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Let (formulation (II.2))

we solve

We then normalize to and obtain

So the output feedback assigns the closed loop characteristic
polynomial to .
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Stability and Invariance Analysis of Uncertain
Discrete-Time Piecewise Affine Systems

Matteo Rubagotti, Sergio Trimboli, and Alberto Bemporad

Abstract—This note proposes a method to analyze uniform asymptotic
stability and uniform ultimate boundedness of uncertain piecewise affine
systems whose dynamics are only defined in a bounded and possibly
non-invariant set of states. The approach relies on introducing fake
dynamics outside and on synthesizing a piecewise affine and possibly
discontinuous Lyapunov function via linear programming. The existence
of such a function proves stability properties of the original system and
allows the determination of a region of attraction contained in . The
procedure is particularly useful in practical applications for analyzing
the stability of piecewise affine control systems that are only defined
over a bounded subset of the state space, and to determine whether
for a given set of initial conditions the trajectories of the state vector
remain within the domain .

Index Terms—Model predictive control (MPC), piecewise affine (PWA),
piecewise quadratic (PWQ).

I. INTRODUCTION

In the last decade the interest in studying the dynamical properties
of piecewise affine (PWA) systems has increased considerably, due to
their powerful modeling capabilities. Discrete-time PWA models are a
special class of hybrid systems that can represent combinations of finite
automata and linear dynamics, are a good approximation of nonlinear
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systems [1], and are equivalent to hybrid systems in mixed logical dy-
namical form [2], [3].
Stability analysis tools for PWA systems are useful to describe the

properties of autonomous hybrid systems, or to check a posteriori the
stability of a given closed-loop system [4], [5]. In particular, stability
analysis becomes fundamental when a PWA control law is synthesized
without a-priori guarantees of closed-loop stability; an example are ex-
plicit model predictive control (MPC) laws designed in applications
with short prediction horizons and without terminal constraints to limit
the number of partitions [6]–[8], or approximated in order to reduce
their complexity [9], [10].
The most widely used methods for stability analysis of discrete-time

PWA systems are based on piecewise quadratic (PWQ) Lyapunov func-
tions [11] and require the solution of semi-definite programming prob-
lems. As highlighted in [12], the search for a PWQ Lyapunov function
can be overly conservative, even with the use of the so-called S-proce-
dure (see, e.g., [13]). A valid alternative are PWA Lyapunov functions,
computed by linear programming (LP) [12], [14]. Other types of Lya-
punov functions can be used for the same purpose, such as piecewise
polynomial Lyapunov functions [15].
The approaches for PWA stability analysis recalled above deal with

deterministic systems. However, in applications it is often important
to determine if the state converges to the origin (or to a terminal set)
despite parametric uncertainties and/or external disturbances. Some
classical results on stability analysis and control of uncertain linear pa-
rameter varying and switched linear systems appeared in [16]–[19] and
[20, Chap. 7].
In analyzing the stability of PWA systems, it is always assumed that

the set of states in which the PWA dynamics are defined is posi-
tively invariant, as the notion of stability has no practical relevance if
the state trajectory exits the domain of definition of the dynamics [21].
However, often the PWA system to be analyzed is defined in a set
that may not be invariant, meaning that, for certain initial conditions,
the corresponding state trajectories are not defined for all time steps. A
possible approach to tackle the possible non-invariance of is to per-
form a reachability analysis to find the maximum positively invariant
subset of , using a recursive procedure (see [20, Ch. 4–5], [22], [23],
and the references therein). Unfortunately this can lead to very involved
solutions, due to the exponential complexity of reachability analysis of
PWA systems, and in some cases searching the maximum invariant set
is even an undecidable problem.
This technical note proposes a stability analysis framework for

(possibly discontinuous) discrete-time PWA systems that are affected
by additive disturbances bounded within a polytopic set (a similar
framework was proposed in [24] to handle the case of parametric un-
certainties). A discontinuous PWA Lyapunov function is synthesized
via linear programming (LP) either to determine if the state converges
to the origin or to find a terminal set where the state is ultimately
bounded. As we assume that the PWA dynamics are defined in a
closed polytope of the state space which may not be invariant, by
artificially extending the systems dynamics outside the proposed
method can also determine an invariant subset of for the original
PWA system. In this case the attractiveness of the origin (or that
of the terminal set) is determined with respect to such a region of
attraction. A preliminary version of this technical note focusing only
on asymptotic stability of deterministic PWA systems has appeared
in [25]. A numerical implementation of the overall stability analysis
proposed in this work can be found in the MOBY-DIC Toolbox for
MATLAB, described in [26].

