’(a:(t)). nonempty implies that
ing that z, = (I — ®)~'Gw, from (21) it follows that Y(x(t + 1)) nonempty if (x(¢),6) is executable anc:(¢ +
l&(k)|| < 8, Yk € Zy, provided that||zs — 20| < 8ly — 1) = @2(#)+Gu(0,6). Further, the concatenation mechanism
A/[(L = 7)a(H)M], or |5 — w|| < 6(1 = Ny — Al/[(1 = embedded in the viability property of Proposm_on 1 natur_ally
v)5(H.)5(G)M?]. The foregoing analysis holds true if theSU99ests that we can select the actual CG action according to
initial state z; is additively perturbed byi, 0 < ||Z]| < e, the following receding horizon control strategydft) is as

with ¢ sufficiently small. In this case, the perturbed constraind@ (24):

vector (k) is such thate(k) — &(k) = H.®*& + &k). The ) = 0(0.9(8) = p(t) + wlt o5
condition||c(k) — &k)|| < 6, Vk € Z, can be ensured, e.g., 9(8) = v(0,6(1)) = () +wt) (@3)
by requiring thatl|ze — 2|l < 561y — Al/[(1 — )& (H:)M], Remark 2: If the computational delay is not negligible w.r.t.

and ||Z]| < 16/[3(H.)M]. The conclusion is that startingthe sampling interval, we can modify (24) as follows:
sufficiently close to an equilibrium state;, @ € Ws in a . . . .
finite time one can arrive as close as desired to any state B((i+ 1)r) = arg bV (alin)) J(w(ir), 7(i7),0)
w € Ws, at a nonzero, though possibly small, distance from
5. Then, we can move out from any admissible state) ¢ € Z+ and setfork = 0,1,.--,7 1
to _re_ach asymptoticgllww, any w € Ws, by concatena?ing. g6+ 1)1 + k) = vk, 6((i + 1)7)).
a finite number of virtual command sequences by switching
from one to another, the last switching taking place at a finit€his amounts to using an “open-loop” command sequence
though possibly large, time. This result, which by adopting thaver intervals made up by steps. While the results proved
terminology of [20] will be referred to as a viability property,in the remaining part of this section and in Section Il can
is summarized in the following proposition. be easily extended to cover this case, a tracking performance
Proposition 1 (Viability Property): Consider (1) along with degradation typically results from a significant computational
the family of command sequences (11), (12). Let Assumptiofdslay. O
(A.1)—(A.3) be fulfilled and the initial state:(0) of (1) be Remark 3: As elaborated in some detail in Example 2, the
admissible. Then, there exists a concatenation of a finite nuweighting matricest,, and ¥, can be made(t)-dependent
ber of virtual command sequences 6;), 6; = [, wj], SO as to force the direction of the selected vegjor) =
6; € ©, with finite switching times, capable of asymptotically.:(t)+w(¢) to be as close as possible to that¢f), compatibly
driving the system state from(0) to z,,, anyw € Ws. [0 with the constraints. This can be a qualitatively important
Remark 1: We leave to the reader the simple task of sp&equirement in some multi-input/multi-output applicatiofs.
cializing the analysis and the results of this paper to the caseMVe defer the proof thav(z(t)) is closed and convex to
of a family Vg of constant sequences Section Ill. A question we wish to address now is whether
. . the foregoing CG yields an overall stable offset-free control
vk, 0) =0 €6 =Wy C IR". system. Assume that the reference is kept constdy,= r
Hereafter, we shall address the problem of how to seldor all ¢ > ¢*, and V(x(¢)) is nonempty, closed, and convex
appropriate virtual command sequences and when to switttheacht € Z, . Consider the following candidate Lyapunov
from one to another. To this end, consider the quadrafienction:
selection index

J(@(t),r(t),0) = |ull3, +llw =@, _
oo If =(t + 1) = &x(t) + Gu(0,6(t)), it results that J(x
+ )yl xt),0) —wly, (2 ¢+ 1, nhw't) w'@F) = V(E+1). Infact, (a(f +
k=0 1), [y (t) w'(2)] cutable, bufyu/(t) w'(t)]’ need

