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Observability and Controllability of Piecewise Affine
and Hybrid Systems

Alberto Bemporad, Giancarlo Ferrari-Trecate, and Manfred Morari

Abstract—In this paper, we prove, in a constructive way, the
equivalence between piecewise affine systems and a broad class
of hybrid systems described by interacting linear dynamics,
automata, and propositional logic. By focusing our investigation
on the former class, we show through counterexamples that
observability and controllability properties cannot be easily
deduced from those of the component linear subsystems. Instead,
we propose practical numerical tests based on mixed-integer
linear programming.

Index Terms—Controllability, hybrid systems, mixed-integer
linear programming, observability, piecewise affine systems,
piecewise linear systems.

I. INTRODUCTION

I N recent years, both control and computer science have been
attracted byhybrid systems[1], [2], [23], [25], [26] because

they provide a unified framework for describing processes
evolving according to continuous dynamics, discrete dynamics,
and logic rules. The interest is mainly motivated by the large
variety of practical situations, for instance, real-time systems,
where physical processes interact with digital controllers.

Several modeling formalisms have been developed to de-
scribe hybrid systems, as reviewed in [24]. It is apparent that
the tools for the analysis of hybrid systems strongly depend
on the adopted mathematical description. Computer scientists
have extended automata theory totimed automata, where the
continuous-time flow is modeled as , and further tolinear
hybrid automata[1], where the dynamic is specified by the
differential inclusion . On the other side, the control
community started studying the so-calledhybrid dynamical
systems[11] or hybrid automata[26] where the switching
between different dynamics is governed by a finite automaton.
A special case where dynamic equations and switching rules
are linear functions of the state are the so-called piecewise
affine (PWA) systems [33].

Recently, Bemporad and Morari [4] introduced a new class
of hybrid systems called mixed logical dynamical (MLD) sys-
tems. The justification for the MLD form is that it is capable
of modeling a broad class of systems arising in many applica-
tions: linear hybrid dynamical systems, hybrid automata, non-
linear dynamic systems where the nonlinearity can be approx-
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imated by a piecewise linear function, some classes of discrete
event systems, linear systems with constraints, etc. Examples of
real-world applications that can be naturally modeled within the
MLD framework are reported in [3]–[5].

MLD systems are formulated in discrete time. Although the
effects of sampling can be neglected in most applications, subtle
phenomena such as Zeno behaviors cannot be captured in dis-
crete time. On the other hand, although reformulating MLD sys-
tems in continuous time would be quite easy from a theoretical
point of view, a discrete-time formulation allows developing nu-
merically tractable schemes for solving complex problems, such
as control [4], state estimation and fault detection [3], [15], and
formal verification of hybrid systems [5], [6]. For this reason,
the analysis presented in this paper will be limited to discrete
time.

The first result is to prove, in a constructive way, that MLD
systems are formally equivalent to PWA systems. This result al-
lows extending all of the techniques developed for PWA models
to the general MLD description of hybrid systems, therefore
rendering the PWA framework a useful companion for investi-
gating properties and designing algorithms. Although based on
different arguments, this importance has also been pointed out
by Sontag [33], who highlights the equivalence between piece-
wise linear (PWL) systems and interconnections of linear sys-
tems and finite automata.

Piecewise affine systems are described by the state-space
equations

for

(1)

where is a partition of the state+input set and, are
suitable constant vectors. Each subsystem defined by the 5-tuple

, is termed acomponentof
the PWA system (1). If and are null, system (1) is referred
to as piecewise linear. From a complexity point of view, PWL
and PWA systems are equivalent (, can be thought of as
generated by integrators with no input).

PWA systems are sufficiently expressive to model a large
number of physical processes, such as systems with static non-
linearities (for instance, actuator saturation), and they can ap-
proximate nonlinear dynamics with arbitrary accuracy via mul-
tiple linearizations at different operating points.