II. BASIC NOTATION AND DEFINITIONS

Let , , , and denote the sets of reals, integers, non-neg-
ative integers, and positive integers, respectively. Given , the

ceil function is defined as the smallest such that .
Given a vector , let denote any vector norm, and let

, where is a full rank diagonal ma-
trix. Given two matrices , , de-
notes thematrix . Given a discrete-time signal

, the sequence of the values of from time zero to the
-th instant is denoted by . Given a set , its interior is de-
noted by , its closure by , and its convex hull by .
Given a finite number of sets , , we say that

is a partition of if , ,
, with , and . If is a partition with

, with , it is denoted as strict partition.
A polyhedron is a set given by the intersection of a finite number of
(closed or open) half-spaces. A polytope is a bounded polyhedron,
and the set of the vertices of its closure is denoted by .
Consider a discrete-time nonlinear system

(1)

where is the state vector, the input collects
both model uncertainties and exogenous disturbances, and both and
are compact sets with , .
Definition 1: For system (1) the one-step reachable set from a set

is .
Definition 2: A set is called robustly positively invariant

(RPI) with respect to dynamics (1) if, for all , .
Note that the set is not assumed to be RPI with respect to dynamics

(1), so that some trajectories may possibly leave and be therefore
defined only on a finite time interval of time .
Definition 3: Consider dynamics (1) and a RPI set with

and for all . System (1) is uniformly
asymptotically stable in if there exists a -function1

such that, for all the initial conditions and for all the
sequences with ,
for all .
Definition 4: Given two RPI sets and , with

, system (1) is uniformly ultimately bounded from to
if for all there exists such that, for

every with , for all the sequences
with , .

III. STABILITY ANALYSIS PROBLEM

Given a closed polytope that includes the origin in its
interior, consider a partition of that consists of a finite number
of polytopes

(2)

where , are constant matrices with ,
, , and and are constant

vectors, and assume that is a strict partition. The closure of
is denoted by , with
and . The subset of indices is defined

as . Without loss of generality, we assume that
for all , which is necessary when PWA Lyapunov

functions are considered. If this property does not hold for the given
partition , it is always possible to obtain it by further partitioning
the regions whose indices belong to .
Consider a closed polytope , with
, and , , , and . The vertices of are

denoted by , and, since is compact by definition,
.

1See, e.g., Section II.A in [27] for a formal definition of -functions.
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Consider the autonomous discrete-time uncertain PWA system

(3)

with , , , , , and
. Note that the dynamics (3) are not required to be continuous

on the boundaries of the sets .

A. Problem Statement

Given the uncertain PWA system (3), for which is not necessarily
a RPI set, prove the properties of stability and convergence to the origin
(uniform asymptotic stability or uniform ultimate boundedness) with
respect to a RPI set . In case of ultimate boundedness, find
another RPI set including the origin, where the state is driven in
finite time.
Nominal stability analysis is considered a special case of the problem

when or for all .

IV. EXTENDED SYSTEM AND REACHABILITY ANALYSIS

Consider the one-step reachable set from ,
, and define the closed set

(4)

The closure of can be computed as the union of the one-

step reachable sets from all the sets , namely
. By relying on the results in [20, Chap. 6], we

can compute the convex sets as

(5)

where represents each of the vertices of , to get

(6)

As the dynamics (3) are not defined outside , the proposed
strategy consists of defining fake dynamics on . Let

, and consider the dynamics

(7)

where is an adjustable parameter of the proposed approach.
The region , when , can be divided into convex polyhedral
regions as in [28, Th. 3]. As a result, new regions , ,
are created, that together with the original with define a strict
partition of , with . The dynamics of the
extended system on are

(8)

For convenience, let , , and , for . Also,
notice that, if , then , and no additional dynamics
are introduced.
Lemma 1: The set is RPI for the extended dynamics (8).
Proof: See Appendix.

