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A Quadratic Programming Algorithm Based on
Nonnegative Least Squares With Applications

to Embedded Model Predictive Control
Alberto Bemporad, Fellow, IEEE

Abstract—This technical note proposes an active set method
based on nonnegative least squares (NNLS) to solve strictly convex
quadratic programming (QP) problems, such as those that arise in
Model Predictive Control (MPC). The main idea is to rephrase the
QP problem as a Least Distance Problem (LDP) that is solved via a
NNLS reformulation. While the method is rather general for solv-
ing strictly convex QP’s subject to linear inequality constraints, it
is particularly useful for embedded MPC because (i) is very fast,
compared to other existing state-of-the-art QP algorithms, (ii) is
very simple to code, requiring only basic arithmetic operations
for computing LDLT decompositions recursively to solve linear
systems of equations, (iii) contrary to iterative methods, provides
the solution or recognizes infeasibility in a finite number of steps.

Index Terms—Active set methods, model predictive control,
nonnegative least squares, quadratic programming.

I. INTRODUCTION

Model Predictive Control (MPC) is widely spread in industry to op-
timize closed-loop response of multivariable systems under constraints
on system variables [1]. Except for simple problems in which the MPC
control law can be computed in explicit form [2] and even hard-coded
on chip [3], embedding an MPC controller in an ECU requires coding
and deploying a Quadratic Programming (QP) solver for computing
the control signals.

Embedded QP for MPC has stimulated extensive research in the
MPC community during the last decade, and to date many good
algorithms and packages for QP are available that are able to solve
linear MPC problems, such as active-set methods [4, Sec. 24-4], [5]
interior-point methods [6], gradient projection methods [1], [7], and
the alternating directions method of multipliers (ADMM) [8].

This technical note introduces a new active-set algorithm for strictly
convex quadratic programs subject to general linear inequality con-
straints. The main idea is to recast the QP as a Least Distance
Problem (LDP) and to transform this into a Nonnegative Least Squares
(NNLS) problem. If the latter has a zero residual, the QP is proved
infeasible, otherwise the algorithm provides the primal solution to
the original QP problem (and, if needed, its dual solution). To solve
the NNLS problem, we extend the well-established algorithm of
[9, p. 161], introducing recursive LDLT decompositions to speed up
the solution of the unconstrained least squares problems required at
each step of the algorithm. As a result, the proposed QP algorithm is
very simple to code, very fast to execute, and provides the solution
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in a finite number of steps, all very attractive features for embedded
MPC applications. The method is compared to several state-of-the-art
solvers, including commercial ones, on both random QP tests and on a
typical multivariable MPC application example.

This technical note complements the recent paper [2], where an al-
gorithm was proposed to compute offline multiparametric QP (mpQP)
solutions for getting MPC control laws in explicit form. The paper [2]
showed that all polyhedral computations (such as removal of redundant
inequalities) can be performed by NNLS; this technical note completes
the approach by showing that also the QP’s required by the mpQP
solver can be solved by NNLS. The QP solution algorithm presented
in this technical note has been extended in [10] to handle equality
constraints, bilateral inequality constraints, and warm starts for solving
mixed-integer quadratic programs.

Notation: Let Rn denote the set of real vectors of dimension n
and N the set of natural integers, respectively. Let I ⊂ N be a finite
set of integers and denote by #I its cardinality. For a vector a ∈
Rn, ai denotes the i-th entry of a, aI the subvector obtained by
collecting the entries ai for all i ∈ I, ∥a∥2 the Euclidean norm of a,
∥a∥1 =

∑n

i=1
|ai| the 1-norm of a, the condition a > 0 is equivalent

to ai > 0, ∀i = 1, . . . , n (and similarly for ≥, ≤, <), and diag(a)
is the diagonal matrix whose (i, i)-th element is ai. For a matrix
A ∈ Rn×m, A′ denotes its transpose, Ai denotes the i-th row of A,
AI the submatrix of A obtained by collecting the rows Ai for all
i ∈ I, and AIJ the submatrix of A obtained by collecting the rows
and columns of A indexed by i ∈ I and j ∈ J , respectively. For a
square matrix A ∈ Rn×n, A−1 denotes the inverse of A (if it exists)
and A−T its transpose, A ≻ 0 (A ≽ 0) denotes positive definiteness
(semidefiniteness) of A. Matrix In denotes the identity matrix of order
n, where sometimes the subscript n is dropped if the dimension is clear
from the context.

