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Abstract— Real-time measurements of the scheduling parame-
ter of linear parameter-varying (LPV) systems enable the synthesis
of robust control invariant (RCI) sets and parameter dependent
controllers inducing invariance. We present a method to synthesize
parameter-dependent robust control invariant (PD-RCI) sets for
LPV systems with bounded parameter variation, in which invari-
ance is induced using PD-vertex control laws. The PD-RCI sets are
parameterized as configuration-constrained polytopes that admit
a joint parameterization of their facets and vertices. The proposed
sets and associated control laws are computed by solving a single
semidefinite programing (SDP) problem. Through numerical exam-
ples, we demonstrate that the proposed method outperforms state-
of-the-art methods for synthesizing PD-RCI sets, both with respect
to conservativeness and computational load.

I. INTRODUCTION

Robust control invariant (RCI) sets are subsets of the state-space
in which a dynamical system can be forced to evolve indefinitely in
the presence of arbitrary but bounded disturbances. Such sets form
the basis for the analysis and design of control schemes, since they
define the regions in which the system can be forced to operate [2],
[3]. Hence, the development of methods to characterize and compute
RCI sets is an active research area. These approaches can broadly be
divided into two categories. The first category is related to recursive
approaches, in which the limit set of finite-time controllable sets is
computed, see, e.g., [3], [4], [5], [6], [7]. In the second category, RCI
sets of an a priori selected representation are computed by enforcing
invariance using an a priori chosen controller parameterization, see,
e.g., [8], [9]. This paper presents a method to compute RCI sets for
LPV systems in the latter setting.

A common approach to compute RCI sets for LPV systems
involves considering the scheduling parameter as an arbitrary dis-
turbance [10], [11], [12], [13]. However, this parameter is typically
measured before computing the control input, and exploiting this
information can help synthesize RCI sets with reduced conservative-
ness. This rationale is the basis for numerous parameter-dependent
(PD) control design schemes [14]. While the RCI sets corresponding
to these PD-controllers can be synthesized a posteriori, to the best
of our knowledge, the technique proposed in [1] is the only one
that provides the simultaneous synthesis of PD-control laws and
their asscociated PD-RCI sets. The PD-RCI sets serve to identify
regions within the state-space from which invariance can be achieved
using the corresponding PD-control law, exploiting the available
information on the scheduling parameter.

In this paper, we present a new approach to simultaneously
synthesize PD-RCI sets and corresponding PD-control laws using a
single semidefinite programing problem (SDP). The main difference
with respect to [1] stems from the representation of the PD-RCI sets,
and the parameterization of the corresponding invariance-inducing
control laws. We represent PD-RCI sets as polytopes having fixed
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orientation and varying offsets that depend affinely on the scheduling
parameter, and induce invariance in these sets using a PD-vertex
control law [15]. Since every linear feedback law can be transformed
into a vertex control law, our parameterization is inherently less
conservative than that proposed in [1]. Furthermore, we enforce
configuration constraints [16] on these polytopes, that enables a
convex formulation of the PD-RCI set synthesis problem, rather than
a much more computationally expensive nonlinear matrix problem
developed in [1]. Finally, unlike in [1], we seamlessly incorporate
information of the rate of parameter variation into the PD-RCI
computation problem. It is well known that taking into account
the bounds on rate of variation can reduce conservativeness in the
control design procedure and consequently in the computation of
the RCI sets [17], [10], [18]. Through numerical examples, we
demonstrate that our approach computes PD-RCI sets with reduced
conservativeness at a much lower computational expense compared
to the approach of [1].

This paper is organized as follows. In Section II, the concept of
PD-RCI sets for LPV systems is recalled, and the problem statement
formulated. Then, in Section III, a semidefinite programming problem
to compute PD-RCI sets is derived. Finally in Section IV, numerical
examples to support the efficacy of the approach, and a comparison
to other state-of-the-art methods are presented.

Notation: Given a matrix L ∈ Rm×n, we denote by LX the
image {y ∈ Rm : y = Lx, x ∈ X} of a set X ⊆ Rn under
the linear transformation induced by L. We denote the i-th row of
matrix L by Li. The symbols 1n×m and 0n×m denote all-ones
and all-zeros matrices in Rn×m respectively, and In denotes the
identity matrix of order n. We ignore the superscript if sizes are
clear from the context. The set Inm := {m, . . . , n} denotes the set
of natural numbers between two integers m and n, m ≤ n. Given
compatible matrices A and B, A⊗B denotes their Kronecker product.
The symbol Rn×m+ denotes the set of all matrices in Rn×m with
nonnegative elements. The Minkowski set addition is defined as X ⊕
Y := {x + y : x ∈ X , y ∈ Y}, and set subtraction as X ⊖ Y :=
{x : {x} ⊕ Y ⊆ X}. Given points {xi, i ∈ IN1 }, CH(xi, i ∈ IN1 )
denotes their convex-hull. Symmetric block matrices are denoted by
∗. A p-norm ball is denoted by Bnp := {x ∈ Rn : ∥x∥p ≤ 1}.

Proposition 1 (Strong duality [19]): Given a ∈ Rn, b ∈ R, M ∈
Rm×n and q ∈ Rm, the inequality a⊤x ≤ b holds for all x such
that Mx ≤ q if and only if there exists some Λ ∈ R1×m

+ satisfying
Λq ≤ b and ΛM = a⊤. □

II. PROBLEM DEFINITION

Consider the discrete-time LPV system with dynamics

x+ = A(p)x+B(p)u+ w, (1)

where x ∈ Rn, u ∈ Rm, w ∈ Rn, and p ∈ Rs represent the state,
input, additive disturbance, and scheduling parameter, respectively,
and x+ is the successor state. The matrices A(p) and B(p) depend
linearly on the parameter p as

A(p) :=

s∑
j=1

pjA
j , B(p) :=

s∑
j=1

pjB
j , (2)



where Aj and Bj are matrices of appropriate dimensions. The system
is subject to state constraints x ∈ X , input constraints u ∈ U , the
additive disturbance w ∈ W , and the scheduling parameter satisfies
p ∈ P . Moreover, the parameter variation is assumed to be bounded
in a given set R, thus, for any p ∈ P , the successive parameter p+

is bounded by a set P(p) as

p+ ∈ P(p) := ({p} ⊕R) ∩ P. (3)

Assumption 1: 0s ∈ R. □
This assumption guarantees that P(p) ̸= ∅ for all p ∈ P .