The definitions of and of the dynamics in as in (7) are sim-
plistic, yet we will prove their effectiveness. Other choices of (see,

e.g., [25]) and of the dynamics (7) are possible, provided that Lemma
1 still holds.
If is a RPI set, one has , and therefore ,

because is a convex set by definition. In this case, the definition
of fake dynamics is not necessary, and the same approach hereafter
described can be applied with , and .
For any pair define the closed transition sets

(9)

of states that can possibly end up in in one step under dynamics .
Note that , but in general is not a partition
of , unless , or . To compute the sets
we exploit here controllability analysis [20, Chap. 5] and consider the
disturbance vector as the external input with respect to which the
controllability analysis is carried out. First, we compute the set

which is defined on the extended space , and we project it onto the
first coordinates (the state space), obtaining the so-called pre-image
set of with respect to dynamics

If we impose , we obtain

(10)

Let be the number of vertices of , . In the
particular case of no additive disturbances (i.e., , or

), the transition sets can be computed without using of
the projection operation, as

V. PWA LYAPUNOV ANALYSIS OF THE EXTENDED SYSTEM

Let be a function such that

(11a)

(11b)

(11c)

and , where is the PWA
state update function defined by (8), , , .

can be chosen as any full rank diagonal matrix, but its value is
fixed a priori as a design parameter. We call a function
satisfying (11) a Lyapunov-like function.
Remark 1: Note that often in the literature an upperbound

is imposed, with . Here this is not necessary
as will be defined as a PWA function over the bounded set . As a
consequence, it is always possible to find a posteriori such that

, once a Lyapunov-like function has
been determined. Note also that condition (11c) could be replaced by

(12)
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where . In fact, by (11a)–(11c), it follows that
.

To the end of synthesizing a PWALyapunov-like function for system
(8), define a linear function for each region

(13a)

for , where in (13a) and are coefficients to be
determined. The overall Lyapunov-like function candidate is

(13b)

where

(13c)

Note that simply for . As for numerical
reasons we want to consider closed sets and , may not
coincide on common boundaries (unless very conservative
continuity conditions are imposed), for the states on the common
boundaries we impose (11a) and (11c) on for all , al-
though only one value (the max) is taken in (13b), as must be
single-valued. In the specific case of (11b), we have for all

, because the continuity condition is imposed at the origin. The
constraints

(14a)

are imposed for all vertices , ,
, while

(14b)

for all , with , for all , , with
, and all with . We define as the

maximum value such that , which
can be easily determined by bisection. The further constraints

(14c)

(14d)

(14e)

(14f)

are also imposed, where is the minimum distance between the
boundary of the hyper-rectangle and the origin, while ,
where is a fixed parameter, chosen as small as possible (e.g.,
equal to the machine epsilon). Condition (14d) is imposed to ensure
that the set where the state is ultimately bounded is included in
(the reader is referred to the proof of Lemma 2, after (24), for details
on this aspect), while (14e) ensures the fulfillment of (11b). The vector
of variables to be determined is composed by , , and the terms
and , with . We define now a procedure to determine a choice
for such variables by means of a convex optimization problem.
Lemma 2: Consider the linear-fractional program

(15a)

(15b)

associated with the autonomous uncertain PWA dynamics (8) and the
candidate Lyapunov-like function (13), and assume it admits a feasible
solution. Then:
1) if the optimal is equal to zero, the origin is an equilibrium point
for system (8), which is ;

2) otherwise (the optimal is strictly positive), system (8) is
, with

(16)

where

(17)

(18)

Proof: See Appendix.
Remark 2: Note that (15) is, strictly speaking, a quasi-convex

optimization problem. Even though quasi-convex optimization
problems are solved in general by bisection (solving a convex op-
timization problem at each step), linear-fractional programs like
(15) can be transformed into an equivalent LP using standard pro-
cedures (see [29, Chap. 4]). The variables of the LP are , ,
and , with , plus an auxiliary variable introduced by the
formulation of the equivalent problem. The total number of vari-
ables is , the total number of constraints is