V() .= J(x(t),r,001)). (26)
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not be the minimizer fod (z(¢+1),r, §). It follows that along Consequentlylim;_...[6(t + 1) — 8(¢)] = 0, and hence (31)

the trajectories of the system:
V() =V(E+1) > A -)e@i,

+ly®) —w®lF, 20. @7

from (14). Equations (1), (25), (28), and (31) imply that
limy o[z (t4+1) —z(t)] = 0,. Hence lim, oo [z (t) — Pz (t) +
Guw(t)] = 0, from which (32) follows. To show (33), consider
that y(k, z(t),0(t)) = y(k, 2w, [0, W' @)+ y(k,2(t),

/ / 1/ _ fod / /N hod ——
Hence V(¢), being nonnegative monotonically nonincreast (1) 0pl) = w(t) + w(k 2(), (1) Of), &(t) =

ing, has a finite limitV(oc) ast — oo. This implies
lim, o[V (t) — V(t 4+ 1)] = 0, and by (27)

tlim p(t) =0, (28)
i (8 = w(®le, =0 @)

2(t) = . Then, 3507, [ly(k,z(t), 0(1) — w®llf, =
I[Z(t) ' @®]IZ for some symmetric nonnegative-definite
matrix . Because of (28) and (32), the last quantity goes
to zero ag — oo. This proves (33). O

We are now ready to prove that under the conditions stated
after (23), the output of the system controlled by the CG

Lemma 2: Consider (1) controlled by the CG (24), (25)converges to the best possible approximation to the reference.

Assume that (A.1)—(A.3) are satisfied. Lef0) be admissible

and V(z(t)) closed and convex at eache Z,. Let r(¢) =
r, vVt > t* € Z,. Then

V()= lim V(r) SV(t+1) SV(H), VE>t (30)

Proposition 2: Under the same assumptions as in Lemma
2, the prescribed constraints are satisfied at everyz, , and

tlim y(t) = tlim g(t) = w, (38)
- 2

P i= arg -7y, - 39

wy = arg min fw —rlly, (39)

(28) and (29) hold, and the CG output exhibits asymptotically

vanishing variations

Jim fw(t + 1) — w(®)] = 0,. (31)
Further
Jim [2(8) — 2wn] = 0p (32)
where
Ty = = ©) T Gw(t)
and
V(o) = lim [lu(t) =3, (33)

Proof: Because (33) implies that’(cc) > V,. =
mingew; ||w — 7|3, (38) is proven if we show that
V(o) = V.. Assume to the contrary thalt, < V(co).
Under this assumption, we show that, along the trajectory
of the system controlled by the CG, feérlarge enough we
can find a virtual command sequencé,f,(t)) such that
J(x(t),7,0,(t)) < V(co). BecauseV (t) < J(z(t),r,04(t))
and (30), the previous inequality contradicts the assumption.
For o € (0,1] let

Oa(t) = {wgf()t)} wal(t) == (1 — )w(t) + aw,. (40)

Becausex(t) — .y — 0, by Proposition 1 there is a

Proof: Equation (30) has already been proved under tiigne ¢, > ¢* and a positive reaky; € (0,1] such that

stated assumptions. It follows by strict positivity @, and
¥, that the CG output sequencg:) = p(-) + w(:) is

bounded. Hence, by (28) and the stability of (1), the systemJ
state evolution:(-) remains bounded as well. Létbe defined
in terms of# as in (14). Then, along the trajectories of the

system for eacht > t*
V(t) = J(z(t+1),7,0(t))
+ (@ =N, + ) = w3,
and, by (8), (24), and convexity of
Vie+1) = J(x(+1),r0t+1))

< J(ta) < J(a(t+1),7,00)  (34)
wherea € [0,1] and
J(t, o) == J(x(t +1),7,0(t) + [0t + 1) — (t)]). (35)

Now, taking into account (22), it is easy to see that

J(t,a) = 2|0t +1) = ()% + acr(t) + e2(t)  (36)

YVt > t1, Yo € [0,01], (2(t),84(t)) is executable. Look next
at J(xy(1), 7, 0a(t)). It can be found that
(w7 ba(t) = (1= @) [lw(t) — w13,
+2(1 — a)(wy — 1) Uy (w(t) — wy)
+a?[lw(t) —welf + I = welf5,