II. PROBLEM FORMULATION AND MAIN RESULTS

We want to solve strictly convex QPs of the form

min
z

V (z)
∆
=

1

2
z′Qz + c′z (1a)

s.t. Gz ≤ g (1b)

where Q ≻ 0 is the Hessian matrix, c ∈ Rn, G ∈ Rq×n, and g ∈ Rq .
Problem (1) arises when considering linear MPC formulations, see,
e.g., [1].

Theorem 1: Consider the QP (1) and let Q ≻ 0. Let L′L be a
Cholesky factorization of Q and define

M
∆
= GL−1, d

∆
= g + GQ−1c. (2)

Consider the NNLS problem

min
y

1

2

∥∥∥∥

[
−M ′

−d′

]
y −

[
0
γ

]∥∥∥∥
2

2

(3a)

s.t. y ≥ 0 (3b)
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where γ is any positive scalar, and let

r∗
∆
= −

[
M ′

d′

]
y∗ −

[
0
γ

]
(4)

be the residual obtained at the optimal solution y∗ of (3), where y∗ ∈
Rq and r∗ ∈ Rn+1. The following statements hold:

i) If r∗ = 0 then QP (1) is infeasible;
ii) If r∗ ̸= 0 then

z∗ ∆
= −Q−1

(
c +

1

γ + d′y∗ G′y∗
)

(5)

solves QP (1).

Proof: First, by defining u
∆
= Lz + L−T c, we complete the

squares in (1a) by substituting z = L−1u − Q−1c and recasting (1)
into the equivalent constrained LDP

min
u

1

2
∥u∥2

2 (6a)

s.t. Mu ≤ d. (6b)

i) If the optimal residual r∗ = 0 in (4), then y∗ satisfies the follow-
ing conditions:

M ′y∗ =0

d′y∗ = −γ

y∗ ≥ 0. (7)

By Farkas’s Lemma [11, p. 201], (7) is equivalent to infeasibility
of (6b), and therefore the LDP problem (6) does not admit a
solution, and consequently (1).

ii) To prove the second statement, we follow the reasoning in
[9, pp. 165–167]. Consider the KKT conditions for problem (3)

− [M d ]

[
−M ′y∗

−d′y∗ − γ

]
− w∗ =0 (8a)

(y∗)′w∗ =0 (8b)

w∗, y∗ ≥ 0 (8c)

where w∗ is the optimal dual variable for problem (3). From (8a)
we get

− [M d ] r∗ − w∗ = 0 (9)

and hence the condition r∗ ̸= 0, together with (8b) and (9), imply
that

0 < (r∗)′r∗ = (r∗)′
[
−M ′

−d′

]
y∗ − (r∗)′

[
0
γ

]

=(w∗)′y∗ − γr∗n+1 = −γr∗n+1

i.e., r∗n+1 = −d′y∗ − γ < 0. By letting

u∗ ∆
= − 1

r∗n+1

r∗{1,...,n} = − M ′y∗

γ + d′y∗ (10)

from (8c) and (9), we obtain

0 ≤ w∗ = −[M d ] r∗ = −r∗n+1 [M d ]

[ r∗
{1,...,n}
r∗

n+1

1

]

and hence −Mu∗ + d ≥ 0, or equivalently u∗ is feasible for the
LDP problem (6). It remains to prove that u∗ is also optimal

for (6). To this end, consider the remaining KKT conditions of
optimality for problem (6)

u∗ + M ′λ∗ =0 (11a)

(λ∗)′(Mu∗ − d) =0 (11b)

λ∗ ≥ 0. (11c)

Let

λ∗ ∆
= − 1

r∗n+1

y∗. (12)

By negativity of r∗n+1 and nonnegativity of y∗ we get (11c).
Moreover, by recalling (10) and (4), we get

u∗ =
1

r∗n+1

M ′y∗ = −M ′λ∗

so that also (11a) is satisfied. To prove (11b), we observe that
(λ∗)′(Mu∗ − d) = −(1/r∗n+1)(λ

∗)′(Mr∗{1,...,n} + dr∗n+1)=

(1/(r∗n+1)
2)(y∗)′[M d]∗ = −(1/(r∗n+1)

2)(y∗)′w∗ = 0 be-
cause of (8b) and (9). In conclusion, u∗ is the optimal solution
of problem (6), and hence the vector z∗ defined in (5) solves (1).