Despite the fact that PWA models are just a composition of
linear time-invariant dynamic systems, their structural proper-
ties such as observability, controllability, and stability are com-
plex and articulated, as is typical of nonlinear systems.
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Consider, for instance, stability properties. Besides simple,
but very conservative results such as finding one common
quadratic Lyapunov function for all of the components, re-
searchers have started developing analysis and synthesis tools
for PWA systems only very recently. By adopting piecewise
quadratic Lyapunov functions, a computational approach based
on linear matrix inequalities has been proposed in [19] and [21]
for stability analysis and control synthesis. Construction of
Lyapunov functions for switched systems has also been tackled
in [37]. For the general class of switched systems of the form

, , an extension of the Lyapunov criterion
based on multiple Lyapunov functions was introduced in [9]
and [10]. Blondel and Tsitsiklis [8] showed that the stability
of autonomous PWL systems is hard to verify (i.e., in
general, the stability of a PWL system cannot be assessed
by a polynomial-time algorithm, unless ), even in
the simple case of two component subsystems. Several global
properties (such as global convergence and asymptotic stability)
of PWA systems have been recently shown undecidable in [7].

The research into stability criteria for PWL systems has been
motivated by the fact that the stability of each component sub-
system is not enough to guarantee stability of a PWL system
(and vice versa). Branicky [10] gives an example where stable
subsystems are suitably combined to generate an unstable PWL
system. Stable systems constructed from unstable ones have
been reported in [36]. These examples point out that restrictions
on the switching have to be imposed in order to prove that a
PWL composition of stable components remains stable.

Very little research focused on the observability and control-
lability properties of hybrid systems, apart from contributions
limited to the field of timed automata [1], [20], [23] and the pio-
neering work of Sontag [30] for PWL systems. Needless to say,
these concepts are fundamental for understandingif and how
well a state observer and a controller for a hybrid system can
be designed. For instance, observability properties were directly
exploited for designing convergent state estimation schemes for
hybrid systems in [15].

Controllability and observability properties have been inves-
tigated in [14] and [18] for linear time-varying systems, and in
particular for the so-called class of piecewise constant systems
(where the matrices in the state-space representation are piece-
wise constant functions of time). Although in principle appli-
cable, these results do not allow one to catch the peculiarities of
PWA systems.

General questions of the hardness of the controllability
of nonlinear systems were addressed by Sontag [32]. Following
his earlier results [30], [31], Sontag [33] analyzes the com-
putational complexity of the observability and controllability
of PWA systems through arguments based on the language
of piecewise linear algebra. The author proves that observ-
ability/controllability is complete over finite time, and is
undecidable over infinite time (i.e., in general, cannot be solved
in finite time by means of any algorithm). Using a different
rationale, the same result was derived in [8].

In this paper, we provide two main contributions to the anal-
ysis of the controllability and observability of hybrid and PWA
systems: 1) we show the reader that observability and control-

lability properties can be very complex; we present a number
of counterexamples that rule out obvious conjectures about in-
heriting observability/controllability properties from the com-
posing linear subsystems1; and 2) we provide observability and
controllability tests based onlinear and mixed-integer linear
programs(MILP).

II. M IXED LOGICAL DYNAMICAL (MLD) SYSTEMS

The mixed logical dynamical (MLD) form was introduced
in [4], based on the idea of transforming logic relations into
mixed-integer linear inequalities [28], [35]. It is a modeling
framework that allows the description of various classes of sys-
tems, like systems with mixed discrete/continuous inputs and
states, automata driven by events on continuous dynamics, sys-
tems with qualitative outputs, and PWA systems. The ability to
include constraints, constraint prioritization, and heuristics aug-
ments the expressiveness and generality of the MLD framework.
The general MLD form is

(2a)

(2b)

(2c)

where are the continuous and binary states,
are the inputs, are the

outputs, and , represent auxiliary binary
and continuous variables, respectively. All constraints on state,
input, , and variables are summarized in the inequality (2c).
Although the description (2) seems to be linear, nonlinearity
is concentrated and hidden in the integrality constraints over
binary variables.

We assume that system (2) iscompletely well posed[4],
which in words means that, for all within a bounded set,
the variables are uniquely determined, i.e., there exist
functions , such that, at each time, ,

.2 This allows assuming that
and are uniquely defined once , are given, and
therefore that and trajectories exist and are uniquely
determined by the initial state and input trajectory .

The auxiliary variables are introduced when transforming
propositional logic into linear inequalities. We briefly review
here these translation techniques, and refer the reader to [4] for
a detailed exposition.