(41)
where £ = K’ > 0 is such thaty ;7 [ly(k, zw (), 0a(t)) —
wa(H§, = ?llw(t) = w.[[Z. Such a matrix equal& =
G'(I-®)"TL(I—-®)7 G, whereX—1 .= (X~1) andL =
L’ > 0 is the observability Gramian of the pai®, ¥z H).
From (41), we find that

J(@ue), 7, 0a(t) < llw(t) = 7lE,
provided that

(42)

(0%
§||w(t) - w””%‘Pw—HC) < ||w(t) — w7,||‘2pw + (wr — 7’)/
X W (w(t) — wy). (43)

with ¥ = W' > 0, andey (-) andcy(-) bounded real-valued se-By convexity of W, the right-most term of (43) is nonnega-

quences. Then, becaulen; .. J(t,1) = lim;— J(t,0) =
V(c0), from (34) and (36) it follows that

tlil)gol(t, a) =V(c), Yael0,1]. (37)

tive. Hence, for everyx € (0, &(t))

ey oo 2l =l
T lo(®) = welI3
T \ij+]c
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(43) is satisfied. Then, becausgt) — z,,;) — 0 and the In what follows, we shall show that only a finite number of

continuity of J w.r.t. x, there is a timey > #; such that for pointwise-in-time constraints suffices to determifieTo this

everyt > to anda € (0,a,), 0 < a, < min{ay,a@(t)}, end, let(A,, F.,), with A, € IR *" n, < n + 2p, be an

(x(t), 0,(t)) is executable, and (z(¢),r,0,(t)) < V(oo). O observable subsystem obtained via the canonical observability
decomposition of( 4, E.). Then

I1l. SOLVABILITY AND COMPUTABILITY

_ k
It remains to find existence conditions for the minimizer c(k) = Ee, A;7(0) (49)

(24). Further, even if solvability is guaranteed, (24) embodies
an infinite number of constraints. For practical implementatiowith z, = P,z, P, defined by the observability decomposition.
we must find out if and how these constraints can be redude@nsequently, define the following sets:

to a finite number of constraints whose time locations be
determinable off-line. To this end, it is convenient to introduce
some extra notation. We express the response of (1) from an

Zp={PzeR™:z€Z}, 2°:=()2. (50
event(0,x) to the command sequence (11), (12) as follows: =0

_ " T It is easy to see thaE? and Z° own the same properties
z(k+1) = Az(k), with z(0) = {9} = |pn| €R"XxO, shown to hold forZ; and, respectivelyZ. In particular, they
w are nonempty, closed, and convex. Moreover, the following

o(k) == c(k,z,6) result holds.
= E.z(k) Proposition 3: Let (A.1)—(A.3) be fulfilled. Thenz?, Vi >
(44) n, IS compact and convex. Moreover, there exists an integer
where i» > m, such thatz; = Z.
d G G Proof: See the Appendix. O
A= |0pxn v, Opxp|, E.=[H. D D]. (45) It follows that Z°, and henceZ as well, is finitely deter-
Opxn Opxp Ip mined; that is, it suffices to check the constraints over the

initial i,th time steps in order to ensure constraint fulfillment

over Z,. Consequently, problem (24) is equivalent to the

Z={zeR"x0:¢(E.A"2)<0,j€ ng.k €} following finite dimensional convex constrained optimization
problem at each € Z,:

Fori e Z; :={1,2,3, ...}, consider the following sets:

(46)
z:=()Z. (47) _ et , :
n b0) = |10 = _min | IGet0).000.6)
Z, is the set of initial states with w € W; which gives rise to subject tog; (c(i — 1,z(¢), 6))
evolutions fulfilling the constraints over the firgh time steps <0,j€Eng,t € i, (51)

k=0,1,--- ¢ — 1, while Z is the set of all executable pairs

(z,0). Ziy1 C Z;, Vi € Z1, and under (A.2), all the;’s, and  The Gilbert and Tan algorithm [16] can be adapted to the
henceZ, are closed and convex. Moreover, by the viabilitpresent case to find, = min;s,, {4 | 2¢ = 2°}. To this
property of Proposition 12 is nonempty. The lemma thatend, let

follows can be proved as in [16], taking into account (44)—(46).