Definition: A set S(p) ⊆ Rn is a parameter-dependent robust
control invariant (PD-RCI) set for System (1) if and only if

S(p) ⊆ X , ∀ p ∈ P, (4)

{
∀ (p, x) ∈ P × S(p), ∀ (p+, w) ∈ P(p)×W,

∃ u = u(x, p) ∈ U : A(p)x+B(p)u+ w ∈ S(p+).
(5)

□
Note that the inclusion in (5) is equivalent to

{A(p)x+B(p)u} ⊕W ⊆
⋂

p+∈P(p)
S(p+). (6)

This definition of a PD-RCI set draws inspiration from [1]. In a
conventional setting, an RCI set characterizes a set of states in
which a system can be forced to belong independently of the current
parameter p(t). In contrast, the PD-RCI set explicitly accounts
for the current parameter value, resulting in an enlarged set of
states from which invariance can be achieved. Unlike in [1], our
definition also accounts for bounded parameter variations R, thus
reducing conservativeness further. If S(p) verifies inclusions (4)-
(5), then given any initial state-parameter pair (x(0), p(0)) with
p(0) ∈ P and x(0) ∈ S(p(0)), there exist inputs u(t) ∈ U enforcing
x(t) ∈ S(p(t)) for all future disturbances w(t) ∈ W and parameters
p(t) ∈ P satisfying (3) for all t ≥ 0.

We present an illustration of PD-RCI sets in Figure 1. The
left figure illustrates the parameter space, where p0 is the current
parameter value, gray region is the set P , and thick black line is the
set {p0}⊕R. Then, we have P(p0) = CV{p1, p2}. The right figure
illustrates the state space. As per the condition in (6), any x ∈ S(p0)
can be driven into the set ∩p∈P(p0)S(p

j). Additionally, the set

S̃ :=
⋃
p∈P
S(p) (7)

is plotted. By definition, S(p) ⊆ S̃, and S(p) represents states that
can be rendered invariant for a given parameter p.

Polytopic sets: We restrict our discussion to the polytopic setting
for brevity. We assume that System (1) is subject to the following
constraints

X := {x : Hxx ≤ hx}, U := {u : Huu ≤ hu}, (8a)

W := {w : Hww ≤ hw}, P := {p : Hpp ≤ hp}, (8b)

R := {p ∈ Rs : Hδp ≤ hδ}, (8c)

with hx ∈ Rmx , hu ∈ Rmu , hw ∈ Rmw , hp ∈ Rmp , hδ ∈ Rmδ .
We remark that the methodology in the sequel can be adapted to
more general convex representations. In the following result, we
characterize polytopic PD-RCI sets in vertex representation.

Proposition 2: For any parameter p ∈ P , suppose that there exists
a parameterized polytope S(p) = CH{xi(p), i ∈ Iv(p)1 } ⊆ X , and

Fig. 1: Illustration of PD-RCI sets. (Left: Parameter space) The gray
set is P , the current parameter is p0, and the thick black line is
{p0}⊕R, such that P(p0) = CV{p1, p2}. (Right: State space) Red,
blue and green sets are S(p0), S(p1) and S(p2) respectively. Hatched
region is ∩p∈P(p0)S(p). Inclusion (6) implies any x ∈ S(p0) can be
driven into the hatched region. The gray set with dot-dashed outline
is S̃ defined in (7). This set includes S(p) for all p ∈ P .

for each vertex xi(p), there exists an input ui(p) ∈ U such that

{A(p)xi(p) +B(p)ui(p)} ⊕W ⊆
⋂

p+∈P(p)
S(p+). (9)

Then S(p) is a PD-RCI set, i.e., it satisfies (4) and (6). □
Proof: Condition (4) holds by definition of S(p). Regarding

Condition (6), consider any x ∈ S(p) for some p ∈ P . By convexity,

there exist λ ∈ Rv(p)+ satisfying 1⊤λ = 1 such that x =
v(p)

Σ
i=1

λix
i(p).

Applying the input u =
v(p)

Σ
i=1

λiu
i(p) ∈ U yields, for any w ∈ W ,

x+ = A(p)
v(p)

Σ
i=1

λix
i(p) +B(p)

v(p)

Σ
i=1

λiu
i(p) + w

=
v(p)

Σ
i=1

λi(A(p)x
i(p) +B(p)ui(p) + w) ∈

⋂
p+∈P(p)

S(p+)

where the last inclusion follows from (9) and convexity of the set
{x ∈ S(p+) : p+ ∈ P(p)}. Since p ∈ P and x ∈ S(p) were
arbitrary, (6) is satisfied by S(p).

Problem statement: Given the LPV system (1) subject to the
constraints in (8), compute a polytopic PD-RCI S(p) with vertex
control inputs {ui(p) ∈ U , i ∈ Iv(p)1 } verifying inclusions (4)
and (9). □

Parameter-dependent control law: As described in Proposition 2,
invariance in PD-RCI sets verifying inclusion (9) is induced using a
vertex control law [15]. At time t, the control input is given by

u(t) =

v(p(t))∑
i=1

λiu
i(p(t)), (10)

where λ ∈ Rv(p(t)) solves the quadratic program

min
λ≥0

||λ||22 s.t.
v(p(t))∑
i=1

λix
i(p(t)) = x(t), 1⊤λ = 1. (11)

In (10)-(11), xi(p) and ui(p) are parameter-dependent vertices and
the corresponding control inputs respectively, the functional forms
of which we present in the sequel. By construction, Problem (11)
is feasible if x(t) ∈ S(p(t)). Moreover, if x(0) ∈ S(p(0)), then
Problem (11) is feasible for all t ≥ 0.