By following standard notation [12], [35], [38], [39], we
adopt capital letters to represent statements, e.g., “ ”
or “temperature is hot.” is commonly referred to as a
literal, and has atruth value of either “T” (true) or “F”
(false). Boolean algebra enables statements to be combined
in compound statements by means ofconnectives:“ ” (and),
“ ” (or), “ ” (not), “ ” (implies), “ ” (if and only if), “ ”
(exclusive or). Connectives satisfy several properties (see, e.g.,
[13]), which can be used to transform compound statements

1We thank one of the anonymous reviewers for pointing out that similar coun-
terexamples were orally presented by Leonid Gurvits.

2A more general definition of well posedness, where only the components of
� andz entering (2a)–(2b) are required to be unique, is given in [4].
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Fig. 1. Temperature control system.

TABLE I
BASIC CONVERSION OFLOGIC RELATIONS INTO MIXED-INTEGER

INEQUALITIES; RELATIONS INVOLVING THE FORM [� = 0] CAN BE OBTAINED

BY SUBSTITUTING (1� �) FOR� IN THE CORRESPONDINGINEQUALITIES

into equivalent statements involving different connectives,
and simplify complex statements. Correspondingly, one can
associate with a literal a logical variable , which
has a value of either 1 if = T, or 0 otherwise. A propositional
logic problem, where a statement must be proved to be
true given a set of (compound) statements involving literals

can be solved by means of a linear integer program
by suitably translating the original compound statements into
linear inequalities involving logical variables. In fact, the
propositions and linear constraints reported in Table I can
easily be seen to be equivalent.

These translation techniques can be adopted to model logical
parts of processes and heuristic knowledge about plant operation
as integer linear inequalities. The link between logic statements
and continuous dynamical variables, in the form of logic state-
ments derived from conditions on physical dynamics, is pro-
vided by properties (P9)–(P12) in Table I, and leads tomixed-in-
teger linear inequalities, i.e., linear inequalities involving both
continuous variablesof and logical (indicator) variables in

. Consider, for instance, the statement
where is linear, assume that , where
is a given bounded set, and define

Theoretically, an over[under]estimate of [ ] suffices for our
purpose. By associating a binary variablewith the literal ,
one can transform into mixed-integer inequal-
ities as described in (P12), Table I, whereis a small tolerance
(typically the machine precision), beyond which the constraint
is regarded as violated. Note that, sometimes, translations re-
quire the introduction ofauxiliary variables[39, p. 178]; for
instance, according to (P13), a product between logic and con-
tinuous quantities requires the introduction of a real variable.

The rules of Table I can be generalized for relations involving
an arbitrary number of discrete variables combined by arbitrary
connectives.Anycombinational relation of logical variables can
be, in fact, represented in conjunctive normal form (CNF), and
subsequently automatically translated (without using additional
integer variables) into mixed-integer linear inequalities. This re-
quires the translation from the original logic statement to CNF.
An alternative method for translating any logical relation be-
tween Boolean literals, given in the form of a logical proposition
or truth table, into a minimal set of linear integer inequalities has
been recently shown in [27].

In light of the transformations of Table I, it is clear that the
well-posedness assumption stated above is usually guaranteed
by the way the linear inequalities (2c) are generated, and there-
fore this hypothesis is typically verified by MLD relations de-
rived from modeling real-world plants. Nevertheless, a numer-
ical test for well-posedness is reported in [4, Appendix 1].

A. An Example: Temperature Control System

In order to exemplify the modeling techniques of MLD sys-
tems, we consider the temperature controller example reported
in [1]. The temperature of a room is controlled through a
thermostat, which turns a heater on and off according to the
measured temperature. When the heater is off,decreases ac-
cording to the first-order dynamics ; when the
heater is on, , where is proportional to the
power of the heater, . While in [1] is con-
sidered constant, here we allow more degrees of freedom by
assuming that is an exogenous input. The hybrid automaton
modeling the temperature control system is depicted in Fig. 1. In
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order to translate the automaton into the MLD form (2), we dis-
cretize the continuous dynamics with sampling time, namely,

if heater OFF

if heater ON
(3)

where . Then, we introduce the auxiliary binary vari-
ables

(4a)

(4b)

which take into account the crossing of the guard lines (obvi-
ously, ). Equations (4a)–(4b) can be transformed into
mixed-integer linear inequalities by using (P12) in Table I (we
assume that a lower bound and an upper bound over
are known).