!
The following lemma characterizes the relation between the dual

variable w of problem (3) and feasibility/optimality of z in (1b).
Lemma 1: Let y ∈ Rq such that d′y ̸= −γ, and define z ∈ Rn and

w ∈ Rq as

z = − 1

γ + d′y
L−1M ′y − Q−1c (13a)

w =MM ′y + (γ + d′y)d (13b)

similarly to (5) and (8a), respectively. Then, for all i ∈ {1, . . . , q} and
ϵ ≥ 0, the condition

wi ≥ −(γ + d′y)ϵ (14a)

implies that

Giz − gi ≤ ϵ. (14b)

Moreover, given the dual problem

max
λ≥0

Ψ(λ), Ψ(λ)
∆
= −1

2
λ′GQ−1G′λ− d′λ− 1

2
c′Q−1c (15)

of QP (1) it holds that

V (z) = Ψ(λ) +
1

(γ + d′y)2
w′y (16)

and hence, if

w′y =0 (17)

λ =
1

γ + d′y
y (18)

is such that λ ≥ 0, then z is (super-)optimal, in that

V (z) ≤ V (z∗). (19)

Proof: The fact that condition (14a) implies (14b) simply fol-
lows by left-multiplying z as defined in (13a) by G, subtracting g,
and recalling (2). To prove (19), consider that by (13a) the primal
cost V (z) = (1/2)λ′MM ′λ− (1/2)c′Q−1c = Ψ(λ) + λ′MM ′λ +
d′λ = Ψ(λ) + (1/(γ + d′y)2)w′y, which proves (16). For all dual
feasible λ ≥ 0, Ψ(λ) is a lower bound on the optimal primal cost
V (z∗). Together with condition (17), this implies (19). !
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Remark 1: In case r∗n+1 = −(γ + d′y∗) ̸= 0, the solution λ∗ of the
dual QP problem (15) is given by (12). In case γ = 1, Problem (3) can
be rewritten as the following QP

min
y

1

2
y′ (

GQ−1G' + dd′) y + d′y (20a)

s.t. y ≥ 0. (20b)

Note that, although closely related, Problems (15) and (20) are differ-
ent because of the extra term (1/2)y′dd′y.

The alternative QP formulation (20) suggests the following corol-
lary of Theorem 1.

Corollary 1: Given the QP (1) with Q = Q′ ≻ 0, the convex QP
problem (20) always admits an optimal solution y∗. If the optimal cost
of (20) is −(1/2) then (1) is infeasible, otherwise z∗ defined in (5) is
the optimal solution of (1).

Proof: The cost function (20a) is equal to (1/2)y′(G′Q−1G +

dd′)y +d′y + (1/2) − (1/2) = (1/2)∥
[−M′

−d′

]
]y −

[
0
1

]
]∥2

2 − (1/2)≥
−(1/2), so (20) always admits a solution y∗. If the optimal cost is
−(1/2) then the residual defined in (4) is zero and by Theorem 1 the
QP problem (1) is infeasible. Otherwise, y∗ solves (3) and therefore,
by Theorem 1, z∗ in (5) solves (1). !

The following Corollary 2 of Theorem 1 provides a further criterion
to detect infeasibility of the QP problem (1).

Corollary 2: For any subset of constraint indices P ⊆ {1, . . . , q}
and γ > 0, if the solution sP of the least-squares problem

sP = arg min
zP

∥∥∥∥

[
M ′

P
d′

P

]
zP +

[
0
γ

]∥∥∥∥
2

2

(21)

is such that the squared residual ∥M ′
PsP∥2 + (γ + d′

PsP)2 = 0, then
the QP problem (1) is infeasible.

Proof: As proved in part i) of Theorem 1, if such a residual

is zero then the polyhedron C ∆
= {u ∈ Rn : MPu ≤ dP} is empty.

Hence, also the polyhedron {u ∈ Rn : Mu ≤ d}= C ∩ {u ∈ Rn :
M{1,...,q}\Pu ≤ d{1,...,q}\P} is empty, and therefore problem (1) is
infeasible. !

We now exploit Theorem 1, Corollary 2, and Lemma 1 to derive an
active-set method to solve the QP problem (1) and its dual (15) within
a feasibility tolerance ϵ. The method is described in Algorithm 1 and
extends the well-known and simple, yet very effective, NNLS solution
algorithm described in [9, p. 161].