Remark 1: The following results can be generalized to accommo-
date constraints Z := {y : Hyy ≤ hy} on the parameter-dependent
output y = C(p)x+D(p)u via minor adaptations. □



Remark 2: If full state-parameter measurements are unavailable,
PD-RCI sets can be computed for observer dynamics derived using
a PD-observer synthesized via, e.g. [20]. Further research into a
concurrent synthesis approach is a subject of future study. □

III. COMPUTATION OF PD-RCI SETS

We now present an approach to compute PD-RCI sets. We first
introduce a parameterization of the sets in Section III-A, for which
we encode inclusions (4) and (9) in Section III-B. Then, we formulate
a convex optimization problem to compute the largest feasible PD-
RCI set in Section III-C. In Section III-D we provide a discussion of
an approach to select a set parameterization that guarantees feasibility
of the optimization problem.

A. Configuration-constrained polytopes
The main challenge in encoding the condition in (9) arises from the

fact that, in general, it is intractable to characterize the intersection
set on the right-hand-side of the inclusion since the sets S(p+) are
in their vertex representation [21]. To tackle this issue, a general
methodology can be derived by adopting results on parameterized
polytopes [22]. In this paper, we tackle this challenge by leveraging
recent results from [16] regarding constraints on facet representations.
To this end, we parameterize the set S(p) in hyperplane representa-
tion as

S(p)← S(p|y0, Y ) :=
{
x : Cx ≤ y0 + Y p

}
, (12)

where C ∈ Rms×n is a user-given matrix whose rows encode the
normal vectors to the facets of S(p|y0, Y ). The offsets of these
facets are affinely dependent on p as y0 + Y p, where y0 ∈ Rms

and Y := [y1 · · · ys] ∈ Rms×s. Over the offset vector, we enforce
configuration constraints [16]: For a given matrix E, these constraints
are represented by the cone S := {y : Ey ≤ 0}. They fix the facial
configuration of the parameteric polytope S(p|y0, Y ) such that

y0 + Y p ∈ S⇒ S(p|y0, Y ) = CH
{
V k(y0 + Y p), k ∈ IN1

}
(13)

for any parameter p, where the matrices {V k ∈ Rnx×ms , k ∈ IN1 }
capture the linear maps from the offset vector to the vertices of
S(p|y0, Y ). For details regarding the construction of matrices E and
V k, we refer the reader to Appendix VI. To exploit the result in (13)
for synthesizing PD-RCI sets, we make the following assumption.

Assumption 2: p ≥ 0s for all p ∈ P . □
Under Assumption 2, we have that if yj ∈ S for all j ∈ Is0, then
y0+Y p ∈ S for any p ∈ P because it is a conic combination. Then,
from (13), it follows that for any p ∈ P , the polytope

S(p|y0, Y ) = CH
{
xk(p) := V k(y0 + Y p), k ∈ IN1

}
, (14)

i.e., S(p|y0, Y ) is the convex hull of N vertices xk(p). For each
vertex, we assign a parameter-dependent vertex control input

uk(p) := uk,0 + Ukp, k ∈ IN1 , (15)

where Uk := [uk,1 · · ·uk,s] ∈ Rm×s. In the sequel, we derive
conditions on (y0, Y, uk,0, Uk) to enforce S(p|y0, Y ) to be a PD-
RCI set with vertex control inputs defined in (15).

Remark 3: Assumption 2 is without loss of generality. For any
bounded parameter set P̂ violating Assumption 2, there exists a vector
p̊ such that p := p̊ + p̂ ≥ 0 for all p̂ ∈ P̂ . Then, Assumption 2 is
satisfied by the parameter set P = {1} × {{p̊} ⊕ P} ⊂ Rs+1. The
method we develop can then be applied to an LPV system with

A(p) := 1

− s∑
j=1

p̊jA
j

+

s∑
j=1

pjA
j

and matrix B(p) defined similarly. □

B. Enforcing Inclusions (4) and (9)

We will now enforce that the set S(p|y0, Y ) is PD-RCI under the
control law defined in (10) with vertex control inputs parameterized as
in (15). To this end, we first ensure that the vertex representation (14)
of the set S(p|y0, Y ) holds for each p ∈ P by enforcing

yj ∈ S, ∀j ∈ Is0. (16)

Then, the PD-RCI condition (9) in Proposition 2 holds if and only if
for each k ∈ IN1 and p ∈ P , the inclusion

{A(p)xk(p) +B(p)uk(p)} ⊕W ⊆
⋂

p+∈P(p)
S(p+|y0, Y ) (17)

is verified, along with S(p|y0, Y ) ⊆ X and uk(p) ∈ U .
1) System constraints: To enforce state constraints, recall that

X = {x : Hxx ≤ hx}, and that (14) holds under (16). Then, the
inclusion S(p|y0, Y ) ⊆ X for all p ∈ P holds if and only if

HxV ky0 +HxV kY p ≤ hx, ∀ p ∈ P, ∀ k ∈ IN1 . (18)

Recalling that P = {p : Hpp ≤ hp}, Proposition 1 states that inequal-
ity (18) holds if and only if the following conditions are feasible:

∀ k ∈ IN1


HxV ky0 + Λkhp ≤ hx,
ΛkHp = HxV kY,

Λk ≥ 0mx×mp ,

(19)

where the inequalities are enforced elementwise. We now enforce
the input constraints U = {u : Huu ≤ hu}. We note from (15) that
uk(p) ∈ U for all p ∈ P if and only if

Huuk,0 +HuUkp ≤ hu, ∀ p ∈ P, ∀ k ∈ IN1 ,

that can be equivalently written by Proposition 1, as

∀ k ∈ IN1


Huuk,0 +Mkhp ≤ hu,
MkHp = HuUk,

Mk ≥ 0mu×mp .