A logic state is needed to store the status of the heater,
and evolves according to the equation

(5)

where

(6a)

(6b)

(6c)

and

(7)

(although is redundant here, the reason for introducing it will
be clear in Section III).

As and cannot be 1 at the same time, we include the
constraint

(8)

Equations (6a) and (6b) are translated into inequalities ac-
cording to (P8). Equation (6c) is equivalent to

(9)

Although (9) can be immediately verified by inspection, it has
been obtained by applying the technique described in [27] to
transform general propositional logic statements into mixed-in-
teger linear inequalities through polyhedral computation.

The dynamics (3) can be equivalently rewritten as

(10)

Because of the product involving and , we introduce
the auxiliary continuous variable ,
which can be transformed into mixed-integer linear inequalities,
according to (P13) in Table I.

The transformations above can be summarized in the fol-
lowing MLD representation of the temperature control system:

(11a)

(11b)

where and . A simulation of the
system for , , , , ,

, , , starting from the initial condition
, , and applying the input is

depicted in Fig. 2.
This example has shown the main steps to represent a hy-

brid system in the MLD form (2). This procedure was recently
automatized by the language HYSDEL (hybrid system descrip-
tion language), developed at ETH Zürich. The HYSDEL com-
piler automatically generates the matrices of the MLD system
starting from a high-level description of the hybrid system, and
is available at http://control.ethz.ch/~hybrid/hysdel.

III. EQUIVALENCE BETWEENHYBRID AND PWA SYSTEMS

Consider apiecewise affine(PWA) time-invariant dynamic
system of the form (1), where , , and .
We take into account constraints on the state and the input as-
suming that the state+input admissible set is a
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Fig. 2. Simulation of the temperature control system. The different regions where PWA component subsystems are active are depicted with different textures.

TABLE II
VALID COMBINATIONS [� � � � ] AND RESPECTIVEFUNCTIONS

z = G(x; u)

convex and bounded polyhedron. Moreover, we suppose that,
forms a polyhedral partition3 of .

A frequent representation of (1) arises in gain scheduling,
where the linear model (and, consequently, the controller) is
switched among a finite set of models, according to changes of
the operating conditions.

PWA systems can be represented in the MLD form (2).
The translation consists of defining logical variables

and imposing the exclusive-or
condition .Fordetails, the reader is referred to [4].

Conversely, we will show in Proposition 1 that every MLD
model (2) is equivalent to a PWA system.

Before stating this general conversion result, we consider
again the temperature control system of Section II-A. It is easy
to check from (6a)–(9) that only the combinations
reported in Table II are allowed. The corresponding relations
between and , are also reported in Table II.

3Each setX is a (not necessarily closed) convex polyhedron s.t.X X =
;, 8 i 6= j, X = X .

As the switching is governed by changes of vector , it is
intuitive that the number of regions in which the state space
is partitioned coincides with the number of validcombinations
(i.e., six). To see this, consider, for example, . This
gives , and, by substituting in (11b), the corresponding
region is defined by the inequalities

(12)

where redundant constraints have been eliminated by using stan-
dard procedures based on linear programming. Moreover, from
(11a) and , it follows that, in the region defined by (12),
the state-update equations are

(13)

In Fig. 2, the different regions where PWA component subsys-
tems are active are depicted by different textures.

Proposition 1: Consider generic trajectories , ,
of an MLD system (2). Then there exist a polyhedral partition

of the state input set

s.t. (2c) holds for some
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and 5-tuples , , , , , , such that ,
, satisfy (1).
Proof: In order to simplify the proof, without loss of gen-

erality, we assume that the logical componentsof are also
auxiliary variables, i.e., such that .
This is not a restrictive assumption, as typically the state tran-
sition of logical states derives from a logic predicate involving
literals associated with components of and , and the
latter can be expressed again as additional auxiliary variables by
simply adding the constraints ,
in (2c).

