
1

A Piecewise Linear Regression and
Classification Algorithm with Application to

Learning and Model Predictive Control of Hybrid
Systems
Alberto Bemporad

Abstract— This paper proposes an algorithm for solving
multivariate regression and classification problems using
piecewise linear predictors over a polyhedral partition of
the feature space. The resulting algorithm that we call
PARC (Piecewise Affine Regression and Classification) al-
ternates between (i) solving ridge regression problems for
numeric targets, softmax regression problems for cate-
gorical targets, and either softmax regression or cluster
centroid computation for piecewise linear separation, and
(ii) assigning the training points to different clusters on
the basis of a criterion that balances prediction accuracy
and piecewise-linear separability. We prove that PARC is a
block-coordinate descent algorithm that optimizes a suit-
ably constructed objective function, and that it converges
in a finite number of steps to a local minimum of that
function. The algorithm is used to learn hybrid numeri-
cal/categorical (HYNC) dynamical models from data that
contain real and discrete labeled values. The resulting
model has a piecewise linear structure that is particularly
useful to formulate model predictive control problems and
solve them by mixed-integer programming. A Python im-
plementation of PARC is available at http://cse.lab.
imtlucca.it/˜bemporad/parc.

Index Terms— Multivariate regression, multi-category
classification, piecewise linear functions, mixed-integer
programming, model predictive control, hybrid systems,
piecewise affine systems

I. INTRODUCTION

Several methods exist for solving supervised learning prob-
lems of regression and classification [1], [2]. The main goal
is to estimate a model of the data generation process to
predict at best the target value corresponding to a combination
of features not seen before. However, not all methods are
suitable to optimize on top of the estimated model, i.e., to
solve a mathematical programming problem that contains the
estimated model as part of the constraints and/or the objective
function. An example of such a model-based optimization
problem is to find the best combination of features providing a
desired target, possibly under constraints on the features one

A. Bemporad is with the IMT School for Advanced Studies Lucca, Italy.
Email: alberto.bemporad@imtlucca.it.
This paper was partially supported by the Italian Ministry of University
and Research under the PRIN’17 project “Data-driven learning of con-
strained control systems”, contract no. 2017J89ARP.

can choose. In this case, the model is used as a surrogate
of the underlying (and unknown) features-to-target mapping
to formulate the decision problem. Applications range from
derivative-free black-box optimization [3]–[7], to engineering
design [8], and control engineering, in particular model predic-
tive control [9]–[11], where actuation commands are decided
in real-time by a numerical optimization algorithm based on
a dynamical model of the controlled process that is learned
from data [12], [13], see for instance the approach proposed
recently in [14].

When optimizing over the learned model is a goal, a clear
tradeoff exists between the accuracy of the model on test data
and the complexity of the model, which ultimately determines
the complexity of the mathematical programming problem
resulting from using the model. On one extreme, we have
linear regression models, which are very simple to represent as
linear relations among optimization variables but have limited
expressiveness. On the other extreme, random forests and other
ensemble methods, k-nearest neighbors, kernel support vector
machines, and other methods, can capture the underlying
model very accurately but are difficult to encode in an op-
timization problem. Neural networks and Gaussian processes
can be a good compromise between the compactness of the
model and the representation of the feature-to-target relation,
but are nonlinear models leading to nonconvex optimization
problems that are possibly difficult to solve to global optimal-
ity.

In this paper, we advocate the use of piecewise linear
(PWL) models as a good tradeoff between their simplicity,
due to the linearity of the model on polyhedral regions of
the feature-vector space, and expressiveness, due to the good
approximation properties of piecewise linear functions [15]–
[19]. We refer to such models with the more appropriate
term piecewise affine (PWA), to highlight the presence of
an intercept in each submodel. PWA models can be easily
encoded into optimization problems by using mixed-integer
linear inequalities [20]; in this way, one can optimize over
them to reach a global minimum by using mixed-integer
programming [21], for which excellent public domain and
commercial solvers exist.

Many classical machine learning methods have an under-
lying PWA structure: in ridge classification, logistic (and

2

more generally softmax) regression, hinging hyperplane mod-
els [15], and neural networks with ReLU or leaky-ReLU acti-
vation functions, the predicted target is obtained by comparing
affine functions; the predictor associated with a decision tree is
a piecewise constant (PWC) function (or PWA in case of linear
regression trees), over a partition of the feature-vector space
in hyperboxes; the k-nearest neighbor classifier can be also
expressed as a PWC function over a polyhedral partition (the
comparison of squared Euclidean norms ‖x−xi‖22 ≤ ‖x−xj‖22
used to determine the nearest neighbors of x is equivalent
to the linear relation 2(xj − xi)

′x ≤ ‖xj‖22 − ‖xi‖22), with
the number of polyhedra largely growing with the number of
training samples.

Different piecewise affine regression methods have been
proposed in the system identification literature for getting
switching linear dynamical models from data [22]–[29]. See
also the survey paper [30] and the recursive PWA regression
algorithms proposed in [31], [32]. Most of such methods
identify a prescribed number of linear models and associate
one of them to each training datapoint, therefore determining
a clustering of the data. As a last step, a multicategory
discrimination problem is solved to determine a function that
piecewise-linearly separates the clusters [33]. For instance, the
approach in [26] consists of first clustering the feature+target
vectors by using a Gaussian mixture model, then using support
vector classification to find hyperplanes separating adjacent
clusters. In [22], the authors propose instead to cluster the vec-
tors whose entries are the coefficients of local linear models,
one model per datapoint, and then piecewise-linearly separate
the clusters. In [32], K recursive least-squares problems for
regression are run in parallel to cluster data in an on-line
fashion, based on both the quality of fit obtained by each
linear model and the proximity to the current centroids of
the clusters, and finally the obtained clusters are separated
by a PWL function. The aforementioned contributions to
piecewise affine regression are fundamental to design model-
based controllers from data that can handle hybrid dynamics,
i.e., dynamical relations between variables of mixed real and
logical nature, in particular model predictive control (MPC)
laws [20].

A. Contribution

This paper proposes a general supervised learning method
for regression and/or classification of multiple targets that
results in a PWA predictor over a single PWA partition of
the feature space in K polyhedral cells. In each polyhedron,
the predictor is either affine (for numeric targets) or given by
the max of affine functions, i.e., convex piecewise affine (for
categorical targets). Our goal is to obtain an overall predictor
that admits a simple encoding by means of binary and real
variables, to be able to solve optimization problems involving
the prediction function via mixed-integer linear or quadratic
programming. The number K of linear predictors is limited
by the tolerated complexity of the resulting mixed-integer
encoding of the PWA predictor, and is therefore is a hyper-
parameter of the approach deciding the trade-off between
model simplicity and quality of fit.

Rather than first clustering the training data and fitting K
different linear predictors, and then finding a PWL separation
function to get the PWA partition, we simultaneously cluster,
PWL-separate, and fit by solving a block-coordinate descent
problem, similarly to the K-means algorithm [34], where we
alternate between fitting models/separating clusters and reas-
signing training data to clusters. We call the algorithm PARC
(Piecewise Affine Regression and Classification) and show
that it converges in a finite number of iterations by proving
that the sum of the loss functions associated with regression,
classification, piecewise linear separation errors decreases at
each iteration. PWL separation is obtained by solving softmax
regression problems or, as a simpler alternative, by taking the
Voronoi partition induced by the cluster centroids.

After showing that PARC can reconstruct an underlying
PWA function from its samples, investigating the effect of
K in reconstructing a nonlinear function, and comparing its
performance in solving real-life regression and classification
problems with respect to alternative learning methods that
have a similar PWA complexity, we focus on applying the
learning method to system identification of a general class of
discrete-time hybrid dynamical models whose inputs, outputs,
and states have a mixed numerical/categorical nature (we call
them HYNC models for short). We show in detail how to
efficiently encode the piecewise affine structure of HYNC
models identified by PARC as a set of mixed-integer linear
inequalities, so that we can formulate and evaluate model pre-
dictive controllers based on HYNC models by mixed-integer
programming. We illustrate the overall data-driven hybrid
control design workflow on a simple example of nonlinear
switching system consisting of a cart moving between two
bumpers and exchanging heat with them, based on collecting
open-loop training and test data, obtaining a HYNC model
by running PARC, designing a hybrid MPC controller based
on that model, and then approximating the controller by a
decision tree for a drastic reduction of on-line computation
time.

A Python implementation of the PARC algorithm is avail-
able at http://cse.lab.imtlucca.it/˜bemporad/
parc.

B. Outline

After formulating the multivariate PWL regression and
classification problem in Section II, we describe the proposed
PARC algorithm and prove its convergence properties in Sec-
tion III, numerically testing its behavior on different regression
and classification examples. In Section IV, we show how to
encode the PWA prediction function for regression and clas-
sification returned by PARC as a set of mixed-integer linear
inequalities. Section V formulates a modeling framework for
dynamical systems characterized by real-valued and discrete-
labeled input, output, and state variables that is amenable to
be identified from data by using PARC and controlled by
MPC. The nonlinear switching cart example is illustrated in
Section VI. Some conclusions are finally drawn in Section VII.

3

C. Notation and definitions
Given a finite set C, card C denotes its number of elements

(cardinality). Given a vector a ∈ Rn, ‖a‖2 is the Euclidean
norm of a, ‖a‖1 its 1-norm, [a]i denotes the ith component
of a. Given two vectors a, b ∈ Rn, we denote by [a = b] the
binary quantity that is 1 if a = b or 0 otherwise. Given a
matrix A ∈ Rm×n, ‖A‖F denotes the Frobenius norm of A.
Given a polyhedron P ⊆ Rn, P̊ denotes its interior. Given a
finite set S of real numbers {s1, . . . , sK} we denote by

arg min
h∈{1,...,K}

{sh} = min{h : sh ≤ sj , ∀j ∈ {1, . . . ,K}}
(1)

Taking the smallest index h in (1) breaks ties in case of
multiple minimizers. The arg max function of a set S is
defined similarly by replacing sh ≤ sj with sh ≥ sj in (1).

Definition 1: A collection P of sets {P1, . . . , PK} is said to
be a polyhedral partition of Rn if Pi is a polyhedron, Pi ⊆ Rn,
∀i ∈ {1, . . . ,K}, ∪Ki=1Pi = Rn, and P̊i ∩ P̊j = ∅, ∀i, j ∈
{1, . . . ,K} such that i 6= j.

Definition 2: A function j : Rn → {1, . . . ,K} is called
integer piecewise constant (IPWC) [35] if there exist a poly-
hedral partition P = {P1, . . . , PK} of Rn such that

j(x) = min
h
{h ∈ {1, . . . ,K} : x ∈ Ph} (2)

for all x ∈ Rn.
The “min” in (2) prevents possible multiple definitions of j(x)
on overlapping boundaries Pi ∩ Pj 6= ∅.

Definition 3: A function f : Rn → Rm is said to be
piecewise affine (PWA) if there exists an IPWC function
j : Rn → {1, . . . ,K} defined over a polyhedral partition P
and K pairs (ai, bi), ai ∈ Rm×n, bi ∈ Rm, such that

f(x) = aj(x)x+ bj(x) (3)

for all x ∈ Rn. It is called piecewise constant if ai = 0,
∀i ∈ {1, . . . ,K}.