Lemma 3: 5 e— Aeli i g —
Gi(j) = well}g%}gg@{q](c(@x, 0)}, JjeEmn,i=12"--
Zi=Zipn=Zi=2. subject tog;(c(k —1,2,6)) < 0,5 € n,, k €.
Consider next the “slice” ofz along = (52)
'/Ij . . . . . .
Viz) = Lﬂ co:|ulezl. (48) Then,i, can be computed off-line via the following algorithm:
w .
1. ¢ n,;

If z is admissible for som@ € ©, V(z) is nonempty. In 2. SolveG;(j), Vi€ ng;

addition, it is closed, being the intersection of two closed sets,3. If G;(j) <0, Vj€n,, leti, =i and stop
V(z) = Zn {{z} x ©}. V(z) is also convex because the 4. Otherwisei — i+ 1, and go to 2

“slicer” operator is convexity-preserving. Then, existence and

uniqueness of the minimizer (24) follows, provided that thMotice that Step 2 in (53) is well posed because, according
initial state of (1) is admissible. Practical implementation db Proposition 3, the implied maximization is carried out over
the CG requires an effective way to solve the optimizaticm compact and convex set. In conclusion, we have found that
problem (24). Notice in fact that there might be no algorithmiour initial optimization problem, having an infinite number of
procedure capable of computing the exact minimizer, unlessnstraints, is equivalent to a convex constrained optimization
Z is finitely determined, viz.Z = Z,; for some: € Z,. problem with a finite number of constraints.

(53)
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output y(t) set-point r(t), command g(t), parameters jL(t) and w(t)
1.5 1.2
/\ N R P
1= = = = - - ’_.—‘/
.5 0.8-="
0.5 ‘,, 0.6 //
I/ /
y 0.4
0 "I r
/ 0.2
A
-0.5[ 1+ 0
\ / 0.2 ,/
-1 /
\V/ 0.4
5% 5 10 15 20 25 30 % 5 10 15 20 25 30
time steps t time steps t
(@ (b)
Fig. 1. Example 1: (a) Unit step response with no CG (thin line) and with €& (0.05; v = 0.9; ¥,,/¥,, = 0.1; ¥, /T, = 0.01; thick line) for

the nominal plant (54); response with CG for the perturbed plant (55) (dashed line). (b) Reference trajegt@ityick dashed line); generated command
trajectory g(t) (thick line); minimizing parameterg(t) (thin solid line) andw(¢) (thin dashed line).

Theorem 1:Let (A.1)—(A.3) be fulfilled. Consider (1) with as a function of and-~y. For small values of, which are the
the CG (24), (25) and let(0) be admissible. Then we haveones of practical interest, is larger at intermediate values
the following. of 4. Thus, in this respect, it is convenient to restrictlose

1) The J-minimizer (24) uniquely exists at eache Z, either to one or zero. Another item that can be affected by
and can be obtained by solving a convex constraingge choice ofy is the set of admissible states. Rbe= 0.05,
optimization problem with inequality constraintsthis set is depicted in Fig. 3 for two candidate valuesyof
gi(c(i — 1,2(¢),6)) < 0,5 € n,, limited to a finite viz. v = 0.1 and0.9. For intermediate values of, the set of
numberi, of time-steps, vizi = 1,---,4,. admissible states is approximatively comprised within the two

2) The integer, can be computed off-line via (53). depicted sets. The conclusion is that heraffects the size

3) The overall system satisfies the constraints and and the shape of the set only slightly. Before choosing either

asympt9t|cally stable . gnd offset free in that th@y = 0.9 or 0.1, we focussed on the remaining tuning knobs.
conclusions of Proposition 2 hold.

The choice¥, /¥, < 0.1 turned out to be an appropriate
one in that, in practice, it entails no limitation on the values
IV. SIMULATION STUDIES that(t) can take on. Choosing,,/¥,, = 0.1, we considered
We investigate in some detail how to tune the free p#he constrained unit step response as a functionpf¥,,
rameters of the CG, with direct reference to two differerfor both the candidate values ef. Globally, the shape of
examples. The simulation results reported hereafter were @his response turned out to suggest the chojce= 0.9.
tained under Matlab 4.6- Simulink 1.2 on a 486 DX2/66 Fig. 4 depicts the constrained unit step responsé fer0.05,
personal computer, with no particular care of code optimiza}-: 0.9, ¥,, = 10, ¥, = 1, as a function of,. As can be
tion. The standard Matlab QP.M routine was used for quadraignected, a nonzemb, slows down the response of the overall
optimization. , , o system. Notice that fol, = 0, the dynamics of the system is
. Example 1:. Consider the following nonmmlmum-phaseunchanged when the constraints are inactive because the CG
single-input/single-output system: setsg(t) = r(t). Taking into account the foregoing simulation
y(t) = —0.8935z 4 1.0237 o) (54) analysis, the final selected tuned knobs weére= 0.05,
22 — 1.5402z 4+ 0.67037"" ¥y =109, ¥, =1, ¥, = 10, ¥, = 0.1. Algorithm (53)