By the well posedness of system (2), given , , the
vector is uniquely defined, namely, .
Moreover, it only takes a value within a set of (at most)
values (corresponding to all possible 0–1 combinations). Let
be the number of valid combinations, i.e., the number of all dif-
ferent vectors satisfying constraints (2c) for some

, , . The idea is to partition the state+input space
by grouping in regions all corresponding to the same
binary vector . Let us fix . The in-
equalities (2c) define a polyhedronin . By the well
posedness of , given a pair , , there exists only one
value satisfying (2c), namely, .
As all of the inequalities (2c) are linear, is an affine function,
namely,

(14)

and is a polyhedral set of dimension less than or
equal to (for instance, if , , , would
be a segment in ). By substituting (14) in (2a) and (2b), we
obtain

which, by suitable choice of , , , , , ,
corresponds to (1) for

Remark 1: We stress the fact that the proof is based on a
constructive argument. In fact, as was done in the temperature
control system example, information on the description of the
system can be used to derive (14), either from direct insight or
automatically from the inequalities (2c).

Remark 2: From a computational point of view, both
forms (1) and (2) have advantages. As in the case of linear
time-varying systems, the former allows expressing the evolu-
tion of the system in a very compact way, for instance, when
dealing with reach-set computation [6] (i.e., the computation of
the set of states which are reachable from a given set of initial
conditions). On the other hand, the latter allows inference,

e.g., in a switching detection problem, namely, the problem of
determining all possible new regions’s entered by a set of
state vectors at the next time step. While the PWA form would
be required for enumerating and checking for the nonemptiness
of the intersections of the updated set with all of the regions

, , the MLD form instead can be conveniently
exploited to solve the problem through mixed-integer linear
optimization involving , as free variables [6]. This in-
directly moves the inference problem to the branch-and-bound
strategy of the MILP solver.

IV. OBSERVABILITY

In this section, we consider observability of MLD systems (2)
or, equivalently, PWA systems in view of Proposition 1.

Denote by the output evolution at time starting
from the initial condition and driven by the input ,

. We extend the definition of observability given in
[22] and [29] to nonautonomous hybrid systems of the form (2).

Definition 1: Let be a set of initial
states, and let be a set of inputs. The
MLD system (2) isincrementally observable in steps on
uniformly with respect to or simplyincrementally observable
if there exist two norms (on ) and (on )
and a positive scalar such that and input
sequences :

(15)

Remark 3: When including the input in the definition of
observability of nonlinear systems, some authors prefer asking
that “ ” (an input sequence such that ) in-
stead of “ .” As typically an observer is used together with
a controller, we have opted for the latter. In fact, in this situ-
ation, the output of the controller is not a sequence which is
knowna priori, and therefore observability should be required
with respect toall possible input commands generated by the
controller. Moreover, the class of such commands is usually
specified by the control system design, for instance, directly by
limits on actuators.

Remark 4: The parameters and appearing in Definition
1 admit a practical interpretation. The scalarcan be viewed
as an observability measure4 for an incrementally observable
system. For fixed initial states and , the larger , the more
different the trajectories , [from now on,
we will write in short , ]. Hence, in practice, one
would fix a minimum observability level and require that

. If this condition is not fulfilled, we classify the
system aspractically unobservable. Practical unobservability
also arises if Definition 1 is satisfied only for large. There-
fore, it is sensible to fix an upper bound on , and define
an MLD system as practically observable when it satisfies Def-
inition 1 with .

Condition (15) is simply anincremental distinguishability
condition, i.e., it states that different initial states always give

4More precisely, one should use~w = supfw > 0 s.t. (15) holdsg as the
observability measure.
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different outputs, independently of the applied input. However,
although , in principle, there might be a compo-
nent of which is not observable. But this cannot be true. In fact,
in this case, one could take two initial states such that the ob-
servable component is the same, which implies ,

, thus violating Definition 1. In conclusion, the notions
of incremental distinguishability and incremental observability
coincide.

For bounded sets , it is easy to verify that the term
in Definition 1 could be substituted by a

more general function (see [22] for the
definition of the class) such that is lower and upper
Lipschitz, i.e., there exist positive constants, such that

. Therefore, we can conclude that
Definition 1 is not much more restrictive than theproperty
given in [22].

A. Observability Counterexamples for PWA Systems

Definition 1 was formulated for the general class of hybrid
systems described by the MLD form (2) or, equivalently, the
PWA form (1). One might expect to exploit the structure of PWA
systems to derive results about observability similar to those
holding for linear systems. Below we show some counterexam-
ples which undermine these hopes, even in the simpler case of
autonomous PWL systems.

We first show that, in general, for PWL systems, the time
of observability has no relation to the order of each sub-
system, and therefore, if a PWL system is incrementally observ-
able, nothing can be said, in general, about the minimumsuch
that Definition 1 holds.