(20)

2) PD-RCI constraints: To encode inclusion (17), we present an
approach to characterize the intersection set on the right-hand-side.
Defining the parameterized set S(p|

¯
y,
¯
Y ) = {x : Cx ≤

¯
y +

¯
Y p},

we enforce the inclusion

S(p|
¯
y,
¯
Y ) ⊆

⋂
p+∈P(p)

S(p+|y0, Y ). (21)

If for each k ∈ IN1 and p ∈ P , the inclusion

{A(p)xk(p) +B(p)uk(p)} ⊕W ⊆ S(p|
¯
y,
¯
Y ) (22)

is verified, then the desired inclusion (17) is enforced. In order to
encode inclusion (21), we use the following result.

Proposition 3: For some y0 ∈ Rms and Y ∈ Rms×s such that
S(p|y0, Y ) is nonempty for all p ∈ P , define the vector

ỹ := y0 +min
p∈P

Y p,

where min is taken row-wise. Defining Y(ỹ) := {x : Cx ≤ ỹ} and
Q̃ :=

⋂
p∈P S(p|y

0, Y ), it then holds that Y(ỹ) = Q̃. □
Proof: 1) For any x ∈ Y(ỹ), the inequality Cx ≤ ỹ holds. As

per the definition of ỹ, this implies that Cx ≤ y0 +Y p holds for all
p ∈ P , such that x ∈ Q̃. Hence, the inclusion Y(ỹ) ⊆ Q̃ follows;
2) For any x ∈ Q̃, the inequality Cx ≤ y0+Y p holds for all p ∈ P ,
or equivalently Cx ≤ ỹ as per the definition of ỹ. Hence, x ∈ Y(ỹ),
such that the inclusion Q̃ ⊆ Y(ỹ) follows.



Fik(y
0, Y, uk,0, Uk,

¯
y,
¯
Y ) :=

−2
(
M ik

[
Y

Uk

])
−
(
M ik

[
y0

uk,0

]
−

¯
Y ⊤
i

)
∗ 2(

¯
yi − di)

 , G(Γ) :=

[
Hp⊤ΓHp −Hp⊤Γhp

∗ hp
⊤
Γhp

]
(28.5)

Proposition 3 implies that for a given p ∈ P , the inclusion in (21)
holds if and only if the inequality

¯
y +

¯
Y p ≤ y0 + Y p+, ∀ p+ = p+ p̃ ∈ P(p). (23)

In order to encode (23) for all p ∈ P , we define the set

P+ :=


[
p
p̃

]
:

Hp 0

0 Hδ

Hp Hp


︸ ︷︷ ︸

Hpδ

[
p
p̃

]
≤

hphδ
hp


︸ ︷︷ ︸
hpδ


.

Then, inequality (23) holds for all p ∈ P if and only if

¯
y + [

¯
Y − Y − Y ]

[
p
p̃

]
≤ y0, ∀

[
p
p̃

]
∈ P+, (24)

From Proposition 1, inequality (24) holds if and only if the conditions

¯
y +Qhpδ ≤ y0,
QHpδ = [

¯
Y − Y − Y ],

Q ≥ 0ms×(2mp+mδ)

(25)

are verified. Finally, we encode the RCI inclusion in (22). To this
end, we tighten the set S(p|

¯
y,
¯
Y ) by the disturbance set W as

S(p|
¯
y,
¯
Y )⊖W = {x : Cx ≤

¯
y +

¯
Y p− d}, d := max

w∈W
Cw,

such that inclusion (22) holds for a given k ∈ IN1 and p ∈ P if and
only if for every row index i ∈ Ims

1 , the inequality

Ci(A(p)x
k(p) +B(p)uk(p)) ≤

¯
y
i
+

¯
Yip− di (26)

is satisfied. We recall that for a given parameter p ∈ P , each vertex
and the corresponding control input of the set S(p) are given by
xk(p) = V k(y0+Y p) and uk(p) = uk,0+Ukp, respectively. Then,
we define matrices C̄i ∈ Rs×ns, Ā ∈ Rns×n and B̄ ∈ Rns×m as

C̄i := Is ⊗ Ci, Ā := [A1⊤ · ·As
⊤
]⊤, B̄ := [B1⊤ · ·Bs

⊤
]⊤,

based on which we define M ik := C̄i[ĀV k B̄] ∈ Rs×(ms+m).
Rearranging (26), we rewrite the inequality as[

p
1

]⊤
Fik(y

0, Y, uk,0, Uk,
¯
y,
¯
Y )

[
p
1

]
≥ 0, (27)

where the function Fik is defined in (28.5). For the PD-RCI condition
in (22) to be satisfied, the parameters {y0, Y, uk,0, Uk, k ∈ IN1 ,

¯
y,
¯
Y }

should be such that the the inequality in (27) is verified by all p ∈ P
at all vertex indices k ∈ IN1 and row indices i ∈ Ims

1 . Since (27)
is a (non)convex quadratic inequality in p, we propose to use the
S-procedure [23] to derive sufficient conditions to enforce it over all
p ∈ P . To this end, we recall from [24] that the polytopic parameter
set P = {p : Hpp ≤ hp} with hp ∈ Rmp satisfies

P ⊆
⋂
Γ∈G

{
p :

[
p
1

]⊤
G(Γ)

[
p
1

]
≥ 0

}
,

where the function G is defined in (28.5), and G is the set of
symmetric matrices Γ defined as

G :=
{
Γ ∈ Rmp×mp

+ : Γ = Γ⊤, diag(Γ) = 0mp
}
.

Then, the inequality in (26) is verified by all p ∈ P if

∃ Γk,i ∈ G : Fik(y
0, Y, uk,0, Uk,

¯
y,
¯
Y )−G(Γk,i) ⪰ 0, (28)

which is a linear matrix inequality (LMI). Thus, by enforcing the
LMI in (28) for all k ∈ IN1 and i ∈ Ims

1 , we obtain a convex
characterization of the PD-RCI sets S(p).