Regarding the choice of the parameter γ > 0, one can use γ = 1 as
in [9]. Although the particular choice of γ is not critical, we observed
better numerical conditioning by adapting γ during the iterations to the
value

γ = 1 + ∥dP∥1. (22)

Algorithm 1 QP solver based on NNLS

Input: Inverse Cholesky factor L−1 of Q, M = GL−1, vectors c
and g, feasibility tolerance ϵ ≥ 0.

1. v ← L−T c;
2. d ← g + Mv;
3. P ← ∅; y ← 0; γ ← 1;
4. w ← M(M ′

PyP) + (γ + d′
PyP)d;

5. if wi ≥ −(γ + d′
PyP)ϵ, ∀i ∈ {1, . . . , q}, or P = {1, . . . , q} or

∥M ′
PyP∥2

2 + (γ + d′
PyP)2 = 0 then go to Step 13;

6. i ← arg mini∈{1,...,m}\P wi, P ← P ∪ {i}; γ ← γ + |di|;
7. sP ← solution of LS problem (21), s{1,...,q}\P ← 0;
8. if sP ≥ 0 then y ← s and go to Step 4;

9. j ← arg minh∈P: sh≤0{yh/(yh − sh)};
10. y ← y + (yj/(yj − sj))(s − y);
11. I ← {h ∈ P : yh = 0}, P ← P \ I; γ ← γ − ∥dI∥1;
12. go to Step 7;
13. if the residual in Step 7 is nonzero then λ∗ ← −1/(γ +

d′
PyP)y; u∗ ← M ′

Pλ∗
P ; z∗ ← L−1(u∗ − v); otherwise QP

problem (1) is infeasible;
14. end.

Output: Primal solution z∗ solving (1) and dual solution λ∗ solving
(15), or infeasibility status.

As proved in [9], for ϵ = 0 Algorithm 1 convergences after a finite
number of steps, providing the optimal solution vector z∗. The same
holds for ϵ > 0 sufficiently small. In general, for ϵ > 0, Algorithm 1
may stop even earlier, providing a vector z∗ that, by virtue of Lemma 1,
satisfies Giz∗ − gi ≤ ϵ, ∀i ∈ {1, . . . , q}. Note that in case Step 13 is
executed with P = ∅ then λ∗ = 0, u∗ = 0, and z∗ = −Q−1c.

The LS problem (21) solved at Step 7 corresponds to the uncon-
strained quadratic optimization problem

sP = arg min
1

2
z′

P [MP dP ]

[
M ′

P
d′

P

]
zP + [MP dP ]

[
0
γ

]
(23)

or, equivalently, to solving the symmetric linear system

(MPM ′
P + dPd′

P)sP = −γdP . (24)

Hence, each time Step 4 is executed, we have that yP = sP ≥ 0,
yi = 0, ∀i ∈ {1, . . . , q} \ P , and hence

w′y = y′
PwP = s′P [(MPM ′

P + dPd′
P)sP + γdP ] = 0.

If in addition d′
PyP > −γ, then λ defined as in (18) is nonnegative,

so that by Lemma 1 (super-)optimality of z as in (13a) follows after
each execution of Step 4, and in particular of z∗ when Algorithm 1
terminates with a nonzero residual.

Remark 2: Regarding computation and memory requirements of
Algorithm 1, the largest number of operations is spent at Steps 4 and 7,
where the latter involves solving an unconstrained least-squares prob-
lem with #P variables and n + 1 inequalities. When used in the
context of MPC of linear time-invariant systems, only c, g in (1)
may change on-line, while matrices L−1 and M = GL−1 can be
precomputed offline.

Remark 3: Algorithm 1 is cold-started at Step 3 from the null
combination P of active constraints. Conditions for warm-starting the
algorithm with P ̸= ∅ and a corresponding suitable value of y have
been proposed in [10]. Alternatively, as suggested in [12], one can very
effectively warm start a NNLS algorithm like Algorithm 1 by running
first a finite number of iterations of an accelerated gradient-projection
algorithm, like the one proposed in [7].