Then, we show examples where the observability properties
of a PWL system cannot be directly inferred from the observ-
ability properties of its linear subsystems. In fact, we will show
that unobservable subsystems can be composed to build an ob-
servable PWL system, and vice versa, that the composition of
observable subsystems can become unobservable.

1) A PWL System Incrementally Observable withArbi-
trarily Large: Consider the following system:

if

otherwise

(16)

where is fixed, and set

(17)

Then , where

and denotes the least upper integer. Moreover,
, and therefore two initial states

, , with , are indistinguishable
for . By Definition 1, system (16) is incrementally
observable in steps. In Fig. 3, we report the plot of the
function , and
Definition 1 can be verified by visual inspection. We can render

arbitrarily large by choosing smaller and smaller values
of (intuitively, the smaller the initial condition , the
longer the time required for the output to overpass 1 and switch
dynamics). By setting in (16) and (17), it follows that the
system (16) becomes incrementally observable on only
in infinite steps, in the sense that, for each, there exist initial
states in that can be observed only after steps.

2) An Incrementally Observable PWL System whose Compo-
nents are Unobservable:Consider the system

if

if

(18a)
if

if
(18b)

whose component subsystems are unobservable. The evolutions
of the state-space trajectories are depicted in Fig. 4.

Let sector 1 sector 2 depicted in Fig. 4 be a bounded
set of admissible initial states. If lies in sector 1, we have

, and the first component of the initial state is
immediately observed. However, since

and is bounded, there exists a finite time such that
the state enters sector 2. Then, , and
the second component can be determined as well from the
output knowledge.Mutatis mutandis, the same rationale applies
when the initial state lies in sector 2. Then the system is incre-
mentally observable in steps on . Note, however, that the
system is not incrementally observable on initial sets inter-
secting sectors 3 or 4. Consider, in fact, an initial state that lies
in sector 3 (or 4). From Fig. 4, it is clear that the state trajectory
never crosses the line . Therefore, the evolutions will
be governed by the first (the second) component of (18), thus im-
plying the unobservability of the first (second) coordinate of the
initial state.

3) An Unobservable PWL System whose Components are
Observable: Consider the system

if

if

if

if
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Fig. 3. Statesx , x are indistinguishable forT steps.

Fig. 4. State-space plane:x(t+ 1)� x(t) normalized vector field.

whose components are observable. We partition again the state
space as in Fig. 4. If the initial state lies in sector 3, by direct
calculation, one has and , .
Indeed, the state evolution for is

if even

if odd

and . Since the same rationale can be applied for
initial states lying in sector 4, it can be concluded that the system
is not incrementally observable on sector 3 sector 4
(although it is easy to verify that the system is still incrementally
observable on sector 1 sector 2).

B. An Observability Test for Hybrid Systems

The purpose of this section is to derive an observability test
for hybrid systems in the MLD form (2). In fact, the observ-
ability condition formulated in Definition 1 can be difficult to
check, and thus one needs computationally tractable tests. Be-
fore stating Theorem 1, where we show that for MLD systems
the incremental observability in steps on and is re-
duced to the solution of a mixed-integer linear program (MILP),
we need some preliminary results.

Proposition 2: The MLD system (2) is incrementally observ-
able if and only if there exists a scalar such that

(19)

Proof: The proof easily follows from the fact that all of the
norms in finite-dimensional Euclidean spaces are equivalent.

Proposition 2 proves the decidability of practical incremental
observability (i.e., , as pointed out in Remark 4) over
a finite time . Unfortunately, the minimization problem (19) is,
in general, nonconvex. In any case, the use of the norms
and allows us to formulate it as an MILP problem. For
this purpose, we need a technical lemma. In the sequel,will
denote theth element of vector .

Lemma 1: Let be bounded. For two vectors , in
, it holds that

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

(20g)

where , ,
, and is a small tolerance (e.g., the

machine precision).
Proof: By recalling Table I, (20b) and (20c) are obtained

from the logical relation ,
while (20d)–(20g) are obtained by translating the product

. Hence, .
Theorem 1: Let be bounded, and consider the fol-

lowing optimization problem:

(21a)

subject to (2), (20b)–(20g), and

(21b)

(21c)

Then the MLD system (2) is incrementally observable insteps
on and if and only if, for some , it holds that

.
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Proof: We start by proving necessity. Inequalities (21b)
and (21c) imply that

(22)

By Lemma 1,

(23)

Then, combining (22) and (23),

(24)

In view of Proposition 2, the condition follows from the
incremental observability of system (2).