Definition 4: A piecewise linear (PWL) separation func-
tion [33] Φ : Rn → R is defined by

Φ(x) = ωj(x)x+ γj(x) (4a)
j(x) = arg max

j=1,...,K
{ωjx+ γj} (4b)

where ωj ∈ Rn, γj ∈ R, ∀j ∈ {1, . . . ,K}, and the smallest
index j(x) is taken in (4b) in accordance with (1).
A PWL separation function is convex [36] and PWA over the
polyhedral partition P = {P1, . . . , PK} where

Pj = {x ∈ Rn : (ωh − ωj)x ≤ γj − γh,
∀h ∈ {1, . . . ,K}, h 6= j}, j = 1, . . . ,K

(5)

II. PROBLEM STATEMENT

We have a training dataset (xk, yk), k = 1, . . . , N , where
xk contains nc numeric and nd categorical features, the latter
containing ni possible values {vi1, . . . , vini}, i = 1, . . . , nd,
and yk contains mc numeric targets and md categorical targets
with mi possible values {wi1, . . . , wimi}, i = 1, . . . ,md. We
assume that categorical features have been one-hot encoded
into ni − 1 binary values, so that xk ∈ X , X = Rnc ×
{0, 1}sx , sx =

∑nd
i=1(ni − 1). By letting n = nc + sx we

have xk ∈ Rn. Moreover, let yk = [yckydk], yck ∈ Rmc ,
[ydk]i ∈ {wi1, . . . , wimi}, i = 1, . . . ,md, and define Y =
Rmc ×{w1

1, . . . , w
1
m1
}× . . .×{wmd1 , . . . , wmdmmd

}, so that we
have yk ∈ Y .

Several approaches exist to solve regression problems to
predict the numeric components yc and classification problems
for the categorical target vector yd. In this paper, we are
interested in generalizing linear predictors for regression and
classification to piecewise linear predictors ŷ : Rn → Y over
a single polyhedral partition P = {P1, . . . , PK} of Rn. More
precisely, we want to solve the posed multivariate regression
and classification problem by finding the following predictors

[ŷc(x)]i = a
j(x)
i x+ b

j(x)
i , i = 1, . . . ,mc (6a)

[ŷd(x)]i = wih, h = arg max
t∈I(i)

{aj(x)
t x+ b

j(x)
t } (6b)

i = 1, . . . ,md

where j(x) is defined as in (2) and the coefficient/intercept
values aj ∈ Rn, bj ∈ R define a PWA function f : Rn → Rm
as in (3), in which m = mc +

∑md
i=1mi. In (6), I(i) denotes

the set of indices corresponding to the ith categorical target
[yd]i, I(i) = {t(i)+1, . . . , t(i)+mi}, t(i) = mc+

∑i−1
h=1mh.

Note that subtracting the same quantity āx + b̄ from all the
affine terms in (6b) does not change the maximizer, for any
arbitrary ā ∈ Rn, b̄ ∈ R. Note also that, since according to (1)
the smallest index is always taken in case ties occur when
maximizing in (6b), ŷd is well posed.

We emphasize that all the components of ŷ(x) in (6)
share the same polyhedral partition P . A motivation for this
requirement is to be able to efficiently solve optimization prob-
lems involving the resulting predictor ŷ using mixed-integer
programming, as we will detail in Section IV. Clearly, if this
is not a requirement, by treating each target independently the
problem can be decomposed in mc PWA regression problems
and md PWA classification problems.

Our goal is to jointly separate the training dataset in K
clusters C1, . . . , CK , Cj = {xk : k ∈ Jj}, where ∪Ki=1Ji =
{1, . . . , N}, Ji ∩ Jj = ∅, ∀i, j ∈ {1, . . . ,K}, i 6= j, and to
find optimal coefficients/intercepts aj , bj for (6). In particular,
if the clusters were given, for each numeric target [yc]i, i =
1, . . . ,mc, we would solve the ridge regression problem

min
aji ,b

j
i

αj(‖aji‖
2
2 + (bji)

2) +
∑
k∈Jj

(yki − ajixk − b
j
i)

2 (7)

with respect to the vector aji ∈ Rn of coefficients and intercept
bji ∈ R, where αj =

card Jj
N α and α > 0 is an `2-regularization

parameter. For each categorical target [yd]i, i = 1, . . . ,md, we
would solve the regularized softmax regression problem, a.k.a.
Multinomial Logistic Regression (MLR) problems [37], [38],

min
{aj

h
, b

j
h
}

h ∈ I(i)

∑
h∈I(i)

αj(‖ajh‖
2
2 + (bjh)2)−

mi∑
h=1

∑
k ∈ Jj :

[ydk]i = wi
h

log
e
aj
h+t(i)

xk+bj
h+t(i)∑

t∈I(i) e
ajtxk+bjt

(8)

Note that, by setting α > 0, both (7) and (8) are strictly
convex problems, and therefore their optimizers are unique. It

4

is well known that in the case of binary targets [yd]i ∈ {0, 1},
problem (8) is equivalent to the regularized logistic regression
problem

min
ajh,b

j
h

αj(‖ajh‖
2
2+(bjh)2)+

∑
k∈Jj

log
(

1 + e(1−2[ydk]i)(a
j
hxk+bjh)

)
(9)

where h = t(i) + 1. Similarly, for preparing the background
for what will follow in the next sections, we can rewrite (8)
as

min
{aj

h
, b

j
h
}

h ∈ I(i)

∑
h∈I(i)

αj(‖ajh‖
2
2 + (bjh)2)

+

mi∑
h=1

∑
k ∈ Jj :

[ydk]i = wi
h

log
(∑
t∈I(i)

ea
j
txk+bjt

)
− ajh+t(i)xk − b

j
h+t(i)

= min
{aj

h
, b

j
h
}

h ∈ I(i)

∑
h∈I(i)

αj(‖ajh‖
2
2 + (bjh)2) +

∑
k∈Jj

log
(∑
t∈I(i)

ea
j
txk+bjt

)

−
mi∑
h=1

[[ydk]i = wih](ajh+t(i)xk + bjh+t(i)) (10)

A. Piecewise linear separation

Clustering the feature vectors {xk} in C1, . . . , CK should
be based on two goals. On the one hand, we wish to have all
the data values (xk, yk) that can be best predicted by (aj , bj)
in the same cluster Cj . On the other hand, we would like the
clusters C1, . . . , CK to be piecewise linearly separable, i.e., that
there exist a PWL separation function Φ : Rn → R as in (4)
such that Ci ⊆ Pi. The above goals are usually conflicting
(unless yk depends on xk in a piecewise linear fashion), and
we will have to trade them off.

Several approaches exist to find a PWL separation function
Φ of given clusters C1, . . . , CK , usually attempting at mini-
mizing the number of misclassified feature vectors xk (i.e.,
xk ∈ Ci and xk 6∈ Pi) in case the clusters are not piecewise-
linearly separable. Linear programming was proposed in [33]
to solve the following problem

min
ω,γ

K∑
j=1

K∑
h = 1
h 6= j

∑
k: xk∈Cj

max{(ωh − ωj)xk + γj − γj + 1, 0}
card Cj

Other approaches based on the piecewise smooth optimization
algorithm of [39] and averaged stochastic gradient descent
[40] were described in [32]. In this paper, we use instead `2-
regularized softmax regression

min
ω,γ

β(‖ω‖2F + ‖γ‖22) +

K∑
j=1

∑
k: xk∈Cj

− log
eω

jxk+γj∑K
i=1 e

ωixk+γi

(11a)
with β ≥ 0, whose solution ω, γ provides the PWL separation
function (4) as

j(x) = arg max
j=1,...,K

eω
jx+γj∑K

i=1 e
ωix+γi

= arg max
j=1,...,K

ωjx+ γj

(11b)

and hence a polyhedral partition P of the feature vector space
as in (5). Note that, as observed earlier, there are infinitely
many PWL functions Φ(x) as in (4a) providing the same
piecewise-constant function j(x). Hence, as it is customary,
one can set one pair (ωi, γi) = (0, 0), for instance ωK = 0,
γK = 0 (this is equivalent to dividing both the numerator and
denominator in the first maximization in (11b) by eω

Kx+γK),
and solve the reduced problem

min{ωj ,γj}K−1
j=1

β(‖ω‖2F + ‖γ‖22)

+

K∑
j=1

∑
k: xk∈Cj

− log
eω

jxk+γj

1 +
∑K−1
i=1 eωixk+γi

An alternative approach to softmax regression is to obtain
P from the Voronoi diagram of the centroids

x̄j = arg min
x

∑
k∈Jj

‖xk − x‖22 =
1

card Cj

∑
k∈Jj

xk (12)

of the clusters, inducing the PWL separation function as in (4)
with

j(x) = arg min
j=1,...,K

‖x− x̄j‖22 = arg max
j=1,...,K

ωjx+ γj

(13a)

ωj = x̄′j , γ
j = −1

2
‖x̄j‖22 (13b)

Note that the Voronoi partitioning (13) has Kn degrees of
freedom (the centroids x̄j), while softmax regression (11b)
has Kn+ (K−n−1) degrees of freedom. We finally remark
that multicategory classifiers based on linear discriminant
functions as in (4) are also called linear machines in the pattern
recognition literature [41].

III. PIECEWISE AFFINE REGRESSION AND
CLASSIFICATION ALGORITHM

In the previous section, we have seen how to get the
coefficients aj , bj by ridge (7) or softmax (8) regression when
the clusters C are given, and how to get a PWL partition of
C. The question remains on how to determine the clusters
C1, . . . , CK .

Let us assume that the coefficients aj , bj have been fixed.
Following (7) and (10) we could assign each training vector
xk to the corresponding cluster Cj such that the following
weighted sum of losses

V y(aj , bj , xk, yk) =

mc∑
i=1

µci(yki − ajixk − b
j
i)

2

+

md∑
i=1

µdi log
(∑
t∈I(i)

ea
j
txk+bjt

)
−

mi∑
h=1

[[ydk]i = wih](ajh+t(i)xk + bjh+t(i)) (14)

is minimized, where µc ∈ Rmc , µd ∈ Rmd are vectors of
relative weights on fit losses.

Besides the average quality of prediction (14), we also
want to consider the location of the feature vectors xk to
promote PWL separability of the resulting clusters using the

5

two approaches (softmax regression and Voronoi diagrams)
proposed in Section II-A. Softmax regression induces the
criterion

V xs (ωj , γj , xk) = − log
eω

jxk+γj

1 +
∑K−1
i=1 eωixk+γi

= log
(

1 +

K−1∑
i=1

eω
ixk+γi

)
− ωjxk − γj (15a)

for j = 1, . . . ,K, where ωK = 0, γK = 0. Note that the
last logarithmic term in (15a) does not depend on j, so that
it might be neglected in case V xs gets minimized with respect
to j.

Alternatively, because of (13), Voronoi diagrams suggest
penalizing the distance between xk and the centroid x̄j of the
cluster

V xv (x̄j , xk) = ‖xk − x̄j‖22 (15b)

Criteria (15a) and (15b) can be combined as follows:

V x(ωj , γj , xk) =


V xs (ωj , γj , xk)
if PWL partitioning (5) is used

V xv ((ωj)′, xk) + 0 · γj
if Voronoi partitions (13) are used

(15c)
Then, each training vector xk is assigned to the cluster Cjk
such that

jk = arg min
j=1,...,K

V y(aj , bj , xk, yk) + σV x(ωj , γj , xk) (16)

where σ ≥ 0 is a relative weight that allows trading off
between target fitting and PWL separability of the clusters.
Note that, according to the definition in (1), in the case of
multiple minima the optimizer jk in (16) is always selected
as the smallest index among optimal indices.

The idea described in this paper is to alternate between
fitting linear predictors as in (7)–(8) and reassigning vectors
to clusters as in (16), as described in Algorithm 1 that we call
PARC (Piecewise Affine Regression and Classification).