The unit step response of (54) is depicted in Fig. 1(a) (thlwnas executed on the above machine and took 3.8 s to give

line). The task of the CG is to bound the output betwe@s > = 14. The related constrained unit step response is shown
and 5. Accordingly.c(t) = y(t) andC = [~0.5,5]. The CG in Fig. 1(a) (thick line). This was computed in 0.15 s per time

has the following free parameter; v; ¥ ,; U,,; ¥,. They Step. Fig. 1(b) depicts the generated command trajegtarny
will be referred to as CGlesign knohsThe § and y knobs  (thick line), the reference trajectory(#) (thick dashed line),
affect the resulting number of constraints involved in the oi@nd minimizing parameterg(¢) (thin line) andw(¢) (thin

line optimization. This number, which in general is given bglashed line).
the minimal constraint horizor, in (53) minus the delay In order to consider the effects of model uncertainties, the

betweenc(t) and g(t), equals here, — 1. Fig. 2 showsi, same CG as the one designed for the nominal plant (54) was
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Constrained output y(t)

AT T 1.4, ¥, 20
' 1.2 e

5 10 15 20 25 30

Fig. 2. Example 1. Minimal constraint horizag computed via (53) as a time steps t

function of v and 6. ) . . .
Fig. 4. Example 1. Constrained variable (output) response for different

values of parametew,,.

Admissible state set
40 the input. The following linear compensator:
35 u(t):[ 0.00005 1.25601 —0.17872 0.556 20 (1)
—0.00043 13.71101 4.06960 —0.37350
30 1.93476 —0.55618
25 [—21.189 23 037351 |90 (56)
20 was designed, with no concern of the constraints, so as to
X, obtain both adequate dynamic decoupling and fast transient
15 e response. Fig. 5 shows the response of the compensated linear
10 / system with no CG. Note that the constraints are violated. It
/// can be shown that if the linear compensator outputs given by
5 7 7 (56) are saturated so as to fulfill the constraints, the system
0 '/'/ 7 becomes unstable. Fig. 6 depicts the trajectories resulting
/ when the CG is activated so as to constrain the two plant
-5 , inputs within the prescribed bounds. To this end, after some
10 0 10 20 30 40

simulation analysis, we tuned the CG design knobs as follows:
v=10.9; 6 =01, ¥, = 10I5; ¥,, = I>; ¥, = 0. The last
Fig. 3. Example 1. Set of admissible statesfor different values ofy ~Choiceé was made in order to leave unchanged the dynamics
(6 = 0.05). with inactive constraints. Under these choices, (53) fiyds
140. Simulations were carried out with a computational time
of 0.91 s per step. Heuristically, it was found that for the ref-
erence in Fig. 5, indistinguishable results can be obtained with
—1.9517% 4 1.4352 a constraint horizon equal to 5 in 0.13 s per time step. Though
5 - u(t). (55) these computational times exceed the sampling intefyal
2% — 1.4657z 4+ 0.6492 . ) S .
the simulation results indicate the performance achievable by
aing faster processors with software specifically optimized
or the application at hand. Because of vector optimization,
Example 2: The CG is applied to the AFTI-16 aircraft e reference is filtered both in modulus and direction. This

modeled in continuous-time as in [15]. The elevator and tﬁé(plains the coupling between the two outputs. In order to let

flaperon angles are the inputsto the plant. They are subjectt\Se dlrgc\:;on ofg(#) bg_f_asd cblose asl_p(_)ssm!{e to ;h?:l;(é?’
to the physical constraints,;| < 25°, ¢ = 1,2. Then,c = w. p anad,, were modiied by penalizing at each 1l ©