To show sufficiency, assume and consider

(25)

subject to constraints (2), and let, denote the initial states
that minimize (25). The variables , , and defined as

if

if

are feasible for problem (21a). Thus, by optimality,
, which proves incremental observability.
Theorem 1 is also helpful for designing an algorithm that

checks the practical observability of an MLD system (see Re-
mark 4. The procedure is summarized in the following steps.

Algorithm 1:
1) Choose and (see Remark 4).
2) Set and .
3) Solve the MILP (21a).
4) If , stop: the system is

(practically) observable.
5) If , increase .
6) If , stop: the system is

practically unobservable.
7) Go to step 3).

Remark 5: When the sets , are polytopes, the opti-
mization problem (21) becomes an MILP in
continuous variables and integer variables. It
is well known that, with the exception of particular structures,
MILP’s involving 0–1 variables are complete, which means
that, in the worst case, the solution time grows exponentially

with the number of integer variables [28]. Despite this combi-
natorial nature, several algorithmic approaches have been pro-
posed and applied successfully to medium- and large-size ap-
plication problems [17], andbranch-and-boundmethods were
shown to be extremely successful.

In case the observability horizon becomes large, solving
such an optimization can become computationally intractable.
As noted in the Introduction, this has to be expected because of
the -complete nature of the observability problem itself over
a finite horizon [33]. Consider, for instance, the autonomous case
(no input). By looking more closely at the MILP (21a), the main
reason for the complexity is the presence of integer variables

. Indeed, determining the optimal sequence
corresponds to finding the sequence of the switching of linear
dynamics, which leads to the worst case for observability.

Nevertheless, we now propose an algorithm which, although
still exponential in the worst case, is very efficient on average.
In fact, the difficulty caused by the (possibly huge) number of
combinations of binary variables ( , as pointed out
in Remark 5) will be avoided in general by exploiting the equiv-
alent PWA structure of hybrid systems.

C. An Efficient Observability Test for Hybrid Systems

We describe here a procedure to check the observability of
PWA systems that reduces the computational complexity of Al-
gorithm 1. We adopt tools developed forformal verification
of hybrid systems [5], [6] where, basically, a set-reachability
problem is solved through the exploration of all possible evolu-
tions of the hybrid system from the set of initial states .

The main advantage of adopting verification schemes is that
they can exploit the PWA dynamics (1) when exploring the
temporal evolution from the initial set . More specifically,
in the MILP problem (21a), the task of deciding in which
order to explore the possible combinations of integer vectors

is assigned to the numerical solver. Clearly,
most of the combinations will not be compatible with the
constraints (2c). Next Algorithm 2 avoids considering these
inadmissible combinations.

Let be a list of subsets , i.e., ,
and let # denote its length (by convention, # iff
). When a new set is added or removed to the list, we write,

respectively, or . Finally, denote the
state trajectory generated from the initial condition . For
the sake of simplicity, we consider a formulation for autonomous
PWA systems, although the presence of inputs can be taken into
account by adapting the verification algorithm proposed in [6].

Algorithm 2:
1) Set and .
2) For : if ,

then .
3) While :

3.1) for , : solve
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3.2) for : if ,
, then

3.3) if , STOP: the PWL system is
practically incrementally
observable in steps

3.4) set
3.5) for

3.5.1) let be the index such that

3.5.2) for : if
,

3.6) increase
3.7) if , STOP: the system is

practically unobservable
3.8) .

Algorithm 2 computes the evolution from the initial set
in order to explore all possible state trajectories . In any
case, since after steps there may exist some subsets of
whose elements can be observed (i.e., distinguished from the
other states in in steps), the algorithm avoids further
propagating such states. More precisely, at step 3.1, the set

collects the evolution of all of the initial states that are
not observable in steps. Then, the algorithm checks if all of
the initial states such that are distinguish-
able from the initial states satisfying .
This is done in step 3.1 by computing because, analogously
to (19), the distinguishability condition corresponds to .
In particular, if , , the subset of initial
states evolving in is observable (in steps). Then, there is
no need to further consider the evolution of the set, and it
is removed from the list (step 3.2). It is also apparent that the
practical incremental observability of the PWA system coincides
with the condition (step 3.3).