Remark 4: The unified parameterization of hyperplane and vertex
representations via a single vector enables the synthesis of polytopic
PD-RCI sets under more complex constraints. Specifically, polyno-
mial constraints can be addressed through convex feasibility condi-
tions derived via the S-procedure or Sum-of-Squares programming
[24], [25]. Developing these methods is a future research topic. □

Remark 5: Conservativeness in our approach primarily stems from
fixing the normal vectors of the sets S(p|y0, Y ), a necessary trade-
off in fixed parameterizations [8]. Further conservativeness may result
from configuration constraints, with implications on polytope vertex
configurations meriting future research [22]. Additionally, employing
the S-procedure introduces a potential duality gap as discussed in
[26], which is a known issue in deriving conditions like (28). □

C. Maximizing the size of the PD-RCI set
We define the size of a set Z ⊆ X as

dX (Z) := min
ϵ
{∥ϵ∥1 s.t. X ⊆ Z ⊕D(ϵ)}, (29)

where D(ϵ) := {x : Dx ≤ ϵ} is a polytope with user-specified
normal vectors {D⊤

i , i ∈ Imd
1 }. This is a modification of the

Hausdorff distance between Z and X : if D(ϵ) = ϵBnl , then dX (Z)
is the standard l-norm Hausdorff distance. By allowing D to be user-
specified, we permit maximization in directions of interest. Clearly,
dX (Z) ≥ 0, and Z1 ⊆ Z2 ⊆ X implies dX (Z2) ≤ dX (Z1).
Ideally, we want to compute the PD-RCI set that minimizes∑

p∈P
dX (S(p|y0, Y ))

to maximize the invariant region for each p ∈ P . Unfortunately,
this objective is infinite dimensional. As an alternative, we sample
parameters {pj ∈ P, j ∈ Iθ1}, and minimize its lower-bound

θ∑
j=1

dX (S(pj |y0, Y )). (30)

For example, points pj could be the vertices of P . To implement (30),
we must encode the inclusions

X ⊆ S(pj |y0, Y )⊕D(ϵj), ∀j ∈ Iθ1. (31)

To this end, we assume to be given the vertices {xt, t ∈ Ivx1 } of X .
Then, the inclusions in (31) are equivalent [19] to

∀ j ∈ Iθ1, t ∈ Ivx1

{
xt = st,j + bt,j ,

st,j ∈ S(pj |y0, Y ), bt,j ∈ D(ϵj).
(32)

The inclusion can also be encoded directly with a halfspace represen-
tation of X using [27]. Thus, a large PD-RCI set S(p|y0, Y ) for LPV
system (1) with the PD-vertex control law in (15) can be computed
by solving the SDP problem

min
x

θ∑
j=1

∥∥∥ϵj∥∥∥
1

s.t. (16), (19), (20), (25), (28), (32) (33)



with the optimization variables

x :=

{
y0, Y, {uk,0, Uk, k ∈ IN1 },

¯
y,
¯
Y, {Λk,Mk, k ∈ IN1 }, Q,

{Γk,i, k ∈ IN1 , i ∈ Ims
1 }, {ϵ

j , st,j , bt,j , j ∈ Iθ1, t ∈ Ivx1 }

}
.

D. Selecting the matrix C parameterizing the PD-RCI set
We briefly discuss some methods for choosing a matrix C to

parameterize the PD-RCI set S(p|y0, Y ) that guarantee the feasibility
of Problem (33). Notably, if the set Y(yPI) = {x : Cx ≤ yPI} is
a parameter-independent (PI) RCI set for (1) for some yPI, then
Problem (33) is feasible with y0 = yPI and Y = 0.

This implies that the normal vector matrix of any polytopic RCI
set can serve as matrix C. Established techniques like [4], [28] can
compute such a matrix, but may lead to RCI sets with a large number
of hyperplanes and vertices, making Problem (33) computationally
expensive. Alternatively, methods allowing an a priori specification
of representational complexity, e.g., [8], [29], can be used to obtain
matrix C. However, such approaches can result in conservative PD-
RCI sets. In the numerical examples in Section IV, we compare these
approaches to demonstrate the importance of selecting a suitable
matrix C that balances between representational complexity and
conservativeness. We now present a method to calculate a candidate
RCI set which we have empirically observed to balance complexity
and conservativeness. This approach is a simplified variant of the one
in [30], focusing exclusively on the linear dependency of system ma-
trices on the parameter as in (2), as opposed to rational dependency.

We propose to compute a PI-RCI set parameterized as

SPI(W ) := {x : ĈW−1x ≤ 1ms}, Ĉ ∈ Rms×n, (34)

where the matrix Ĉ is selected a priori, and the set is parameterized
by the invertible matrix W ∈ Rn×n. Following the approach of [30],
we transform the state of (1) as z = W−1x, such that the dynamics
in the transformed state space are

z+ = W−1(A(p)W z+B(p)u+ w). (35)

Then, as shown in [30, Lemma 2], if the set

Z := {z : Ĉz ≤ 1} = CH{ẑj , j ∈ IN1 } (36)

is RCI for (35), then the set SPI(W ) is RCI for (1). Since the vertices
of Z are known a priori (as Ĉ is selected a priori), the RCI condition
can be enforced by associating to each vertex a feasible control input
{uj ∈ U , j ∈ IN1 }, and enforcing the inequality

ĈW−1(A(p)W ẑj +B(p)uj + w) ≤ 1 (37)

at each vertex index j ∈ IN1 for all parameters p ∈ P and
disturbances w ∈ W . Since the inequality in (37) is linear in
(A(p), B(p)) for given W , and (A(p), B(p)) depend linearly on
p as in (2), it can be enforced for all parameters p ∈ P by enforcing
it for all p = pi, where {pi, i ∈ Iq1} are the vertices of P . Similarly,
the inequality can be enforced for all w ∈ W by enforcing it for all
w = wl, where {wl, l ∈ Iqw1 } are the vertices of W . Note that if
the vertices of P and W are not available, then Proposition 1 can be
used to enforce (37) directly using their hyperplane representations.