The following theorem proves that indeed PARC is an
algorithm, as it terminates in a finite number of steps to a
local minimum of the problem of finding the K best linear
predictors.

Theorem 1: Algorithm 1 converges in a finite number of
steps to a local minimum of the following mixed-integer
optimization problem

min
a,b,ω,γ,z

V (a, b, ω, γ, z)

s.t.

K∑
j=1

zkj = 1, k = 1, . . . , N (17a)

V (a, b, ω, γ, z) = σβ(‖ω‖2F + ‖γ‖22)

+

K∑
j=1

N∑
k=1

zkj

(α
N

(‖aj‖2F + ‖bj‖22)+

V y(aj , bj , xk, yk) + σV x(ωj , γj , xk)
)

(17b)

where aj ∈ Rm×n, bj ∈ Rm, ωj ∈ RK×n,γj ∈ RK , j =
1, . . . ,K, z ∈ {0, 1}N×K , and with either ωK = 0, γK = 0,

and β ≥ 0 if PWL partioning (5) is used, or γj = − 1
2‖ω

j‖22,
j = 1, . . . ,K, and β = 0 if Voronoi partions (13) are used.

Proof: We prove the theorem by showing that Algo-
rithm 1 is a convergent block-coordinate descent algorithm
(see, e.g., [42] and references therein) for problem (17), al-
ternating between the minimization with respect to (a, b, ω, γ)
and z. The proof follows arguments similar to those used to
prove convergence of unsupervised learning approaches like
K-means. The binary variables zkj are hidden variables such
that zkj = 1 if and only if the target vector yk is predicted by
j(xk) = j as in (6).

The initial clustering C1, . . . , CK of {xk} determines the
initialization of the latent variables, i.e., zkj = 1 if and
only if xk ∈ Cj , or equivalently k ∈ Jj . Let us con-
sider z fixed. Since

∑K
j=1

∑N
k=1 zkj

(
α
N (‖aj‖2F + ‖bj‖22)

)
=∑K

j=1
card Jj
N α(‖aj‖2F+‖bj‖22) =

∑K
j=1

∑mc+md
i=1 αj(‖aji‖22+

(bji)
2), problem (17) becomes separable into (i) Kmc indepen-

dent optimization problems of the form (7), (ii) Kmd softmax
regression problems as in (8), and (iii) either a softmax
regression problem as in (11a) or K optimization problems
as in (12).

Let aj , bj , ωj , γj be the solution to such problems and
consider now them fixed. In this case, problem (17) becomes

minz∈{0,1}N×K

N∑
k=1

K∑
j=1

zkj(V
y(aj , bj , xk, yk)

+σV x(aj , bj , ωj , γj , xk))

s.t.

K∑
j=1

zkj = 1, k = 1, . . . , N

(18)

which is separable with respect to k into N independent
binary optimization problems. The solution of (18) is given
by computing jk as in (16) and by setting zjk = 1 and zj = 0
for all j = 1, . . . ,K, j 6= jk.

Since the cost V (a, b, ω, γ, z) in (17) is monotonically non-
increasing at each iteration of Algorithm 1 and lower-bounded
by zero (as all the terms in the function are nonnegative) the
sequence of optimal cost values converges asymptotically. In
addition, as the number of possible combinations {zkj} is
finite, Algorithm 1 always terminates after a finite number
of steps, since we have assumed that the smallest index jk is
always taken in (16) in case of multiple optimizers. The latter
implies that no chattering between different combinations zkj
having the same cost V is possible.

Theorem 1 proved that PARC converges in a finite num-
ber of steps. Hence, a termination criterion for Step 3 of
Algorithm 1 is that z does not change from the previous
iteration. An additional termination criterion is to introduce a
tolerance ε > 0 and stop when the optimal cost V (a, b, ω, γ, z)
has not decreased more than ε with respect to the previous
iteration. In this case, as the reassignment in Step 2.3.2 may
have changed the z matrix, Steps 2.1.1–2.1.2 must be executed
before stopping, in order to update the coefficients/intercepts
(a, b) accordingly.

Note that PARC is only guaranteed to converge to a local
minimum; whether this is also a global one depends on the
provided initial clustering C1, . . . , CK , i.e., on the initial guess

6

Algorithm 1 PARC (Piecewise Affine Regression and Classi-
fication)
Input: Training dataset (xk, yk), k = 1, . . . , N ; number K of

desired linear predictors; `2-regularization parameters α > 0,
β ≥ 0; fitting/separation tradeoff parameter σ ≥ 0; output
weight vector µ ∈ Rm, µ ≥ 0; initial clustering C1, . . . , CK of
{xk}.

1. i← 1;
2. Repeat
2.1. For all j = 1, . . . ,K do

2.1.1. Solve the ridge regression problem (7) for i =
1, . . . ,mc;

2.1.2. Solve the softmax regression problem (8) for i =
mc + 1, . . . ,m;

2.2. PWL separation: either compute the cluster centroids
ωj = x̄′j (12) and set γj = 0, j = 1, . . . ,K
(Voronoi partitioning), or ωj , γj as in (11a) (general
PWL separation);

2.3. For all k = 1, . . . , N do
2.3.1. Evaluate jk as in (16);
2.3.2. Reassign xk to cluster Cjk ;

3. Until convergence;
4. End.

Output: Final number Kf ≤ K of clusters; coefficients
aj and intercepts bj of linear functions, and ωj , γj of PWL
separation function, j = 1, . . . ,Kf , final clusters C1, . . . , CKf .

on z. In this paper, we initialize z by running the K-means++
algorithm [43] on the set of feature vectors x1, . . . , xN .
For solving single-target regression problems, an alternative
approach to get the initial clustering could be to associate to
each datapoint xk the coefficients ck of the linear hyperplane
fitting the Kn nearest neighbors of xk (cf. [22]), for example,
by setting Kn = 2(n + 1), and then run K-means on the
set c1, . . . , cn to get an assignment δk. This latter approach,
however, can be sensitive to noise on measured targets and is
not used in the numerical experiments reported in this paper.

As in the K-means algorithm, some clusters may become
empty during the iterations, i.e., some indices j are such that
zkj = 0 for all k = 1, . . . , N . In this case, Step 2.1 of
Algorithm 1 only loops on the indices j for which zkj = 1
for some k. Note that the values of aj , bj , ωj , and γj , where
j is the index of an empty cluster, do not affect the value
of the overall function V as their contribution is multiplied
by 0 for all k = 1, . . . , N . Note also that some categories
may disappear from the subset of samples in the cluster in the
case of multi-category targets. In this case, still (8) provides
a solution for the coefficients ahj , b

h
j corresponding to missing

categories h, so that V y in (14) remains well posed.
After the algorithm stops, clusters Cj containing less than

cmin elements can be eliminated, interpreting the correspond-
ing samples as outliers (alternatively, their elements could be
reassigned to the remaining clusters). As a result, the final
number Kf of clusters could be less than the starting value K
allowed. We mention that after the PARC algorithm terminates,

for each numeric target [yc]i and cluster Cj one can further
fine-tune the corresponding coefficients/intercepts aji , b

j
i by

choosing the `2-regularization parameter αj in each region
via leave-one-out cross-validation on the subset of datapoints
contained in the cluster. In case some features or targets have
very different ranges, the numeric components in xk, yk should
be scaled.

Note that purely solving mc ridge and md softmax re-
gression problems on the entire dataset corresponds to the
special case of running PARC with K = 1. Note also that,
when σ → +∞, PARC will determine a PWL separation
of the feature vectors, then solve mc ridge and md softmax
regression on each cluster. In this case, if the initial clustering
C is determined by K-means, PARC stops after one iteration.

When the PWL separation (11a) is used, or in case of
classification problems, most of the computation effort spent
by PARC is due to solving softmax regression problems. In
our implementation, we have used the general L-BFGS-B
algorithm [44], with warm-start equal to the value obtained
from the previous PARC iteration for the same set of optimiza-
tion variables. Other efficient methods for solving MLR prob-
lems have been proposed in the literature, such as iteratively
reweighted least squares (IRLS), that is a Newton-Raphson
method [45], stochastic average gradient (SAG) descent [46],
the alternating direction method of multipliers (ADMM) [47],
and methods based on majorization-minimization (MM) meth-
ods [48]–[50]. Note that evaluating (14) and (15a) (as well as
solving softmax regression problems) requires computing the
logarithm of the sum of exponentials, see, e.g., the recent paper
[51] for numerically accurate implementations.

We remark that PARC converges even if the softmax re-
gression problem (11a) is not solved to optimality. Indeed, the
proof of Theorem 1 still holds as long as the optimal cost
in (11a) decreases with respect to the last computed value of
ω, γ. This suggests that during intermediate PARC iterations,
in case general PWL separation is used, to save computations
one can avoid using tight optimization tolerances in Step 2.2.
Clearly, loosening the solution of problem (11a) can impact
the total number of PARC iterations; hence, there is a tradeoff
to take into account.

We finally remark that Steps 2.1 and 2.3 can be parallelized
for speeding computations up.

A. Predictor

After determining the coefficients aj , bj by running PARC,
we can define the prediction functions ŷc, ŷd, and hence the
overall predictor ŷ as in (6). This clearly requires defining
j(x), i.e., a function that associates to any vector x ∈ Rn the
corresponding predictor out of the K available. Note that the
obtained clusters Cj may not be piecewise-linearly separable.

In principle any classification method on the dataset
{xk, δk}, where δk = j if and only if xk ∈ Cj , can be
used to define j(x). For example, nearest neighbors (j(x) =
arg mink=1,...,N ‖x − xk‖22), decision trees, naı̈ve Bayes, or
one-to-all neural or support vector classifiers to mention a few.
In this paper, we are interested in defining j(x) using a polyhe-
dral partition P = {P1, . . . , PK} as stated in Section II, that is

7

to select j(x) such that it is IPWC as defined in (2). Therefore,
the natural choice is to use the values of (ωj , γj) returned by
PARC to define a PWL separation function by setting j(x) as
in (11b), which defines Pj as in (5), or, if Voronoi partitioning
is used in PARC, set j(x) = arg minj=1,...,Kf ‖x − x̄j‖22,
which leads to polyhedral cells Pj as in (13). As the clusters
C1, . . . , CKf may not be piecewise-linearly separable, after
defining the partition P = {P1, . . . , PKf }, one can cluster
the datapoints again by redefining Cj = {xk : xk ∈ Pj , k =
1, . . . , N} and then execute one last time Steps 2.1.1–2.1.2 of
the PARC algorithm to get the final coefficients a, b defining
the predictors ŷc, ŷd. Note that these may not be continuous
functions of the feature vector x.

The number of floating point operations (flops) required to
evaluate the predictor ŷ(x) at a given x is roughly K times
that of a linear predictor, as it involves K scalar products
[ωj γj] [x1] as in (11b) or (13) (2K(nx+1) flops), taking their
maximum, and then evaluate a linear predictor (another 2(nx+
1) flops per target in case of regression (6a) and 2mi(nx + 1)
flops and a maximum for multi-category targets (6b)).