.
Remark 3: The aim of (15) is to minimize the volume of the hyper-

rectangle (in fact, the cost function of (15a) is directly proportional
to the volume of ) for the given choice of the sets , in order to
obtain a set that is as small as possible (even if not necessarily
the smallest one, since there might be another set such that
system (8) is also ). Note that, if (15) is solvable by
fixing a priori, (15) becomes a test of asymptotic stability of the
origin. Note that in this case the constraints in (14) parameterize all the
PWA Lyapunov functions that are defined on the same partition
of . Clearly, a necessary condition for system (8) to be UAS is that

, or , otherwise the origin would not be an
equilibrium.
Remark 4: In case (14) is infeasible, besides increasing the value

of or changing that of , a possibility is to increase the number of
regions of , therefore providing more flexibility in synthesizing
the PWALyapunov-like function. A possible way is to consider the sets

as the new sets and restart the one-step reachability analysis.
Due to space limitations, we refer the reader to [24] for further details.
A practical procedure to calculate consists of partitioning into

a number of subsets , with , and then obtain all
the sets as in (5). Then can be easily computed as the union
of the subsets of the sets for which , i.e.

(19)

VI. INVARIANCE ANALYSIS

So far we have analyzed the properties of the extended system (8).
We want now to derive conditions on the original system (3). Consider
again system (8) in , assume that a feasible solution to (14) exists,
define (recalling that )

(20)
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Fig. 1. Graphical representation of the sets , , , and for an example
of second-order system.

and consider the set

(21)

In case is a RPI set (and hence ), one has , since
for all . Otherwise, the set is given by the union

of a finite number of polytopes, each of them composed by the points
, for which . Being the sublevel set of a

discontinuous Lyapunov function, the set in this case may not be
convex, and not even connected. The following result related to RPI
sets can be easily proven.
Lemma 3: Consider system (3), whose dynamics are defined on ,

and assume that either the dynamics (7) are defined in , or .
Then, if a set is RPI for (8), it is also RPI for (3).

Proof: See Appendix.
The results for the extended system (8) proved in Lemma 2, and the

definition of in (21) and Lemma 3 are exploited next to state the main
result of this technical note.
Theorem 1: Consider system (3), whose dynamics are defined on ,

and assume that either the dynamics (7) are defined in , or .
Then:
1) if the optimal of (15) is zero, then in (21) is a RPI set for (3),
and (3) is ;

2) otherwise, if , the sets and are RPI sets with
respect to dynamics (3), and system (3) is .
Proof: See Appendix.

Note that, by construction of , if , then is always
satisfied. Also, note that the result of Theorem 1 refers to the original
system (3), and the fake dynamics were only employed to determine a
suitable Lyapunov-like function. A graphical representation of the sets
, , , and is shown in Fig. 1, where we show that

. Also, we recall that by definition.

VII. NUMERICAL COMPLEXITY

The procedure described in Section IV requires four main numer-
ical computations. First, we need the vertex representation of the
polytopes in (2). This can be done by solving a vertex enumera-
tion problem (see the approaches in [30] and [31], for example).
The second operation is the computation of convex hulls, which is
the dual of the vertex enumeration problem [32]. The complexity of
these two operations is exponential in the number of facets of the
considered polytopes. The third operation is the projection in (10),
for which there exist different methods [33] and whose complexity
increases quickly with the number of vertices or facets. The fourth
computation is to obtain minimal hyperplane representations of poly-
hedra to eliminate redundant inequalities [34], which can be done by

solving one LP for each inequality defining the given polyhedron.
In the stability and invariance analysis procedure described in Sec-
tions V and VI, the solution of a single LP is needed to compute

, while a number of operations similar to those needed in Sec-
tion IV is required to compute the sets and .

VIII. CONCLUSION

This note has addressed the problem of determining the properties
of uniform asymptotic stability and uniform ultimate boundedness
of (possibly discontinuous) discrete-time PWA systems subject to
additive disturbances. Since the dynamics are defined in the set
that is a priori not invariant, partially fictitious dynamics are

exploited to define a discontinuous PWA Lyapunov-like function.
As an outcome of the optimization problem, the RPI set
is obtained, together with the terminal set , or the certificate of
asymptotic stability.