In order to compute the RCI parameters W and {uj , j ∈ IN1 },
we introduce the matrix M in lieu of W−1 as a variable in
constraint (37), and introduce the constraint WM = In. Then, we
formulate and solve the nonlinear programming problem (NLP)

min
W ,M ,{uj ,j∈IN1 }

dX (SPI(W )) (38a)

s.t. ĈM(A(pi)W ẑj +B(pi)uj + wl) ≤ 1, (38b)

HxW ẑj ≤ hx, Huuj ≤ hu, WM = In, (38c)

∀ j ∈ IN1 , i ∈ Iq1, l ∈ Iqw1 , (38d)

Fig. 2: Results for Example IV-A. (Left: (x-ζ space) The blue set is
{(x, ζ) : ζ ∈ [−0.25, 0.25], x ∈ S([0.5+2ζ, 0.5−2ζ])}, and the red
set is X∞×{−0.25}, where X∞ is the MRCI set. We obtain larger
RCI sets by explicitly accounting for parameter variation. (Right:
x space) The gray set is X , and the blue set is S(p) with p =
[0, 1] corresponding to ζ = −0.25. The pink set is ∩p+∈P(p)S(p

+).
Initializing p(0) = [0, 1] and x(0) ∈ S(p(0)), we have x(1) ∈
∩p+∈P(p)S(p

+) with u(0) computed as (10). The black dotted line is
the simulation trajectory, obtained by randomly sampling p(t) while
enforcing satisfaction of (3), and disturbance w(t) sampled randomly
from the vertices of W .

where (38c) enforces the state constraints SPI(W ) ⊆ X , and the
objective defined in (29) minimizes the distance between SPI(W )
and X . Using the solution of (38), we parameterize the PD-RCI set
in (12) as C ← ĈW−1. Note that Problem (38) can be solved using
a standard off-the-shelf NLP solver like IPOPT [31].

The following scheme summarizes our approach to synthesize and
use PD-RCI sets and PD-vertex control laws for System (1).

1) Select matrix C parameterizing an RCI set as in (12). Alterna-
tively, compute appropriate matrix C by solving Problem (38).

2) Construct configuration constraints matrices E and V k as in
Appendix VI.

3) Select matrix D to formulate the distance function in (29).
4) Solve the SDP (33), extract PD-RCI set parameters y0, Y and

PD-vertex controls {uk,0, Uk, k ∈ IN1 }.
5) If Cx(t) ≤ y0 + Y p(t) holds, apply the input u(t) in (10).

IV. NUMERICAL EXAMPLES

In this section, we present three numerical examples to demonstrate
our PD-RCI set computation approach. In Examples IV-A and IV-
B, we compare our approach with the method proposed in [1] for
computing PD-RCI sets. We recall that in [1], the PD-RCI set is
parameterized as the 0-symmetric polytope

S(p) =

x : −1 ≤

 s∑
j=1

pjP
j

W−1x ≤ 1

 , (39)

that is rendered positive invariant with the PD-linear feedback law
u =

(∑s
j=1 pjK

j
)
x. The parameters {P j ,Kj , j ∈ Is1,W} are

computed using a sequential SDP methodology. In Example IV-C,
we employ the NLP method outlined in Section III-D to compute a
matrix C that parameterizes a PD-RCI set for a 4-dimensional system.
The SDP problems were modeled using YALMIP [32], and solved
using the MOSEK SDP solver [33] on a laptop with Intel i7-7500U
CPU and 16GB of RAM. The NLP in Example IV-C is modeled
using CasADI [34] and solved using IPOPT [31].



ζ -0.25 -0.125 0 0.125 0.25
dX (S(p)) 37.1124 41.2856 45.4587 49.6318 53.8049

TABLE I: Values of dX (S(p)) as a function of schedul-
ing parameter ζ.

κ 0.05 0.1 0.2 0.3 0.4 0.5
dtot 261.37 265.64 273.78 274.76 274.94 274.94

TABLE II: Total distance dtot for different values of
parameter rate variation bound κ.

A. Double integrator

We consider the parameter-varying double integrator

x+ =

[
1 + ζ 1 + ζ
0 1 + ζ

]
x+

[
0

1 + ζ

]
u+ w, |ζ| ≤ 0.25,

with X = 5B2∞, U = B1∞ and W = {w : |w| ≤ [0.25 0]⊤}. This
system can be brought to the form in (1) with

[
A1 A2

]
=

[
1.25 1.25
0 1.25

0.75 0.75
0 0.75

]
,
B1 =

[
0 1.25

]⊤
,

B2 =
[
0 0.75

]⊤
,

using p = [(0.5 + 2ζ), (0.5 − 2ζ)] and the simplex parameter set
P = {p : p ∈ [0,1], p1 + p2 = 1}.

In Figure 2, we plot the PD-RCI set computed for this system using
C ∈ R16×2 constructed using the normal vectors to the maximal
RCI (MRCI) set X∞, for which we compute the matrices {V k, k ∈
I161 ,E} as described in [16, Section 3.5]. For simplicity, we select
D(ϵ) = {x : Cx ≤ ϵ} in the formulation of the constraint in (32).
Finally, we use the parameter variation bound R = 0.2B2∞. We
report that dX (X∞) = 53.20 (see Equation (29) for definition),
while the size of the PD-RCI set varies with ζ, recalling that p =
[(0.5 + 2ζ), (0.5 − 2ζ)], as in Table I. Since smaller values of dX
correspond to greater coverage of X by the PD-RCI set, we observe
reduced conservativeness by explicitly accounting for the scheduling
parameter. We report that total construction and solution time is 2.5s.