B. PWA form of the predictor

In the absence of categorical outputs, the PWA form of the
predictor ŷ is simply given by the polyhedra Pj computed as
in (5) and the corresponding affine functions ajx+ bj . In the
presence of categorical outputs, the predictor ŷd(x) in (6b)
induces md separation functions Φdi : Rn → R

Φdi(x) = max
t∈I(i)

{aj(x)
t x+ b

j(x)
t }, i = 1, . . . ,md

that, in general, further subpartition the polyhedra Pj . The
overall PWA partition associated with the predictor ŷ(x) is
therefore given by the intersection of the partition induced
by the PWL separation function Φ associated with (ω, γ) as
in (4), and by Φdi, for all i = 1, . . . ,md. A way to compute
such an overall polyhedral partition and the corresponding
affine functions is given by the simple Algorithm 2. The
algorithm starts from the partition P1, . . . , PK induced by Φ
and sequentially subpartitions each polyhedron based on Φdi.
The final output Algorithm 2 is a PWA partition P1, . . . , PKf
and the corresponding affine predictors ŷ(x) =

[
ŷc(x)
ŷd(x)

]
=

f jx+ gj , j = 1, . . . ,Kf .

C. Examples

We first test the PARC algorithm on synthetic data generated
by sampling a piecewise affine function, to check how PARC
can recover the function, and from a toy nonlinear function, to
test the effect of the main hyper-parameters of PARC, namely
K and σ. All the results have been obtained in Python 3.8.3
on an Intel Core i9-10885H CPU @2.40GHz machine. The
scikit-learn package [52] is used to solve ridge and softmax
regression problems, using L-BFGS to solve the nonlinear
programming problem (8).

Algorithm 2 Explicit PWA predictor with categorical outputs
Input: ω, γ, a, b.

1. K1 ← K; {P 1
1 , . . . , P

1
K1
} ← partition induced by (ω, γ)

as in (5);
2. (f j,1s , gj,1s) ← (ajs, b

j
s) for s = 1, . . . ,mc; (f j,1s , gj,1s) ←

(0, 0), for s = mc + 1, . . . ,mc +md, j = 1, . . . ,K1;
3. For all i = 1, . . . ,md do:
3.1. h← 0;
3.2. For all j = 1, . . . ,Ki do

3.2.1. For all t ∈ I(i) do
3.2.1.1. Compute the polyhedron P ← P ij∩{a

j
tx+bjt ≥

ajsx+ bjs, ∀s ∈ I(i), s 6= t};
3.2.1.2. If P 6= ∅ then:

3.2.1.2.1 h← h+ 1;
3.2.1.2.2 P i+1

h ← P ;
3.2.1.2.3 (fh,i+1, gh,i+1)← (f j,i, gj,i)
3.2.1.2.4 (fh,i+1

mc+i
, gh,i+1
mc+i

)← (ajt , b
j
t);

3.3. Ki+1 ← h;

Output: Final number Kf = Kmd+1 of partitions
and polyhedral partition {Pmd+1

1 , . . . , Pmd+1
Kf

}; coefficients
fh,md+1 ∈ R(mc+md)×n and intercepts gh,md+1 ∈ R(mc+md),
h = 1, . . . ,Kf .

1) Piecewise affine function: We first test whether PARC
can reconstruct targets generated from the following randomly-
generated PWA function

f(x) = max

{[
0.8031
0.0219
−0.3227

]′ [x1
x2
1

]
,
[

0.2458
−0.5823
−0.1997

]′ [x1
x2
1

]
,[

0.0942
−0.5617
−0.1622

]′ [x1
x2
1

]
,
[

0.9462
−0.7299
−0.7141

]′ [x1
x2
1

]
,[−0.4799

0.1084
−0.1210

]′ [x1
x2
1

]
,
[

0.5770
0.1574
−0.1788

]′ [x1
x2
1

]}
(19)

We generate a dataset of 1000 random samples uniformly
distributed in the box [−1, 1] × [−1, 1], from which we
extract N = 800 training samples, plotted in Figures 1(a)
and 1(c), and leave the remaining N = 200 samples for
testing. Figure 1(c) shows the partition generated by the PWL
function (19) as in (5).

We run PARC with K = 6, σ = 0, α = 10−5, PWL
partitioning (11), β = 10−3, µ = 1, and stopping tolerance ε =
10−4 on V (a, b, ω, γ, z). The algorithm converges in 2.2 s after
8 iterations. The sequence of function values V is reported in
Figure 1(b). The final polyhedral partition obtained by PARC
is shown in Figure 1(d). In this ideal case, PARC can recover
the underlying function generating the data quite well: the
quality of prediction on both training and test data, measured
in terms of the R2 score

R2 = 1−
∑N
k=1(yk − ŷ(xk))2∑N

k=1(yk − 1
N

∑N
k=1 yk)2

is 100%. Table I shows the results obtained when PARC is
fed by feature data x1k, x2k and target data yk corrupted by
additive noise εx1k, εx2k, εyk ∼ N (0, σ̄2), respectively. For each
value of σ̄, 20 tests are run to collect statistics of the R2 scores

8

x1
1.00

0.75
0.50

0.25
0.00

0.25
0.50

0.75
1.00

x
2

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

y

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) True PWA function (19) and
dataset

2 4 6 8
iterations

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
V (a, b, ω, γ, z)

(b) Cost function during PARC iter-
ations

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

(c) True PWA partition induced
by (19)

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

11

22 33

44
55

66

(d) PWA partition generated by
PARC

Fig. 1. PARC algorithm for regression on training data generated by the
PWA function (19).

σ̄ = 0.00 σ̄ = 0.01 σ̄ = 0.10 σ̄ = 0.20
R2 training (%) 100.00 (0.00) 99.84 (0.07) 95.90 (1.11) 75.95 (8.29)
R2 test (%) 100.00 (0.00) 99.86 (0.06) 95.98 (1.24) 74.81 (8.72)

TABLE I
R2 SCORES OBTAINED BY PARC WITH NOISY DATA (x1k + εx1k ,

x2k + εx2k , yk + ε
y
k), WITH εx1k, ε

x
2k, ε

y
k ∼ N (0, σ̄2)

computed by comparing the new predictions ŷk with respect
to the original (unperturbed) data yk. It is apparent that PARC
is robust with respect to data noise.

2) Nonlinear function: We solve another simple regression
example on a dataset of N = 1000 randomly-generated
samples of the nonlinear function

y(x1, x2) = sin

(
4x1 − 5

(
x2 −

1

2

)2
)

+ 2x2 (20)

Again we use 80% of the samples as training data and the
remaining 20% for testing. The function and the training
dataset are shown in Figures 2(a), 3(a). We run PARC with
σ = 1, ε = 10−4, α = 10−5, µ = 1, PWL partitioning (11)
with β = 10−3, and different values of K. The level sets and
training data are reported in Figure 2. The resulting piecewise
linear regression functions are shown in Figure 3.

The results obtained by running PARC for different values
of K, σ and the two alternative separation criteria (Voronoi
partitioning and softmax regression with β = 10−3) are
reported in Table II (R2-score on test data), Table III (CPU
time [s] to execute PARC). The best results are usually
obtained for σ = 1 using softmax regression (S) for PWL
partitioning as in (11a).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
level sets of y(x)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PARC (K = 3)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PARC (K = 5)

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PARC (K = 8)

(d)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PARC (K = 12)

(e)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PARC (K = 30)

(f)

Fig. 2. Training data and results of PARC for regression: nonlinear
function (20).

x1
0.0

0.2
0.4

0.6
0.8

1.0

x
2

0.0

0.2

0.4

0.6

0.8

1.0

y

1.0
0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

function y(x)

(a)

x1
0.0

0.2
0.4

0.6
0.8

1.0

x
2

0.0

0.2

0.4

0.6

0.8

1.0

y

0

1

2

3

PARC (K = 3)

(b)

x1
0.0

0.2
0.4

0.6
0.8

1.0

x
2

0.0

0.2

0.4

0.6

0.8

1.0

y

1

0

1

2

3

PARC (K = 5)

(c)

x1
0.0

0.2
0.4

0.6
0.8

1.0

x
2

0.0

0.2

0.4

0.6

0.8

1.0

y

1

0

1

2

3

PARC (K = 8)

(d)

x1
0.0

0.2
0.4

0.6
0.8

1.0

x
2

0.0

0.2

0.4

0.6

0.8

1.0

y

1

0

1

2

3

PARC (K = 12)

(e)

x1
0.0

0.2
0.4

0.6
0.8

1.0

x
2

0.0

0.2

0.4

0.6

0.8

1.0

y

1

0

1

2

3

PARC (K = 30)

(f)

Fig. 3. Training data and results of PARC for regression: nonlinear
function (20).

Note that the case K = 1 corresponds to ridge regression
on the entire dataset, while σ = 10000 approximates the case
σ → +∞, corresponding to pure PWL separation + ridge
regression on each cluster.

3) Real-world regression and classification datasets: We
tested PARC on all the datasets from the PMLB repository [53]
having between nx = 2 and 20 features (before one-hot
encoding categorical features), and either numeric targets and
between Ntot=1000 and 5000 samples (see Table IV), or
categorical targets with at most m1 = 10 classes and between
1500 and 5000 samples (see Table VI). Further experiments
from the same repository are reported in [54]. We use 80%
of the available data for training, the remaining 20% for
testing the resulting predictor. For comparison, we consider
alternative regression and classification techniques providing
piecewise linear partitions, and that therefore admit a mixed-
integer encoding of the predictor of complexity similar to that
of the PWA models obtained by PARC, that we will describe

9

σ K = 1 K = 3 K = 5 K = 30

(S) 0 0.548 (6.5%) 0.889 (2.6%) 0.976 (0.5%) 0.997 (0.1%)
(V) 0 0.548 (6.5%) 0.872 (3.6%) 0.970 (0.7%) 0.998 (0.1%)
(S) 0.01 0.548 (6.5%) 0.894 (2.5%) 0.976 (0.5%) 0.998 (0.1%)
(V) 0.01 0.548 (6.5%) 0.877 (3.3%) 0.969 (0.6%) 0.997 (0.1%)
(S) 1 0.548 (6.5%) 0.883 (2.8%) 0.981 (0.3%) 0.999 (0.0%)
(V) 1 0.548 (6.5%) 0.868 (3.5%) 0.970 (0.7%) 0.998 (0.1%)
(S) 100 0.548 (6.5%) 0.898 (1.6%) 0.970 (1.0%) 0.998 (0.0%)
(V) 100 0.548 (6.5%) 0.874 (4.1%) 0.967 (0.8%) 0.998 (0.1%)
(S) 10000 0.548 (6.5%) 0.816 (3.2%) 0.963 (0.8%) 0.998 (0.0%)
(V) 10000 0.548 (6.5%) 0.846 (4.4%) 0.965 (0.8%) 0.998 (0.0%)

TABLE II
PARC REGRESSION ON TARGETS FROM NONLINEAR FUNCTION (20):

R2 SCORE ON TEST DATA, MEAN (STD). PWL SEPARATION: (S) =
SOFTMAX REGRESSION, (V) FOR VORONOI PARTITIONING.