The attack and the pitch angles are the output¥he task COMPonent ofy(¢) orthogonal tor(¢). This is accomplished
is to get zero offset for piecewise-constant references whﬁ¥ adding to¥, and¥., the weighting matrix

avoiding input saturations. The continuous-time model in [15] 100 <I 3 7’(t)7”(t)> _ [100 0} (57)
is sampled ever{; = .05 s, and a zero-order hold is used at - 0 0}

' (t)r(t)

X4

used with the plant

y(t) =

Fig. 1(a) exhibits the related output response (thick dash
line). The prescribed lower bound is slightly violated.
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output y(t)e R* output y(t) € R
15 . 15
set point r,(t)
10 + 10 e
5 /4 set point . (t) 5 / 1/
0 L 0 —_—
-5 — 5

input u(t)e R’

100 input u(t)e R
502N constraints 40__— | T R
7[______ 1] L bl 2
. < i .
so L] R B B e ST et e SN R
500 0.5 1 1.5 2 2.5 3 4
time (s) 0 0.5 1 15 2 25 3
Fig. 5. Example 2. Compensated AFTI-16 response with no CG.
s command g(t)e R®
5 output y(t) and command g(t) e R®
D 10 ——
10— __:_T’__’7 5 l/
5 ’ i 0
L AT
0 = R Yo 5
0 0.5 1 1.5 2 25 3
5 time (s)
input u(t)e R’ Fig. 7. Example 2. Response with the CG penalizing the component of
40 1] and w orthogonal tor(t).
20— == ~N_ -] - - -r----=-=--=
0 //41———'——\ output y(t) e R’
20
20 :
el s ettt Sl sl el 10 ‘: o

_40 N
0 0.5 1 1.5 2 2.5 3
0 T [t———— —

Fig. 6. Example 2. Response with the CG: outp(t) (solid line), command /
g(t) (thin dashed line), and referencét) (thick dashed line).

19 5 10 15
This modification does not affect the analysis in Section II, input u(t)e R?
wherer(¢) is assumed to become constant. The trajectoriegg p

related to the modification (57), as depicted in Fig. 7, exhibit

a reduced crosscoupling at the cost of longer settling time<0 A \ rr\
Fig. 8 shows the performance of the system with the sameg| _ _ el e U o il AL

CG when the reference exhibits time-variations in such a way {\

that transients take place also from nonequilibrium states, 0 ————--_1 [ S D AR S

by an equilibrium state we mean a vectoy, w € Ws, as 40
in (4). 0 5 10 15
Finally, the behavior of the Com_mand goYemor in thEig. 8. Example 2. Outpug(t) (thick line) and reference(t) (thin line);
presence of an output zero-mean white Gaussian sensor N@§se «(+) (solid and dashed line).
with covarianced.2l, was simulated under the same CG knob
choice as in Fig. 7. This behavior is depicted in Fig. 9. In this
case, the state(¢) used by the CG is replaced by an estimate
Z(t) provided by the state Kalman observer. Notice that the The CG problem, viz. the one of on-line designing a
constraints can be still fulfilled. command input in such a way that a primal compensated

V. CONCLUSIONS
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output y(t) R® finitely determined, note thatm;_,. (¢, z,8) = c,,. Now

15 (i, z,0) — cp = E-M*(2 — 2)
10 ——— ———C =E. M2y — Zwo)
5 " T where
0] G 0 z,
Py L nXp w
0 ~ M= \0pn v Opup|, 2w=1]0
-5 Opxn Opxp  Opxp w
. 2 M, is obtained fromM in the same way asi, from A,
40 input u(t)e R B zo = Pyz, and z,,, = P,z,. Then
207 2 - :'\;"\""» """ llc(i, @, 0) — cwll < 7(EeoM?)(||20]l + | Zwoll)-
0/ BN Becausez., € Z7, ||| + ||2wo|| IS bounded for alk, € Z°.
. \/' Therefore, the existence of an integgrsuch that
o 1] R i 24, = ||e(i,z,0) = col| S8, VzEZ
) 0.5 1 15 2 2.5 . .
; follows from asymptotic stability of\/.
time (s)
Fig. 9. Example 2. Response with the CG and output measurement noise. ACKNOWLEDGMENT
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