Comparison with [1]: We now compare our results with those
obtained using the approach presented in [1]. To this end, we
parameterize our matrix C using the solution of the procedure in [1]
with p = [0.5, 0.5], resulting in ms = N = 8. We also selectD = C.
Since an advantage of our approach compared to [1] is the ability
to explicitly account for parameter variation bound R, we perform
the comparison utilizing R = κB2∞ for different values of κ. We
compare the result using the metric

dtot :=
∑
p∈P̃

dX (S(p)),

where P̃ ⊂ P is a discrete valued set of parameters sampled from
P . In our experiments, we build P̃ using 200 samples of ζ sampled
uniformly in [−0.25, 0.25]. The resulting value of dtot for the set
S(p) obtained in [1] is 277.01, while as we vary κ, we obtain
the values in Table II, and dtot = 274.94 for all κ ∈ [0.5, 1].
As expected, these results indicate reduced conservativeness in the
PD-RCI sets with respect to the approach of [1] when explicitly
accounting for the parameter variation bounds.

B. Quasi-LPV system

As in [1], our approach can be used to synthesize RCI sets for
nonlinear systems that can be represented as quasi-LPV systems in
which the scheduling parameter depends on the current state. Because
of this dependency, the RCI set representation must be independent
of the scheduling parameter. However, invariance in the RCI set can

be enforced using a parameter-dependent control law. As compared
to [1], we enforce invariance using a parameter-dependent vertex
control law instead of a parameter-dependent linear feedback law.
Since any linear feedback law can be interpolated by a vertex control
law [15], it follows that the set we compute is less conservative. For
illustration, we consider the Van der Pol oscillator system

ẋ1 = x2, ẋ2 = −x1 + µ(1− x21)x2 + u.

We discretize this system using the forward Euler scheme with
timestep δ, in order to obtain the discrete time dynamics

x(t+ 1) =

([
1 δ
−δ 1

]
+

[
0 0
0 q(x1(t))

])
x(t) +

[
0
δ

]
u(t),

where q(x1) = µδ(1− x21). As described in [1], we obtain an LPV
representation (1) for this system with[

A1 A2
]
=

[
1 δ
−δ 1

1 δ
−δ 2

]
, B1, B2 =

[
0
δ

]
,

by selecting p1 = 1−q(x1) and p2 = q(x1). The system constraints
are X = {x : ∥x∥∞ ≤ 1} and U = {u : |u| ≤ 1}. Then,
P = {p : p1 ∈ [1 − µδ, 1], p2 ∈ [0, 1], p1 + p2 = 1}. These
parameter bounds are obtained by maximizing and minimizing p1
and p2 over X . To ensure that Assumption 2 holds, i.e., p ≥ 0 for
all p ∈ P , we select δ such that 1 − µδ ≥ 0. Since the parameter
depends on the current state, we synthesize a parameter independent
RCI set by enforcing Y = 0,

¯
y = y0 and

¯
Y = 0. However, we

allow Uk to be freely computed, such that the invariance-inducing
vertex control law is parameter dependent. Finally, we select R = P
for simplicity. In Figure 3, we plot the sets computed by (33), and
compare the results with those presented in [1]. The set S(p|y0,0)
is parameterized with the following two choices of C: (i) The same
normal vectors found in the solution from [1]; (ii) The normal vectors
of a 30-sided uniform polytope, constructed as in [16, Remark 3]. In
both cases, we select D to be a 30-sided uniform polytope. While
the distance metric of the set computed in [1] is dX (S) = 20.95, our
first parameterization results in dX (S) = 19.97, and the second one
in dX (S) = 18.15, with smaller values indicating greater coverage
of X . These results suggest that the use of configuration-constrained
polytopes with parameter-dependent vertex control laws can result in
RCI sets with reduced conservativeness for quasi-LPV systems.

C. Vehicle lateral dynamics
We consider the problem of designing a PD-RCI set for vehicle

lateral dynamics described by the bicycle model

ẋ = (A0 + vxA
1 + (1/vx)A

2)x+Bu+Bww, (40)

with state x := [ey ẏ eψ ψ̇]⊤, where ey [rad] is the lateral error, ẏ
[m/s] the lateral velocity, eψ [rad] the orientation error and ψ̇ [rad/s]
is the yaw rate. The input u = [δs µb]

⊤, where δs [rad] is the steering
angle, and µb [Nm] is the braking yaw moment. The disturbance
w = v2w, where vw ∈ [−10, 10] [m/s] is the wind velocity, and
vx [m/s] is the current measured vehicle longitudinal velocity. The
model matrices from [12] are given as

A0︷ ︸︸ ︷
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


A1︷ ︸︸ ︷

0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0


A2︷ ︸︸ ︷

0 0 0 0
0 −171.29 0 85.25
0 0 0 0
0 42.19 0 −199.65

,
[
0 65.8919 0 43.6411

0 0 0 0.2287e−3

]
︸ ︷︷ ︸

B⊤

[
0 0.0018 0 −0.0022

]︸ ︷︷ ︸
B⊤

w

.



Fig. 3: Results for Example IV-B. The green set denotes the RCI set
we compute with rows of matrix C representing the normal vectors
of a 30-sided uniform polytope. The blue set is the RCI set obtained
using the approach of [1], and the red set in the RCI set obtained
using our approach, with matrix C chosen to be the same as the blue
set. Closed-loop trajectories obtained using the vertex feedback law
are plotted, illustrating invariance of the green set.