σ K = 1 K = 3 K = 5 K = 30

(S) 0 0.12 (9.8%) 1.33 (43.6%) 1.46 (24.6%) 7.14 (17.3%)
(V) 0 0.04 (11.4%) 0.78 (36.1%) 0.77 (24.9%) 4.44 (19.5%)
(S) 0.01 0.12 (7.7%) 1.25 (40.3%) 1.48 (36.4%) 7.22 (18.7%)
(V) 0.01 0.04 (13.2%) 0.65 (41.2%) 0.82 (31.4%) 4.61 (32.8%)
(S) 1 0.12 (10.4%) 1.36 (43.8%) 1.42 (24.7%) 4.26 (14.9%)
(V) 1 0.04 (13.5%) 0.71 (38.6%) 0.78 (35.7%) 3.98 (31.1%)
(S) 100 0.12 (8.9%) 1.45 (24.2%) 1.11 (34.5%) 2.68 (22.1%)
(V) 100 0.04 (10.6%) 0.64 (44.9%) 0.69 (38.0%) 2.90 (21.0%)
(S) 10000 0.12 (9.2%) 0.24 (27.1%) 0.41 (22.6%) 2.80 (27.2%)
(V) 10000 0.04 (11.5%) 0.45 (49.7%) 0.38 (39.7%) 1.21 (61.8%)

TABLE III
PARC REGRESSION ON TARGETS FROM NONLINEAR FUNCTION (20):
TRAINING TIME [S], MEAN (STD). PWL SEPARATION: (S) = SOFTMAX

REGRESSION, (V) FOR VORONOI PARTITIONING.

in detail in Section IV. In particular, we consider a simple
neural network (NN) with ReLU activation function with a
single layer of KNN = 10 neurons (in case of regression), or
KNN = 5 neurons (for classification), and a small decision
tree (DT) with KDT = 10 non-leaf nodes (for regression)
or KDT = 5 nodes (for classification). Note that in case of
regression, NN requires KNN binary variables to encode the
ReLU activation functions as mixed-integer linear inequalities,
DT requires KDT variables, PARC K variables, while in case
of classification they all require m1 more variables. The results
on regression and classification problems on training and test
(reported in parentheses) data are listed in Table V and VII,
respectively.

IV. MIXED-INTEGER LINEAR ENCODING

As our goal is to optimize over the estimated model ŷ, in
this section we describe how to suitably encode its numeric
and categorical components ŷc , ŷd by introducing auxiliary
binary variables.

A. PWA partition
In order to encode the PWA partition (5) induced by (4),

one can treat (5) as a generic PWA partition and, as suggested
in [20, Sect. 3.1], introduce a binary vector δ ∈ {0, 1}K and
constrain

(ωi − ωj)x ≤ γj − γi +Mji(1− δj)
i = 1, . . . ,K, i 6= j, j = 1, . . . ,K (21a)
K∑
j=1

δj = 1 (21b)

dataset Ntot nx
1 1028 SWD 1000 21
2 1029 LEV 1000 16
3 1030 ERA 1000 51
4 529 pollen 3848 4
5 593 fri c1 1000 10 1000 10
6 595 fri c0 1000 10 1000 10
7 599 fri c2 1000 5 1000 5
8 606 fri c2 1000 10 1000 10
9 608 fri c3 1000 10 1000 10

10 609 fri c0 1000 5 1000 5
11 612 fri c1 1000 5 1000 5
12 623 fri c4 1000 10 1000 10
13 628 fri c3 1000 5 1000 5
14 titanic 2201 5

TABLE IV
REAL-WORLD DATASETS FOR REGRESSION: DATASET NAME, TOTAL

NUMBER Ntot OF SAMPLES, AND NUMBER nx OF FEATURES BEFORE

ONE-HOT ENCODING CATEGORICAL FEATURES.

K = 3 K = 5 K = 12 ridge NN DT
1 0.484 0.515 0.529 0.441 0.500 0.388

(0.413) (0.403) (0.383) (0.372) (0.425) (0.500)
2 0.600 0.612 0.623 0.577 0.567 0.466

(0.536) (0.533) (0.519) (0.510) (0.542) (0.567)
3 0.427 0.427 0.427 0.427 0.385 0.347

(0.339) (0.339) (0.339) (0.339) (0.339) (0.385)
4 0.794 0.794 0.796 0.793 0.791 0.486

(0.793) (0.796) (0.796) (0.793) (0.796) (0.791)
5 0.636 0.755 0.828 0.306 0.841 0.751

(0.696) (0.582) (0.694) (0.693) (0.292) (0.841)
6 0.805 0.836 0.893 0.722 0.899 0.677

(0.804) (0.760) (0.788) (0.813) (0.693) (0.899)
7 0.698 0.849 0.937 0.312 0.941 0.791

(0.920) (0.674) (0.828) (0.924) (0.277) (0.941)
8 0.617 0.783 0.855 0.329 0.857 0.771

(0.710) (0.575) (0.725) (0.700) (0.302) (0.857)
9 0.494 0.854 0.872 0.305 0.927 0.748

(0.766) (0.420) (0.804) (0.729) (0.269) (0.927)
10 0.821 0.877 0.934 0.730 0.895 0.676

(0.918) (0.811) (0.861) (0.917) (0.725) (0.895)
11 0.563 0.750 0.898 0.264 0.938 0.746

(0.877) (0.524) (0.725) (0.865) (0.256) (0.938)
12 0.675 0.852 0.887 0.300 0.933 0.746

(0.775) (0.642) (0.814) (0.766) (0.291) (0.933)
13 0.550 0.907 0.937 0.268 0.933 0.738

(0.928) (0.554) (0.902) (0.921) (0.278) (0.933)
14 0.295 0.296 0.279 0.253 0.289 0.300

(0.263) (0.280) (0.280) (0.264) (0.248) (0.289)

TABLE V
REAL-WORLD DATASETS FOR REGRESSION: AVERAGE R2 SCORE ON

TRAINING (TEST) DATA OVER 20 RUNS. RIDGE REGRESSION

CORRESPONDS TO K = 1.

where ωj , γj are the coefficients optimized by the PARC
algorithm when the PWL separation (4) is used (with ωK = 0,
γK = 0), or ωj = x̄′j and γ = −‖x̄j‖22 if Voronoi partition-
ing (13) is used instead. The constraint (21a) is the “big-M”
reformulation of the logical constraint [δj = 1] → [x ∈ Pj],
that, together with the exclusive-or (SOS-1) constraint (21b)
models the constraint [δj = 1] ↔ [x ∈ Pj]. The values Mji

are upper-bounds that need to satisfy

Mji ≥ max
x∈B

(ωi−ωj)x−γj+γi, i, j = 1, . . . ,K, i 6= j (22)

where B ⊂ Rn is a compact subset of features of interest.
For example, given the dataset {xk}Nk=1 of features, we can
set B as a box containing all the sample feature vectors so
that the values Mij in (22) can be easily computed by solving
K(K − 1) linear programs. A simpler way to estimate the

10

dataset Ntot nx m1
1 car 1728 15 4
2 churn 5000 21 2
3 GAMETES E**0.1H 1600 40 2
4 GAMETES E**0.4H 1600 38 2
5 GAMETES E**0.2H 1600 40 2
6 GAMETES H** 50 1600 39 2
7 GAMETES H** 75 1600 39 2
8 led7 3200 7 10
9 mfeat morphological 2000 7 10

10 segmentation 2310 21 7
11 wine quality red 1599 11 6
12 wine quality white 4898 11 7

TABLE VI
REAL-WORLD DATASETS FOR CLASSIFICATION: DATASET NAME, TOTAL

NUMBER Ntot OF SAMPLES, NUMBER nx OF FEATURES BEFORE

ONE-HOT ENCODING CATEGORICAL FEATURES, NUMBER m1 OF

TARGET CLASSES.

K = 2 K = 3 K = 5 softmax NN DT
1 0.960 0.969 0.982 0.947 0.969 0.835

(0.937) (0.944) (0.949) (0.934) (0.952) (0.983)
2 0.907 0.898 0.896 0.867 0.934 0.941

(0.901) (0.888) (0.882) (0.862) (0.921) (0.937)
3 0.644 0.644 0.700 0.562 0.751 0.566

(0.540) (0.508) (0.532) (0.478) (0.622) (0.578)
4 0.694 0.722 0.800 0.551 0.836 0.544

(0.620) (0.631) (0.676) (0.467) (0.752) (0.703)
5 0.616 0.641 0.686 0.578 0.675 0.566

(0.511) (0.512) (0.507) (0.514) (0.509) (0.528)
6 0.625 0.643 0.700 0.552 0.769 0.569

(0.521) (0.525) (0.542) (0.490) (0.648) (0.632)
7 0.629 0.695 0.732 0.564 0.792 0.563

(0.510) (0.612) (0.584) (0.487) (0.682) (0.641)
8 0.750 0.751 0.752 0.747 0.730 0.690

(0.732) (0.731) (0.731) (0.735) (0.724) (0.732)
9 0.768 0.768 0.775 0.758 0.744 0.716

(0.739) (0.736) (0.739) (0.737) (0.733) (0.747)
10 0.974 0.980 0.980 0.967 0.966 0.941

(0.954) (0.954) (0.955) (0.958) (0.954) (0.966)
11 0.622 0.635 0.661 0.607 0.619 0.618

(0.584) (0.588) (0.583) (0.594) (0.595) (0.599)
12 0.552 0.555 0.570 0.540 0.555 0.545

(0.542) (0.537) (0.536) (0.538) (0.542) (0.552)

TABLE VII
REAL-WORLD DATASETS FOR CLASSIFICATION: AVERAGE ACCURACY

SCORE ON TRAINING (TEST) DATA OVER 20 RUNS. SOFTMAX

REGRESSION CORRESPONDS TO K = 1.

values Mji is given by the following lemma [55, Lemma 1]:
Lemma 1: Let B = {x ∈ Rn : xmin ≤ x ≤ xmax} and

v ∈ Rn. Let v+ = max{v, 0}, v− = max{−v, 0}. Then

n∑
i=1

v+
i xmin,i − v−i xmax,i ≤ v′x ≤

n∑
i=1

v+
i xmax,i − v−i xmin,i

(23)
Proof: Since xmin,i ≤ xi ≤ xmax,i and v = v+− v−, we

get

v′x =

n∑
i=1

vixi =

n∑
i=1

(v+
i −v

−
i)xi ≤

n∑
i=1

v+
i xmax,i−v−i xmin,i

and similarly v′x ≥
n∑
i=1

v+
i xmin,i − v−i xmax,i.

By applying Lemma 1 for v = ωi−ωj , (22) is satisfied by

setting

Mji = γi − γj +

n∑
h=1

max{ωih − ω
j
h, 0}xmax,h

−max{ωjh − ωih, 0}xmin,h

(24)

for all i, j = 1, . . . ,K, i 6= j.
The mixed-integer encoding of the partition as in (21a)

requires K(K − 1) linear inequalities. Next Lemma 2 proves
that the partition induced by the PWL separation function (4),
or alternatively (13), can be encoded instead by 2K linear
inequalities, i.e., by a number of inequalities that is linear
rather than quadratic in K.

Lemma 2: Consider the PWL separation function (4)
or (13). Let

Mj =

n∑
h=1

max{ωjh, 0}xmax,h −max{−ωjh, 0}xmin,h + γj

mj =

n∑
h=1

max{ωjh, 0}xmin,h −max{−ωjh, 0}xmax,h + γj

(25)
and set mΦ = maxj=1,...,K{mj}, MΦ = minj=1,...,K{Mj}.
Let δj ∈ {0, 1}, j = 1, . . . ,K, and ε ∈ R be auxiliary
variables. Then, for all xmin ≤ x ≤ xmax, if the following
inequalities

ε ≥ (ωj)′x+ γj + (mΦ −Mj)δj , j = 1, . . . ,K
ε ≤ (ωj)′x+ γj + (MΦ −mj)(1− δj), j = 1, . . . ,K∑K
j=1 δj = 1

(26)
are satisfied for δj = 1, then x ∈ Pj .

Proof: Assume δj = 1. Then δi = 0 for all i 6= j.
From (26) we get

(ωi)′x+ γi ≤ ε ≤ (ωj)′x+ γj , ∀i 6= j

which corresponds to x ∈ Pj . We show next that the remaining
inequalities are all redundant. Since ε ≥ (ωi)′x + γi for all
i 6= j then by Lemma 1 ε ≥ mi for all i 6= j, and hence ε ≥
mΦ ≥ (ωj)′x+γj +(mΦ−Mj). In addition, ε ≤ (ωi)′x+γi

for all i 6= j, and hence by Lemma 1 ε ≤Mi for all i 6= j, so
that ε ≤MΦ ≤ (ωj)′x+ γj + (MΦ −mj) already holds.