APPENDIX

Proof of Lemma 1: If , then either or . If
then the successor state by

definition of . If , the successor state is , because
is a convex set including the origin.
Proof of Lemma 2: To prove the positive definiteness of the Lya-

punov-like function, define , , as a set of co-
efficients which allow one to express as a convex combination
of the vertices of . Since functions are affine functions defined on
convex sets , the satisfaction of (14a) for all , with

, , for , leads to

(22)

For this reason, for , since , (11a)
holds. Moreover, on the boundaries of , according to (13b), one has

for all , and therefore
. This implies that (11a) holds for all

, since .
As for the decay of the Lyapunov-like function, for , define

, , as a set of coefficients such that
can be expressed as a convex combination of the vertices of .

Therefore,

(23)

where , , are coefficients used to express the fact
that any point can be written as a convex combination of the
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vertices of . Recalling that (14b) holds for all the vertices of , and
that , from (23) we get

which proves that (11c) holds for all . Also, on the
boundaries of , the decreasing condition (11c) is imposed for all

, and therefore

Since by definition of the sets we have that ,
(11c) holds for all , and then (11) holds for all .
Up to this point, the proven results hold for any . Con-

sidering the case , the decay condition (11c) becomes
, which also implies .

From we can easily obtain
, which leads to
. Therefore,

which implies that system (8) is , according to Definition 3,
with .
Consider now the case . By (11a) and (11c) it follows that

, where . By definition of in (18),
for all we obtain , leading to

(24)

By definition of , the fulfillment of the constraint (14d) implies
and, by the invariance of (Lemma 1), .

This implies that the in (17) exists (since , and therefore ,
are closed sets) and therefore in (16) is well defined.
To prove invariance of , we distinguish two cases:
• if , then ;
• if , then (24) holds, and therefore

(this latter being defined in (17)), meaning that
by definition of .

Therefore, is a RPI set for (8).
To prove that system (8) is according to Definition

4, we must show that for all there exists such that,
for all with , for any admissible
sequence of the disturbance term . We define

, and distinguish two cases:

• If , condition implies .
Therefore, simply taking , we have that for every
, (by definition of ).

• If , let . Then, from (24)
it follows that

(25)

meaning that , and therefore . In order to
explicitely find as a function of , let .
From (24), one has

In conclusion, if , there exists such
that, for every , .

Proof of Lemma 3: Since , from (8) we can easily see that,
given , we have that , with

and . Notice that dynamics (3) and (8) coincide for
. This means that we applied dynamics (3), and the same will

hold for all subsequent time instants, since by assumption
( is a RPI set). We conclude that is a RPI set for dynamics (3).
Proof of Theorem 1: The proof consists of showing that the PWA

Lyapunov-like function ,

(26)

where is found as in Lemma 2 for the extended system (8) in
, is a Lyapunov-like function for (3) over the set . First of all, we

prove that is a RPI set for (8) in . In case , for all ,
, and then by definition of . In

case , first of all notice that, by definition of and as sublevel
sets, it follows that the assumption implies . Then,
we distinguish two cases:
• if , then (which is a RPI set for (8)), and then

since ;
• if , we distinguish again two sub-cases:
— if , then , since by
construction (see (16)–(18);

— if , then, from (24), , leading to
.

Since , by Lemma 3 we obtain that is a RPI set for dynamics
(3). This fact leads to the possibility of defining a Lyapunov-like func-
tion for system (3) in . Considering that , if (11) are satisfied
with for all (and then for all ), we conclude that

is a Lyapunov function for system (3) in , and that system (3)
is .
In case , if (11) hold for all (and then for all
), the invariance of with respect to dynamics (3) is guaranteed by

Lemmas 2 and 3. We have already proved that is RPI for (3), and
we know that by construction. We also know from Lemma 2
that the extended system (8) is , which means that, for
all , there exists such that, for every with

, for all the sequences with ,
. However, since dynamics (3) and (8) coincide in , one

can use Definition 4 again considering dynamics (3). We know that for
all , for all there exists such that, for every

with , for all the sequences with
, . In conclusion, system (3) is .
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