The states are constrained as X = {x : |x| ≤ [0.4 3 10π/180 1]⊤}
and inputs as U = {u : |u| ≤ [2.5π/180 1]⊤}. To design a PD-RCI
set for this system, we discretize the dynamics using the forward Eu-
ler scheme with timestep of 0.025s, and consider the parameter vector
p = [vx 1/vx 1]⊤. Then, we obtain the system matrices in (2) as
A1 = δA1, A2 = δA2, A3 = δA0 + I4, B1, B2 = 0, B3 = δB,
and the disturbance set asW = {δBww : w ∈ [0, 100]}. We assume
that the longitudinal velocity is bounded as vx ∈ [20, 100]/3.6 [m/s],
where division by 3.6 is performed to convert [Km/h] to [m/s]. Based
on these bounds, we define the parameter set as P = P̂ ×{1}, where

P̂ := CH

{[
5.556
0.18

]
,

[
27.777
0.036

]
,

[
19.289
0.036

]
,

[
5.556
0.125

]}
overapproximates the set {p : p1 ∈ [20, 100]/3.6, p2 = 1/p1}.
To define the increment set R, we assume |v+x − vx| ≤ 1, or
equivalently |p+1 − p1| ≤ 1. We then derive bounds on the variation
of parameter p2 = 1/p1 as follows. For any p1 ∈ [20, 100]/3.6,
p+1 ∈ [p1 − 1, p1 + 1] ∩ [20, 100]/3.6 holds. Then, the variation
p̃2 = p+2 − p2 = (p1− p+1 )/(p1p

+
1 ) is maximized if we have p+1 =

max(p1−1, 20/3.6), and minimized if p+1 = min(p1+1, 100/3.6).
Thus, the bounds on p̃2 depend nonlinearly on p1. For simplicity,
we select the largest and smallest values of these bounds over all
p1 ∈ [20, 100]/3.6 as bounds on p̃2, i.e., p1 = (20/3.6) + 1 and
p+1 = 20/3.6 result in the largest value of p̃2 = 0.02746, and
p1 = 20/3.6 and p+1 = (20/3.6) + 1 result in the smallest value of
p̃2 = −0.02746. Thus, R = {p̃ : |p̃| ≤ [1 0.02746 0]⊤} describes
the increment set.

Remark 6: While we model p1 and p2 as independent parameters
verifying (p1, p2) ∈ P̂ , they satisfy p1p2 = 1 in reality. Future work
can focus on exploiting this dependence to synthesize PD-RCI sets
with conservativeness further reduced. □

To derive the matrix C that parameterizes the PD-RCI set in (12),
we implement the procedure detailed in Section III-D. We choose Ĉ
in (34) with ms = 24 normal vectors as Ĉ = [I4 − I4 0.75C]⊤,
where C ∈ R4×16 represents the 16 vertices of the set B4∞ arranged
column-wise. This selection leads to N = 48 vertices for the set

Fig. 4: Projections of the sets S̃ in grey, and SPI(W ) in red. (Top:
Projection to ey-ẏ-eψ space, Bottom: Projection to ey-ẏ-ψ̇ space.)
Blue dots indicate x(0) for several closed-loop trajectories, shown in
black, resulting from the parameter-dependent vertex control law. The
scheduling parameter sequences satisfy (3) along with p2 = 1/p1,
and the disturbance sequences are randomly sampled from W .

SPI(W ). We select matrix D = C⊤ to formulate the objective of
Problem (38). Solving Problem (38) takes 8.6592 s, yielding

W =


0.3819 −0.0432 −0.0542 0.0438
0.0057 2.8432 −0.1253 0.4704
−0.0225 −0.0423 0.0241 −0.0451
0.0069 0.0712 0.0583 0.6544

 .
Then we select C = ĈW−1 to parameterize the PD-RCI set
S(p|y0, Y ). Using this parameterization, we formulate and solve
Problem (33). The problem building and solution time amounts to
8.4223 s. The sets obtained are plotted in Figure 4. We also plot
several simulated trajectories of the plant, with control input com-
puted as in (10). The computed PD-vertex control law successfully
regulates the system from all x(0) ∈ S(p(0)|y0, Y ). We report that
the volume of SPI(W ) is 0.0327, while the volume of the set S̃ is
0.0459. This highlights that we obtain a larger region of attraction
by considering PD-RCI sets.

V. CONCLUSIONS

We have presented a method to synthesize PD-RCI sets for LPV
systems, with invariance induced using PD-vertex control laws. These
sets and control laws are computed as the solution of a single
SDP problem, formulated by exploiting properties of configuration-
constrained polytopes. The method outperforms state-of-the-art ap-
proaches, both with respect to conservativeness and computational



burden. Owing to the fact that the set of PD-RCI sets now has a
convex characterization, future work aims at synthesizing tube-based
model predictive control schemes using these sets for LPV systems
with bounded parameter variation. Moreover, the study of data-driven
characterization of such sets, and extending the methods to rational
parameter dependence are current research directions.
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[32] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in
matlab,” in In Proceedings of the CACSD Conference, (Taipei, Taiwan),
2004.

[33] M. ApS, The MOSEK optimization toolbox for MATLAB manual. Version
9.0., 2019.

[34] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–
36, 2019.

VI. APPENDIX : CONSTRUCTION OF
CONFIGURATION-CONSTRAINTS

Given a matrix C, we recall a method from [16, Section 3.5] to
construct matrix E that characterizes a vertex configuration domain
of the polytope Y(y) := {x : Cx ≤ y}, such that Ey ≤ 0
implies Y(y) = CH{V ky, k ∈ IN1 }. Observe that this implication
is equivalent to (13). Here, we focus on a particular methodology
for completeness. For further technical results, the reader is referred
to [16, Theorem 2].

Suppose that for some σ ∈ Rm, the polytope Y(σ) has N unique
vertices, and each vertex results from the intersection of exactly
n hyperplanes (minimal representation). Denote the indices of the
hyperplanes intersection at vertex k as Jk, with |Jk| = n and
max{Jk} ≤ ms for each k ∈ IN1 . Let CJk ∈ Rn×n (corres. σJk )
be a matrix constructed using rows Jk of C (corres. σ), such that
vertex k of Y(σ) is given by C−1

Jk
σJk . Then, construct the matrices

V k ∈ Rn×ms with zeros everywhere except in columns Jk, with
these columns populated by the columns of C−1

Jk
. It then follows

that vertex k of Y(σ) is V kσ. Using these matrices V k, the vertex
configuration domain matrix E can be constructed as

E =

CV
1 − Ims

...
CV N − Ims

 .
This matrix, along with V k as guaranteed to satisfy (13) as per [16,
Theorem 2]. The selection of (C, σ) that is optimal for our application
is a topic for future research.