III. RECURSIVE LDLT DECOMPOSITION

Solving the LS problem (21) at Step 7 is the most time-consuming
operation of Algorithm 1. The symmetric linear system (24) can be
solved by a variety of techniques, such as QR factorization, Conjugate
Gradient (CG) or Cholesky factorization. Here, to solve (21), we adopt
instead the LDLT factorization of the left-hand side matrix of (24)

LDL′ = [MP dP ]

[
M ′

P
d′

P

]
(25)

where L is a lower-triangular matrix of dimension #P with all ones
on its diagonal and D is a diagonal matrix. The factorization (25) can

zṔ
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be computed for example using [13, Algorithm 4.1.1]. The drawback
in using such a classical LDLT decomposition procedure is that it
assumes that all diagonal elements in D are nonzero, i.e., that the
matrix to be factorized in (25) is full rank. Moreover, since the set P
changes incrementally by adding one component (Step 6) or removing
one or more components (Step 11), one should take advantage of the
way P is modified incrementally to compute the LDLT factorization
in (25) more efficiently in a recursive way.

Iterative QR factorization methods to solve (21) have been proposed
in [9, Ch. 24]. The following lemma provides a way of computing
instead the LDLT transformation recursively of a generic matrix
AA′, A ∈ Rp×m, with L lower triangular with unit diagonal and D
diagonal, with Dii ≥ 0, which also covers the case in which AA′ is
rank-deficient.

Theorem 2: Let A ∈ Rp×n. Then there exists a lower triangular
matrix Lp ∈ Rp×p with unit diagonal and a diagonal matrix Dp ∈
Rp×p with Dii ≥ 0, satisfying the following recursions:

L1 = 1, D1 = ∥A1∥2
2 (26a)

Lk+1 =

[
Lk 0

(ℓk+1)′ 1

]
(26b)

Dk+1 =

[
Dk 0
0 dk+1

]
(26c)

(LkDk)ℓk+1 = A1:kA′
k+1 (26d)

dk+1 = ∥Ak+1∥2
2 − (ℓk+1)

′
Dkℓk+1 (26e)

for k = 1, . . . , p − 1, and such that

A1:kA′
1:k = LkDk(Lk)′, ∀k = 1, . . . , p. (27)

Proof: We prove the theorem by induction on k. For k = 1, (27)
trivially follows from (26a). Assume that (26)–(27) are satisfied for a
given k and consider matrix A1:k+1. Consider the linear system

A1:kA′
1:kxk+1 = A1:kA′

k+1 (28)

which is the condition for vector xk+1 ∈ Rk to be an optimal solution
of the LS problem

min
x∈Rk

∥∥A′
1:kx − A′

k+1

∥∥2

2
. (29)

Since (29) is always solvable, a vector xk+1 satisfying (28) exists,
and hence a vector ℓk+1 = (Lk)

′
xk+1 exists that solves (26d). For all

components Dii = 0 of Dk, the product Diiℓ
k+1
i = 0 for any value of

ℓk+1
i , in particular we can set ℓk+1

i = 0, i = 1, . . . , k. System (26d),
by left-multiplying by (Lk)

−1, can be rewritten also as

Dkℓk+1 = ck+1 (30)

where ck+1 ∈ Rk is the unique solution of Lkck+1 = A1:kA′
k+1.

Since (26d) is solvable, (30) is also solvable, and hence necessarily
ck+1

i = 0 for all i such that Dii = 0. In conclusion, the following
vector ℓk+1 defined as

ℓk+1
i =

{
ck+1

i
Dii

, if Dii ̸= 0
0, if Dii = 0

(31)

is a solution of (26d). By defining dk+1 as in (26e), we get

Lk+1Dk+1(Lk+1)′

=

[
LkDk(Lk)′ LkDkℓk+1

(ℓk+1)′Dk(Lk)′ ℓk+1)′Dk(Lk)ℓk+1 + dk+1

]

=

[
A1:kA′

1:k A1:kA′
k+1

Ak+1A′
1:k Ak+1A′

k+1

]
= A1:k+1A

′
1:k+1

which proves that (27) is satisfied also for k + 1. !

Corollary 3: Let A ∈ Rp×n and let LDL′ = AA′ be a decompo-
sition of AA′, with L ∈ Rp×p lower triangular with unit diagonal and
D ∈ Rp×p diagonal, Dii ≥ 0, ∀i = 1, . . . , p. Then, for any b ∈ Rn, a
solution x ∈ Rp of the least-squares problem

min
x

∥A′x − b∥2
2 (32)

is given by solving

Lc =Ab (33a)

ℓi =
{ ci

Dii
if Dii ̸= 0

0 if Dii = 0
, i = 1, . . . , p (33b)

L′x = ℓ. (33c)

Proof: The proof immediately follows by substituting A1:k with
A, A′

k+1 with b, ck+1 with c, and ℓk+1 with ℓ in the proof of Theorem 2.
!