Note that the mixed-integer encoding introduced above
does not guarantee that when x belongs to more than one
neighboring polyhedra the minimum index j in (2) is selected
by a numerical solver. This can easily remedied for example
by adding a very small penalty on

∑K
j=1 jδj to break ties.

B. Numeric targets

Having encoded the PWL partition, as suggested in [20,
Sect. 3.1] one can define the ith predictor by imposing

[ŷc(x)]i =

K∑
j=1

pji (27)

where pji ∈ R are auxiliary optimization variables represent-
ing the product pji = δj(a

j
ix + bji). This is modeled by the

11

following mixed-integer linear inequalities

pji ≤ ajix+ bji −M
c−
ji (1− δj)

pji ≥ ajix+ bji −M
c+
ji (1− δj)

pji ≤ M c+
ji δj

pji ≥ M c−
ji δj

(28)

The coefficients M c−
ji , M c+

ji need to satisfy M c−
ji ≤

minx∈B a
j
ix + bji ≤ maxx∈B a

j
ix + bji ≤ M c+

ji and can be
obtained by linear programming or, more simply, by applying
Lemma 1.

Next Lemma 3 provides a more efficient formulation that
does not require introducing the auxiliary variables pji.

Lemma 3: Let δj , j = 1, . . . ,K, satisfy (21b). Then the
condition [δj = 1] → [[ŷc(x)]i = ajix + bji] is equivalent to
imposing the mixed-integer linear inequalities

[ŷc(x)]i − ajix− b
j
i ≤ (−M c−

ji + maxj{M c+
ji })(1− δj)

[ŷc(x)]i − ajix− b
j
i ≥ (−M c+

ji + minj{M c−
ji })(1− δj)

(29)
Proof: Clearly (29) is equivalent to [ŷc(x)]i = ajix + bji

when δj = 1. For δj = 0, by (21b) [ŷc(x)]i = ahi x + bhi for
some h 6= j, and hence [ŷc(x)]i ≤ M c+

hi ≤ maxj{M c+
ji } ≤

maxj{M c+
ji } + ajix + bji − M c−

ji , which makes the first
inequality in (29) redundant. The redundancy of the second
inequality in (29) when δj = 0 can be proved similarly.

C. Categorical targets
Regarding the md classifiers ŷdi, to model the “arg max”

in (6b) we further introduce sy binary variables νih ∈ {0, 1},
h = 1, . . . ,mi, i = 1, . . . ,md, satisfying the following big-M
constraints

(ajh − a
j
t)x ≥ b

j
t − b

j
h −M

d
ht(2− νih − δj)

∀h, t ∈ I(i), h 6= t, j = 1, . . . ,K (30a)∑
h∈I(i)

νih = 1, i = 1, . . . ,md (30b)

where the coefficients Md
ht must satisfy

Md
ht ≥ max

j=1,...,K
{max
x∈B

(ajt − a
j
h)x+ bjt − b

j
h}. Note that

the constraints in (30a) become redundant when δj = 0 or
νih = 0 and lead to ajhx + bjh ≥ ajt + bjt for all t ∈ I(i),
t 6= h, when νih = δj = 1, which is the binary equivalent of
[ŷd(x)]i = wih for x ∈ Pj . Then, the ith classifier is given by

[ŷd(x)]i =

mi∑
h=1

wihνih (30c)

Note that in case of binary targets [ŷd(x)]i ∈ {0, 1}, we do not
need to introduce the auxiliary variables νih, h = 1, 2, as we
can simply replace νi1 = [ŷd(x)]i, νi2 = 1− [ŷd(x)]i in (30a).
Moreover, a preprocessing similar to the analysis performed
by Algorithm 2 can be carried out to identify logic constraints
[δj = 1] → [νih = 0] whenever the polyhedron Pjih = ∅,
where

Pjih = {x : (ωi − ωj)′x ≤ γj − γi, ∀i 6= j,

(ajt − a
j
h)x ≤ bjh − b

j
t , ∀t ∈ I(i), t 6= h}

for j ∈ {1, . . . ,K}, i ∈ {1, . . . ,md}, and h ∈ I(i).

Note also that, in alternative to using (30), one can use the
explicit characterization provided by Algorithm 2 and encode
the PWC functions [ŷd]i : Rn → {wi1, . . . , wimi} as they were
numeric targets.

In conclusion, we have provided a mixed-integer linear
reformulation of the predictors ŷc, ŷd returned by the PARC
algorithm as in (6). This enables solving optimization prob-
lems involving the estimated model, possibly under additional
linear and logical constraints (also reformulated as mixed-
integer linear inequalities [20]) on features and targets, to
global optimality. Note that if one is interested in solving
an optimization problem based on a more refined nonlinear
predictor ŷNL, for example, a feedforward neural network
trained on the same dataset, the solution obtained by solving
the problem based on the PWA model identified by PARC
can be used to warm-start the nonlinear programming solver
based on ŷNL, which would give better chances to find a global
minimizer.

V. HYBRID NUMERICAL/CATEGORICAL SYSTEMS

In the previous sections, we have introduced an algorithm
to solve a multivariate regression and classification problem
in PWA form, and showed how to encode the resulting
predictor by means of mixed-integer linear inequalities for its
exploitation in optimization. In this section, we introduce a
general class of hybrid dynamical systems with mixed numeric
(real) and categorical (discrete) inputs, outputs, and states,
that we call in short hybrid numerical/categorical (HYNC)
systems. Our goal is to leverage on the PARC algorithm to
identify a discrete-time hybrid dynamical model from data and
solve model predictive problem based on that model by mixed
integer linear or quadratic programming.

Let u = [ucud] denote the input of the system, consisting
of m̄c real components, uc ∈ Rm̄c , and m̄d categorical
components [ud]i ∈ {ūi1, . . . , ūim̄i}; let ζ =

[
ζc
ζd

]
be the output

of the system, ζc ∈ Rpc , and pd categorical components [ζd]i ∈
{ζ̄i1, . . . , ζ̄ipi}; let ξ =

[
ξc
ξd

]
be the state of the system, ξc ∈

Rn̄c , and n̄d categorical components [ξd]i ∈ {ξ̄i1, . . . , ξ̄in̄i}; let
k denote the discrete-time index. We denote by eu(ud) the one-
hot binary encoding of ud, eui : {ūi1, . . . , ūim̄ui} → {0, 1}

m̄i ,
i = 1, . . . , m̄d, and similarly eξ(ξd) the one-hot encoding of
ξd, eξi : {ξ̄i1, . . . , ξ̄in̄i} → {0, 1}

n̄i , i = 1, . . . , n̄d.
Consider the state-space hybrid dynamical model{

ξ(k + 1) = f(ξ(k), u(k))
ζ(k) = g(ξ(k), u(k))

(31)

where the first n̄c components of f , corresponding to numeric
states, and the first pc components of g, corresponding to
numeric outputs, are PWA functions defined in accordance
with Definition 3 as

fi(ξ(k), u(k)) = a
j(x(k))
ξi x(k) + b

j(x(k))
ξi , i = 1, . . . , n̄d

gi(ξ(k), u(k)) = a
j(x(k))
ζi x(k) + b

j(x(k))
ζi , i = 1, . . . , pd

x(k) =

[ξc(k)
eξ(ξd(k))

uc(k)
eu(ud(k))

]
(32)

12

and j(x) is the index of the partition, defined as in (4b). In
accordance with (6b), the remaining categorical components
of f and g are defined by the piecewise linear classifiers

fi = ξ̄ih, h = arg max
t∈Ix(i)

{aj(x(k))
ξt + b

j(x(k))
ξt }, i = 1, . . . , n̄d

gi = ȳih, h = arg max
t∈Iζ(i)

{aj(x(k))
ζt + b

j(x(k))
ζt }, i = 1, . . . , pd

where Ix(i) denotes the set of indices corresponding to the
ith categorical next state [ξd(k + 1)]i, Ix(i) = {tx(i) +
1, . . . , tx(i) + n̄i}, tx(i) = n̄c +

∑i−1
h=1 n̄h, and similarly

Iζ(i) is the set of indices corresponding to the ith categorical
output [ζd(k)]i, Iζ(i) = {tζ(i) + 1, . . . , tζ(i) + pi}, tζ(i) =

pc +
∑i−1
h=1 ph.

Given a dataset ξ(0), u(0), ζ(0), . . . , ξ(N − 1), u(N −
1), ζ(N − 1), ξ(N), the HYNC model (31) can be estimated
using the PARC algorithm, with feature vector x(k) and
target vector y(k) =

[
ξ(k+1)
ζ(k)

]
. Note that in the special

case categorical inputs, states, and outputs are all binary,
the HYNC model (31) corresponds to a discrete-time PWA
model [20], [56]–[59] with state ξ ∈ Rn̄c × {0, 1}n̄d , input
u ∈ Rm̄c × {0, 1}m̄d , and output ζ ∈ Rpc × {0, 1}pd .

If only input/output data are available, in alternative to the
state-space form (31) we can consider the following hybrid
numerical/categorical autoregressive with exogenous inputs
(HYNCARX) form

ζ(k) = h(ζ(k − 1), . . . , ζ(k − na), u(k − 1), . . . , u(k − nb))
(33)

where na, nb are integers determining the order of the model
(it is immediate to extend (33) to more flexible model
structures in which ζi(k) depends on past outputs ζj(k −
1), . . . , ζj(k−naij) and past inputs uj(k−nki−1), . . . , uj(k−
nki−nbij), nki ∈ Z, nki ≥ −1). In (33), h is a PWA function
defined similarly to f and g in (32), with x(k) composed by
ζc(k− 1), eζ(ζd(k− 1)), . . ., ζc(k−na), eζ(ζd(k−na)), . . .,
uc(k − 1), eu(ud(k − 1)), . . . , uc(k − nb), eu(ud(k − nb)),
where eζ(ζd) is the one-hot binary encoding of ζd. Clearly,
model (33) can be estimated using the PARC algorithm, with
feature vector x(k) and target vector y(k) = ζ(k).

A. Hybrid MPC based on HYNC models
A natural way to control the system that has generated the

dataset used by PARC is to design a model predictive con-
troller based on the resulting state-space HYNC model (31).
Consider the following finite-time optimal control problem

minz

T−1∑
t=0

`k+t(ζt, ξt, ut)

s.t. ξt+1 = f(ξt, ut), ξ0 = ξ(k)
ζt = g(ξt, ut)
arbitrary linear and logical constraints on
uc,0, eu(ud,0), . . . , uc,N−1, eu(ud,N−1),
ξc,0, eξ(ξd,0), . . . , ξd,N , eξ(ξd,N),
ζc,0, eζ(ζd,0), . . . , ζc,N−1, eζ(ζd,N−1)

(34)

where z =
[
u′0 ξ′1 µ0 . . . u′T−1 ξ′T µ′T−1

]′
is the

optimization vector, µt collects the auxiliary binary variables

p

MF T

a

a1 a2

k2

b2

k1

b1

T1 T2

Fig. 4. Toy example: cart system with bumpers and heat exchange

εt, δt, and νih,t required to encode the model identified by
PARC as described in (26), (29), (30), and `k+t is any cost
function that can be encoded as a linear or quadratic function
of z and possibly other auxiliary optimization variables, for ex-
ample `k+t(ζt, ξt, ut) = ‖Λc(ζct−rc(k+t))‖1+‖Λd(eζ(ζdt)−
eζ(rd(k+t)))‖1, where r(k) =

[
rc(k)
rd(k)

]
is the output reference

to track and Λc,Λd are (in general, diagonal) weight matrices
of appropriate dimensions. Note that any constraint that admits
an encoding as mixed-integer linear inequalities, such as box
and general polyhedral constraints, logical constraints (truth of
Boolean functions involving eξ(ξk+t), eu(uk+t), eζ(uk+t) and
δ(k)), and mixed linear/logical constraint (such as implications
between numeric and one-hot encoded and other binary vari-
ables), possibly involving the addition of auxiliary real and
binary variables, can be included in (34), see e.g. [60], [61].