Theorem 2, through (26b)–(26e), provides a way of updating the
LDLT decomposition when a row Ak+1 is added. The following
Lemma 2 tackles the case in which a row is deleted from A.

Lemma 2: Given the LDLT decomposition
[

A1

a′

A2

]
[A′

1 a A′
2 ] = LDL′ (34)

where

L =

[
L1 0 0
ℓ 1 0

L3 L4 L2

]
, D =

[
D1 0 0
0 δ 0
0 0 D2

]
(35)

L ∈ Rp×p lower triangular with unit diagonal, D ∈ Rp×p diagonal,
Dii ≥ 0, ∀i = 1, . . . , p, an LDLT decomposition

L−D−L′
− =

[
A1

A2

]
[A′

1 A′
2 ] (36)

with L− ∈ R(p−1)×(p−1) lower triangular with unit diagonal and
D−∈R(p−1)×(p−1) diagonal, D−ii≥0, ∀i=1, . . . , p − 1, is given by

L− =

[
L1 0
L3 L̄2

]
, D− =

[
D1 0
0 D̄2

]
(37)

where L̄2, D̄2 provide the LDLT decomposition L̄2D̄2L̄′
2 =

δL4L′
4 + L2D2L′

2, with L̄2 lower triangular with unit diagonal and
D̄2 diagonal.

Proof: Since δL4L′
4+L2D2L′

2 =
[
L2D

1/2
2 δ1/2L4

]
·
[
D1/2

2 L′
2

δ1/2L′
4

]
,

by Theorem 2 an LDLT decomposition L̄2D̄2L̄′
2 of δL4L′

4 +
L2D2L′

2 exists such that L̄2 is lower triangular with unit diagonal

and D̄2 is diagonal. Since LDL′ =

[
L1D1 0 0
⋆ ⋆ ⋆

L3D1 δL4 L2D2

]
·

[
L′

1 ⋆ L′
3

0 ⋆ L′
4

0 ⋆ L′
2

]
=

[
L1D1L′

1 ⋆ L1D1L′
3

⋆ ⋆ ⋆
L3D1L′

1 ⋆ L3D1L′
3 + δL4L′

4 + L2D2L′
2

]
=

[
A1A′

1 ⋆ A1A′
2

⋆ ⋆ ⋆
A2A′

1 ⋆ A2A′
2

]
and L−D−L′

− =

[
L1D1 0
L3D1 L̄2D̄2

]
·

[
L′

1 L′
3

0 L̄′
2

]
=

[
L1D1L′

1 L1D1L′
3

L3D1L′
1 L3D1L′

3 + L̄2D̄2L̄′
2

]
, Eq. (36) is

satisfied by inspection. !
Note that one does not need to take square roots of D2 and δ as

L̄2, D̄2 can be determined as in Theorem 2 by replacing A1:kA′
k+1 in

(26d) with (δ(L4)1:k(L′
4)k+1 + (L2)1:kD2(L′

2)k+1) and ∥Ak+1∥2
2 in

(26e) with (δ(L4)k+1(L′
4)k+1 + (L2)k+1D2(L′

2)k+1).
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Fig. 1. Results of numerical tests. (a) Comparison of different QP solvers on random QP problems with n variables, q = 5n constraints, condition number
κ = 104 of Q: worst-case measured CPU time on 100 instances for each n. (b) Comparison of different methods to solve the LS problem (21) at Step 7 of
Algorithm 1 on random QP problems with n variables, q = 5n constraints, condition number κ = 104 of Q. For each n the time reported is the worst-case of
100 instances. (c) Worst-case CPU time (ms) during the simulation for the AFTI-F16 aircraft problem as a function of the prediction horizon. (d) Worst-case
difference ∥z − z∗∥2 over 100 random QP problems (n = 10, q = 50) as a function of κ.