VI. HYBRID MODEL LEARNING AND CONTROL EXAMPLE

To illustrate the use of PARC for hybrid system identifica-
tion and MPC based on the learned model, we consider the
toy system depicted in Figure 4. This consists of a cart moving
longitudinally between two bumpers. We denote, respectively,
by M , p, and ṗ the mass, position, and velocity of the cart,
and by a half its size; the coefficient b determines the viscous
friction force, T , Θ, R are the temperature, heat capacity, and
thermal resistance when exchanging heat with the environ-
ment, respectively, of the cart, and T0 is the environmental
temperature. The bumpers are characterized by their mass Mi,
coefficients ki and bi determining, respectively, the spring and
viscous forces, and the position ai at which they stop, i = 1, 2.
We assume that the continuous dynamics are nonlinear, as the
viscous friction force depends also on the squared velocity
and the spring force also on the cubic deflection, as detailed
below in (37). We assume that the bumpers have constant
temperatures T1, T2, and that heat transfer occurs when the
cart and the bumper get in contact, with thermal resistance
R1, R2, respectively.

The cart is actuated by a switch u ∈ {−1, 0, 1}, a categor-
ical input that triggers the force F = F̄0u on the cart. We
consider the following categorical output

ζd(t) =

 green if T < TA
yellow if TA ≤ T ≤ TB
red if T > TB

(35)

We describe the dynamics of the system by the following

13

Quantity Value Description Units
M 1 cart mass kg
b 0.1 cart viscous friction N/(m/s)
a 0.1 half cart length m
Θ 5 cart heat capacity J/K
R 10 cart thermal resistance K/W
T0 25 + 273.15 ambient temperature K
M1,M2 0.2 bumper mass kg
b1, b2 0.2 bumper viscous friction N/(m/s)
k1, k2 1 bumper spring constant N/m
a1 1 bumper #1 position m
a2 3 bumper #2 position m
R1, R2 1 cart-bumper thermal resistance K/W
T1 10 + 273.15 temperature of bumper #1 K
T2 50 + 273.15 temperature of bumper #2 K
TA 30 + 273.15 threshold temperature K
TB 35 + 273.15 threshold temperature K
F̄ 0.5 input force N

TABLE VIII
NUMERICAL VALUES USED IN THE TOY EXAMPLE

switching nonlinear differential equations{
p̈ = 1

M+M1
(F − ϕb(ṗ, b1 + b)− ϕa(p− a− a1, k1))

Ṫ = 1
Θ

(
T0−T
R + T1−T

R1

)
, if p− a ≤ a1{

p̈ = 1
M+M2

(F − ϕb(ṗ, b2 + b)− ϕa(p+ a− a2, k2))

Ṫ = 1
Θ

(
T0−T
R + T2−T

R2

)
, if p+ a ≥ a2{

p̈ = 1
M (F − ϕb(ṗ, b))

Ṫ = T0−T
RΘ , otherwise

(36)
where

ϕa(∆p, k) = k∆p+
k

5
∆p3, ϕb(ṗ, b) = bṗ+

b

5
|ṗ|ṗ (37)

The state of the system is ξ = [p ṗ T]′. The numerical values
used to simulate the system are reported in Table VIII. Note
that all such values are supposed totally unknown, they are
only used to simulate the system.

Starting from the initial condition p(0) = 2, ṗ(0) = 0,
T0 = 25 + 273.15, we simulate the system for 2,000 s by
numerically integrating (36) using Adams/BDF method with
automatic stiffness detection and switching1, with the input u
allowed to switch with probability 5% every Ts = 0.5 s. When
a switch is allowed, either u = ±1 (with probability 10

3 %) or
u = 0. The simulated trajectories are sampled every Ts time
units to create the training dataset, depicted in Figure 5, which
therefore consists of 4,000 samples. The system is simulated
again from p(0) = 1.5, ṗ(0) = 0, T0 = 40 + 273.15 for 500
time units to create a test dataset.

We run PARC with σ = 1 and different values of K,
using a PWL separation function to create the partition, taking[
ξ(kTs)
u(kTs)

]
as the feature vector, and [p((k + 1)Ts), ṗ((k +

1)Ts), T ((k+ 1)Ts), ζd(kTs)]
′ as the target vector. The possi-

ble values of the categorical output ζd are mapped to 0=green,
1=yellow, and 2=red. The temperature T is converted to
Celsius and divided by 10 for better numerical scaling during
training. Table IX shows the R2 and accuracy scores a =

1We use the integrate.solve ivp function with method ‘LSODA’ of
the scipy package (scipy.org).

Fig. 5. Toy example: training dataset

K R2(p) R2(ṗ) R2(T) a(ζ) time iters
3 1S 1.0000 0.9986 0.9998 0.9960 14.1 s 7

OL 0.8410 0.8170 0.5367 0.7080
5 1S 1.0000 0.9987 0.9996 0.9930 34.3 s 10

OL 0.9500 0.9502 0.9123 0.7550
7 1S 1.0000 0.9987 0.9998 0.9780 60.6 s 14

OL 0.9386 0.9360 0.9243 0.8120

TABLE IX
R2 SCORES AND ACCURACY OBTAINED BY PARC ON THE TOY

EXAMPLE ON TEST DATA FOR DIFFERENT VALUES OF K (1S =
ONE-STEP AHEAD PREDICTION ERRORS, OL = OPEN-LOOP

PREDICTION ERRORS).

1
N

∑N
k=1[ζ̂dk = ζdk] for K = 3, 5, 7, the CPU time taken

by PARC, and its number of iterations. The table shows
the scores obtained on both one-step-ahead and open-loop
prediction errors. The latter are computed by simulating the
HYNC model produced by PARC, as shown in Figure 6 on
test scenarios when K = 5.

Next, we design an MPC controller whose aim is to keep the
cart in the yellow zone, possibly avoiding applying nonzero
forces. To this end, we consider the following MPC formula-
tion

min

T−1∑
t=0

|ζd,t − 1|+ ρ|u|

s.t. identified HYNC model
u ∈ {−1, 0, 1}

(38)

with prediction horizon T = 9 and ρ = 0.25. Problem (38)
is converted to a mixed-integer linear programming (MILP)
problem by introducing a slack variable εt ≥ ±(ζd,t − 1) per
prediction step, and by encoding the identified HYNC model
as described in Section IV. The hybrid MPC controller based
on the model identified by PARC with K = 5 is simulated in
closed-loop with the continuous-time simulator of the system

14

Fig. 6. Toy example: test dataset (left) and open-loop simulation of the
identified HYNC model with K = 5 (right).

for 100 s. The obtained trajectories are depicted in Figure 7.
The MILP formulation of (38) is evaluated in Python via

the PuLP package 2 and CPLEX 12.10 [62], with a total CPU
time ranging between 0.39 and 2.5 s (0.74 s on average) per
controller execution. For comparison, the CPU time for the
MPC controller based on K = 3 takes 0.15÷0.29 s, 0.18 s on
average, with slightly worse closed-loop performance.

In order to reduce computation time, we get an approximate
explicit form of the controller by generating 10,000 random
samples of the state vector uniformly distributed in {[p ṗ T] :
0 ≤ p ≤ 5, 1.5 ≤ ṗ ≤ 1.5, 20 ≤ T ≤ 40} and train a
decision-tree (DT) classifier with maximum depth of 20 using
the tree.DecisionTreeClassifier function in [52]. To
emphasize quality of fit when p is close to the position of
the bumpers, we repeat the samples such that |p− ai| ≤ 0.1,
i = 1, 2, three times. The accuracy achieved by DT is 99.9%
on the resulting training dataset. Next, we simulate the system
in closed-loop with the DT-based controller from the same
initial condition for comparison, obtaining the closed-loop
state trajectories shown in Figure 8. While the DT-based
controller is still able to track the desired categorical set-point,
the CPU time for evaluating the DT-based controller drastically
reduces to 52÷67 µs (55 µs on average).

VII. CONCLUSIONS

The proposed PARC algorithm generalizes linear regression
and classification approaches, in particular ridge regression
and softmax regression, to piecewise linear form, inheriting
their intrinsic robustness with respect to noise on feature and
target data. A possible drawback of PARC is its computation
time, mainly due to solving a sequence of softmax regression
problems. Other regression and classification methods, such as

2https://coin-or.github.io/pulp/

Fig. 7. Toy example: hybrid closed-loop MPC results with prediction
model obtained by PARC with K = 5.

Fig. 8. Toy example: closed-loop results based on a decision-tree
approximation of the hybrid MPC controller obtained from PARC with
K = 5.

deep neural networks, more complex decision trees, and even
random forests may achieve better scores on test data and
reduce training time. However, they would return predictors
that, compared to the proposed piecewise affine models, are
more complicated to optimize globally, therefore complicating
the corresponding MPC controller.

The proposed algorithm can be extended in several ways.

15

For example, `1-penalties can be introduced in (14) to promote
sparsity of a, b. Moreover, in case creating PWL partitions in
a reduced set of features is desired for better explanation of
the separating hyperplanes, it is enough to zero some columns
of vector ωj in (11a), or alternatively compute the centroids
in (12) on the subvector of selected features. The proof of
Theorem 1 can be easily extended to cover both modifications.
Moreover, basis functions φi(x) can be used instead of x
directly, such as canonical piecewise linear functions [16]–[19]
to maintain the PWL nature of the predictor, with possibly
different basis functions chosen for partitioning the feature
space and for fitting targets.

We finally remark that, although we have shown how the
PARC algorithm can be used as the main component of a
workflow to learn and control hybrid dynamical systems from
mixed numeric and categorical data, it is a general supervised
learning method that can be applied in several other contexts.

ACKNOWLEDGEMENT

The author thanks Faiq Ghanash for a personal commu-
nication on the encoding of piecewise affine mappings, that
inspired the formulation of Lemma 3.

REFERENCES

[1] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference, and prediction. Springer Science &
Business Media, 2009.

[2] C. Bishop, Pattern recognition and machine learning. Springer, 2006.
[3] H. Kushner, “A new method of locating the maximum point of an

arbitrary multipeak curve in the presence of noise,” Journal of Basic
Engineering, vol. 86, no. 1, pp. 97–106, 1964.

[4] D. Jones, “A taxonomy of global optimization methods based on
response surfaces,” Journal of Global Optimization, vol. 21, no. 4, pp.
345–383, 2001.

[5] E. Brochu, V. Cora, and N. D. Freitas, “A tutorial on Bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, 2010.

[6] A. Bemporad, “Global optimization via inverse distance weighting and
radial basis functions,” Computational Optimization and Applications,
vol. 77, pp. 571–595, 2020, code available at http://cse.lab.imtlucca.it/
∼bemporad/glis.

[7] A. Bemporad and D. Piga, “Active preference learning based on radial
basis functions,” Machine Learning, vol. 110, no. 2, pp. 417–448, 2021,
code available at http://cse.lab.imtlucca.it/∼bemporad/glis.

[8] N. Queipo, R. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. Tucker,
“Surrogate-based analysis and optimization,” Progress in aerospace
sciences, vol. 41, no. 1, pp. 1–28, 2005.

[9] E. Camacho and C. Bordons, Model Predictive Control, ser. Advanced
Textbooks in Control and Signal Processing. London: Springer, 1999.

[10] D. Mayne, J. Rawlings, and M. Diehl, Model Predictive Control: Theory
and Design, 2nd ed. Madison,WI: Nob Hill Publishing, LCC, 2018.

[11] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[12] L. Ljung, System Identification : Theory for the User, 2nd ed. Prentice
Hall, 1999.

[13] J. Schoukens and L. Ljung, “Nonlinear system identification: A user-
oriented road map,” IEEE Control Systems Magazine, vol. 39, no. 6, pp.
28–99, 2019.

[14] D. Masti and A. Bemporad, “Learning nonlinear state-space models
using autoencoders,” Automatica, 2020, in press.

[15] L. Breiman, “Hinging hyperplanes for regression, classification, and
function approximation,” IEEE Transactions on Information Theory,
vol. 39, no. 3, pp. 999–1013, 1993.

[16] J. Lin and R. Unbehauen, “Canonical piecewise-linear approximations,”
IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 39, no. 8, pp. 697–699, 1992.

[17] L. Chua and A. Deng, “Canonical piecewise-linear representation,” IEEE
Transactions on Circuits and Systems, vol. 35, no. 1, pp. 101–111, 1988.

[18] P. Julián, A. Desages, and B. D’Amico, “Orthonormal high-level canoni-
cal PWL functions with applications to model reduction,” IEEE Transac-
tions on Circuits and Systems I: Fundamental Theory and Applications,
vol. 47, no. 5, pp. 702–712, 2000.

[19] A. Bemporad, A. Oliveri, T. Poggi, and M. Storace, “Ultra-fast stabiliz-
ing model predictive control via canonical piecewise affine approxima-
tions,” IEEE Trans. Automatic Control, vol. 56, no. 12, pp. 2883–2897,
2011.

[20] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[21] A. Lodi, “Mixed integer programming computation,” in 50 years of
integer programming 1958-2008. Springer, 2010, pp. 619–645.

[22] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari, “A clustering
technique for the identification of piecewise affine systems,” Automatica,
vol. 39, no. 2, pp. 205–217, Feb. 2003.

[23] R. Vidal, S. Soatto, Y. Ma, and S. Sastry, “An algebraic geometric
approach to the identification of a class of linear hybrid systems,” in
Proc. 42th IEEE Conf. on Decision and Control, Maui, Hawaii, 2003,
pp. 167–172.

[24] J. Roll, A. Bemporad, and L. Ljung, “Identification of piecewise affine
systems via mixed-integer programming,” Automatica, vol. 40, no. 1,
pp. 37–50, 2004.

[25] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “A bounded-
error approach to piecewise affine system identification,” IEEE Trans.
Automatic Control, vol. 50, no. 10, pp. 1567–1580, Oct. 2005.

[26] H. Nakada, K. Takaba, and T. Katayama, “Identification of piecewise
affine systems based on statistical clustering technique,” Automatica,
vol. 41, no. 5, pp. 905–913, 2005.

[27] A. Hartmann, J. M. Lemos, R. S. Costa, J. Xavier, and S. Vinga,
“Identification of switched ARX models via convex optimization and
expectation maximization,” Journal of Process Control, vol. 28, pp. 9–
16, 2015.

[28] F. Lauer, “On the complexity of piecewise affine system identification,”
Automatica, vol. 62, pp. 148–153, 2015.

[29] Y. Yuan, X. Tang, W. Zhou, W. Pan, X. Li, H.-T. Zhang, H. Ding, and
J. Goncalves, “Data driven discovery of cyber physical systems,” Nature
Communications, vol. 10, no. 1, pp. 1–9, 2019.

[30] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal, “Identification
of hybrid systems a tutorial,” European journal of control, vol. 13, no. 2,
pp. 242–260, 2007.

[31] L. Bako, K. Boukharouba, E. Duviella, and S. Lecoeuche, “A recursive
identification algorithm for switched linear/affine models,” Nonlinear
Analysis: Hybrid Systems, vol. 5, no. 2, pp. 242–253, 2011.

[32] V. Breschi, D. Piga, and A. Bemporad, “Piecewise affine regression
via recursive multiple least squares and multicategory discrimination,”
Automatica, vol. 73, pp. 155–162, Nov. 2016.

[33] K. Bennett and O. Mangasarian, “Multicategory discrimination via linear
programming,” Optimization Methods and Software, vol. 3, pp. 27–39,
1994.

[34] S. Lloyd, “Least square quantization in PCM,” Bell Telephone Labora-
tories Paper. Also published in IEEE Trans. Inform. Theor., vol. 18, n.
2, pp. 129–137, 1982, 1957.

[35] G. Cimini and A. Bemporad, “Exact complexity certification of active-
set methods for quadratic programming,” IEEE Trans. Automatic Con-
trol, vol. 62, no. 12, pp. 6094–6109, 2017.

[36] M. Schechter, “Polyhedral functions and multiparametric linear pro-
gramming,” Journal of Optimization Theory and Applications, vol. 53,
no. 2, pp. 269–280, May 1987.

[37] D. Cox, “Some procedures connected with the logistic qualitative
response curve,” in Research Papers in Probability and Statistics
(Festschrift for J. Neyman), F. David, Ed., 1966, pp. 55––71.

[38] H. Thiel, “A multinomial extension of the linear logit model,” Interna-
tional Economic Review, vol. 10, no. 3, pp. 251–259, 1969.

[39] A. Bemporad, D. Bernardini, and P. Patrinos, “A convex feasibility ap-
proach to anytime model predictive control,” IMT Institute for Advanced
Studies, Lucca, Tech. Rep., Feb. 2015, http://arxiv.org/abs/1502.07974.

[40] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade. Springer, 2012, pp. 421–436.

[41] R. Duda and H. Fossum, “Pattern classification by iteratively determined
linear and piecewise linear discriminant functions,” IEEE Transactions
on Electronic Computers, no. 2, pp. 220–232, 1966.

[42] J. Spall, “Cyclic seesaw process for optimization and identification,”
Journal of Optimization Theory and Applications, vol. 154, no. 1, pp.
187–208, 2012.

16

[43] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms. Society for Industrial and Applied Mathematics,
pp. 1027–1035, 2007.

[44] R. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for
bound constrained optimization,” SIAM Journal on scientific computing,
vol. 16, no. 5, pp. 1190–1208, 1995.

[45] D. O’Leary, “Robust regression computation using iteratively reweighted
least squares,” SIAM Journal on Matrix Analysis and Applications,
vol. 11, no. 3, pp. 466–480, 1990.

[46] M. Schmidt, N. L. Roux, and F. Bach, “Minimizing finite sums with the
stochastic average gradient,” Mathematical Programming, vol. 162, no.
1-2, pp. 83–112, 2017.

[47] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[48] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink, “Sparse
multinomial logistic regression: Fast algorithms and generalization
bounds,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 27, no. 6, pp. 957–968, 2005.

[49] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective algorithms
for nonconvex big data optimization,” IEEE Transactions on Signal
Processing, vol. 63, no. 7, pp. 1874–1889, 2015.

[50] R. Jyothi and P. Babu, “PIANO: A fast parallel iterative algorithm for
multinomial and sparse multinomial logistic regression,” arXiv preprint
arXiv:2002.09133, 2020.

[51] P. Blanchard, D. Higham, and N. Higham, “Accurately computing the
log-sum-exp and softmax functions,” MIMS EPrint: 2019.16, 2019.
[Online]. Available: \url{http://eprints.maths.manchester.ac.uk/2765/}

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[53] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and
J. H. Moore, “PMLB: a large benchmark suite for machine learning
evaluation and comparison,” BioData Mining, vol. 10, no. 1, p. 36,
Dec 2017. [Online]. Available: \url{https://epistasislab.github.io/pmlb}

[54] A. Bemporad, “Piecewise linear regression and classification,” available
on arXiv at https://arxiv.org/abs/2103.06189. Code available at http://
cse.lab.imtlucca.it/∼bemporad/parc.

[55] Y. Lee and B. Kouvaritakis, “A linear programming approach to con-
strained robust predictive control,” IEEE Transactions on Automatic
Control, vol. 45, no. 9, pp. 1765–1770, 2000.

[56] A. Bemporad, “Efficient conversion of mixed logical dynamical systems
into an equivalent piecewise affine form,” IEEE Trans. Automatic
Control, vol. 49, no. 5, pp. 832–838, 2004.

[57] ——, Hybrid Toolbox – User’s Guide, Jan. 2004, http://cse.lab.imtlucca.
it/∼bemporad/hybrid/toolbox.

[58] A. Bemporad, G. Ferrari-Trecate, and M. Morari, “Observability and
controllability of piecewise affine and hybrid systems,” IEEE Trans.
Automatic Control, vol. 45, no. 10, pp. 1864–1876, 2000.

[59] G. Ferrari-Trecate, F. Cuzzola, and M. Morari, “Lagrange stability and
performance analysis of discrete-time piecewise affine systems with
logic states,” International Journal of Control, vol. 76, no. 16, pp. 1585–
1598, 2003.

[60] F. Torrisi and A. Bemporad, “HYSDEL — A tool for generating
computational hybrid models,” IEEE Trans. Contr. Systems Technology,
vol. 12, no. 2, pp. 235–249, Mar. 2004.

[61] J. Hooker and M. Osorio, “Mixed logical/linear programming,” Discrete
Applied Mathematics, vol. 96–97, pp. 395–442, 1999.

[62] IBM, Inc., IBM ILOG CPLEX Optimization Studio 12.10 – User
Manual, 2020.

Alberto Bemporad received his Master’s de-
gree in Electrical Engineering in 1993 and his
Ph.D. in Control Engineering in 1997 from the
University of Florence, Italy. In 1996/97 he was
with the Center for Robotics and Automation,
Department of Systems Science & Mathematics,
Washington University, St. Louis. In 1997-1999
he held a postdoctoral position at the Automatic
Control Laboratory, ETH Zurich, Switzerland,
where he collaborated as a senior researcher
until 2002. In 1999-2009 he was with the De-

partment of Information Engineering of the University of Siena, Italy,
becoming an Associate Professor in 2005. In 2010-2011 he was with the
Department of Mechanical and Structural Engineering of the University
of Trento, Italy. Since 2011 he is Full Professor at the IMT School
for Advanced Studies Lucca, Italy, where he served as the Director
of the institute in 2012-2015. He spent visiting periods at Stanford
University, University of Michigan, and Zhejiang University. In 2011 he
cofounded ODYS S.r.l., a company specialized in developing model
predictive control systems for industrial production. He has published
more than 350 papers in the areas of model predictive control, hybrid
systems, optimization, automotive control, and is the co-inventor of 16
patents. He is author or coauthor of various software packages for
model predictive control design and implementation, including the Model
Predictive Control Toolbox (The Mathworks, Inc.) and the Hybrid Toolbox
for MATLAB. He was an Associate Editor of the IEEE Transactions
on Automatic Control during 2001-2004 and Chair of the Technical
Committee on Hybrid Systems of the IEEE Control Systems Society
in 2002-2010. He received the IFAC High-Impact Paper Award for the
2011-14 triennial and the IEEE CSS Transition to Practice Award in
2019. He is an IEEE Fellow since 2010.