IV. NUMERICAL EXPERIMENTS

A. Quadratic Programs

We compare the performance of the QP solver developed in the
previous section (labeled as QPNNLS) against different state-of-the-
art solvers.1

1We compared against: 1) Dantzig’s active set algorithm [4, Sect. 24–4]
applied to solve the dual problem (15) (Dantzig), 2) the accelerated gradient
projection method of [7] (GPAD) applied to the dual QP (15) with diagonal
preconditioning [14, Section 2.3.1], 3) the alternative direction method of mul-
tipliers [8] (ADMM), run with ρ = 0.2 for a fixed number K = 300 iterations
in all instances (with checking of feasibility and optimality criteria disabled for
speedup), 4) QUADPROG’s interior point method, 5) QUADPROG’s active
set method of the Optimization Toolbox for MATLAB V7.1, 6) GUROBI’s
v6.0 [15] interior-point method, 7) GUROBI’s dual simplex method, and
8) QPOASES [5]. Algorithm 1 and methods 1, 2, 3 have been implemented
in Embedded MATLAB code and compiled. The numerical experiments were
obtained on a Macbook Pro 3 GHz Intel Core i7 with 16GB RAM running
MATLAB R2014b.

Fig. 1(a) shows the worst-case CPU time obtained on random fea-
sible QP problems with n variables q = 5n constraints, and condition
number κ = 104 of the primal Hessian Q. For each n, the reported
CPU time is the worst-case over 100 QP instances. The QPNNLS
Algorithm 1 is executed by updating the LDLT decomposition recur-
sively in accordance with Theorem 2 and Lemma 2. In all instances,
Algorithm 1 and Dantzig’s dual QP method execute the same number
of iterations.

Fig. 1(b) compares different methods to solve the LS problem (21)
at Step 7 of Algorithm 1, namely: 1) incremental LDLT updates
based on Theorem 2 and Lemma 2; 2) computation of the LDLT

decomposition from the original data M , d from scratch at every
iteration; 3) MATLAB’s backslash built-in function to solve linear
systems in a least-square sense; 4) MATLAB’s “economy-size” QR
decomposition of matrix

[M′
P

d′
P

]
, (5) the basic CG method without

preconditioning of [16, Algorithm 5.2], with stopping tolerance equal
to 10−8, (6) the incremental QR factorization Method 1 described in
[9, Ch. 24].
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B. MPC Problems

In order to test the QP solver of Algorithm 1 in an MPC problem,
we consider the AFTI-F16 aircraft control example described in [17],
under the settings of the demo aft16.m in the Hybrid Toolbox for
MATLAB [18]. We consider a prediction and control horizon of N
steps, with hard input and soft constraints enforced over the prediction
horizon, leading to a QP problem (1) with n = 2N + 1 optimization
variables (the extra variable is needed to soften output constraints,
that is weighted with a penalty of 104) and q = 4N + 2(N − 1)
constraints. The reference trajectory is 0 for the constrained output,
and switches between ±10 deg for the second output, over a 12 s
simulation interval.

We compare Algorithm 1 with incremental LDLT updates against
Dantzig’s active set algorithm [4, Sect. 24-4] applied to solve the
dual problem (15), GUROBI’s dual simplex method, and QPOASES
[5] with warm starting from the active set of the previous optimal
solution.2 The worst-case CPU time encountered during the simulation
for different prediction horizons N is plotted in Fig. 1(c).3

C. Numerical Robustness

We test the robustness of Algorithm 1 by comparing results obtained
in single and double precision as a function of the condition number
κ of matrix Q. Fig. 1(d) shows the worst-case norm of the difference
obtained over 100 random tests of the obtained solution with respect
to QUADPROG’s double-precision solution.

Numerical experiments (not reported here) have shown that robust-
ness can be improved by changing the way the solution is reconstructed
in Step 13 of Algorithm 1. For example, one can calculate the solution
λ∗

P of (15) by solving the symmetric linear system MPM ′
Pλ∗

I = −dP
via QR factorization of M ′

P .

V. CONCLUSION

This technical note has introduced a new active set method for
solving QP problems. The method is attractive in several application

2For QPOASES we do not consider the CPU time spent at time t = 0, which
is the largest one of the entire simulation, in order not to penalize the benefits
of warm starting provided by the method.

3The QP solvers of QUADPROG (both the interior-point and the dual
simplex methods) failed in solving many of the QP problems generated
during the simulations, and ADMM could not provide feasible solutions z
with max(Gz − g) ≤ 10−2 even with K = 3000 iterations, so they are not
considered in the comparison.

domains where fast and simple to code QP solvers are required, such
as in embedded MPC applications.
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