The one-step evolution of the sets is performed in step 3.4.
Note that, from steps 2 and 3.5.2, it follows that each set
belongs at most to a single region of the state space. This
ensures that the index(step 3.5.1) is always well defined and,
in step 3.5.2, every set evolves according the state equation
of the region which it belongs to. Moreover, if the set

intersects regions, it is split into new sets (each one
belonging only to a single region ) that are then added to the
updated list .

Algorithm 2 is more suitable for implementation when the
initial set is a bounded polyhedron. In this case, by means
of the update step 3.5.2, every set is a polytope as well.
Moreover, the minimization in step 3.1 becomes a mixed-integer
linear program. Actually, following the rationale of Theorem 1,
it is easy to prove that

(26)

subject to (1), (20b)–(20g), (21b), and (21c). Note that each
MILP problem (26) involves only integer variables versus the

required for problem (21a). This smaller number of
integer variables is the main reason for the computational effec-
tiveness of Algorithm 2.

Remark 6: In view of Proposition 1, it is apparent that the
property of incremental observability does not change when
switching between PWA and MLD representations. Therefore,
Algorthm 2 is also suitable for checking the (practical) incre-
mental observability of an autonomous MLD system.

As an illustrative example, we apply Algorthm 2 to system
(16) with and . The observ-
ability parameters are chosen as and .
In Fig. 5, the sets in the list are plotted in different gray levels
at times 1, 4, 8, 12. Note that, due to the evolution of the
system and the fathoming criterion, the vertical set in the region

progressively shrinks and, for , it disap-
pears. Algorthm 2 terminates by finding practical incremental
observability in 12 steps, in accordance with the analytic results
of Section IV-A-1 (CPU time: 22.8 s on a Pentium II 300 run-
ning Matlab 5.3).

D. A Deadbeat Observer for Hybrid Systems

Proposition 3 provides a deadbeat observer for hybrid sys-
tems (2). In a certain sense, it is a counterpart of [30, Theorem
2.10].

Proposition 3: Let be the minimizing
sequence of the following least squares problem:

subject to

(27)

where , , are the collection of
past inputs and outputs, and is any time horizon such that
Definition 1 is satisfied. Then is an estimate of the state
and , , where is the minimum
time horizon for observability.

Proof: After input/output pairs have been collected, the
minimum in problem (27) is 0, and the minimizer is

because, otherwise, there would exist a
state which is indistinguishable from the true state

based on the observed output sequence.
Note that the optimization problem (27) is a mixed-integer

quadratic program, for which efficient solvers exist [16]. An
MILP formulation can be obtained by using 1- or-norms, as
in Theorem 1, instead of the squared 2-norm.

As observed in Remark 5, the optimization problem (27) is
complete, and therefore computationally expensive for

large . Again, the complexity arises from the need for deter-
mining the sequence of switches of the linear dynamics which
has occurred between time and time . Nevertheless,
the completeness of the problem of solving (27) does not
imply that simpler observers do not exist for hybrid systems.
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Fig. 5. Evolution of the listR of Algorithm 2: different setsR are depicted by different gray levels. Snapshots atT = 1, 4, 8, 12. AfterT = 12, all of the sets
R disappear.

V. CONTROLLABILITY

We introduce the following definition of controllability for
MLD systems.

Definition 2: Let and be nonempty sets of initial
and final states, respectively. The MLD system (2) is control-
lable in steps from to if, , there exists
an admissible input sequence yielding

(28)

If and are singletons (i.e. and
), Definition 2 reduces to a classical controllability notion

[34]. In this case, our definition of controllability is instrumental
for checking if the state can be driven from a perfectly known
initial condition to a desired state (usually an equilibrium
state) by using a suitable control sequence . In any
case, letting be a general set, we also take into account
the case of incompletely specified initial conditions. Moreover,
in many situations, the control specifications demand driving a
system into a set ofsafestates [5]. It is apparent that Defi-
nition 2 also embraces this scenario.

Remark 7: In principle, one might be concerned about the
practical meaning of Definition 2. More specifically, due to
physical limitations, a user may be interested in controlling the

plant using only a bounded input. We point out that, even if
such a constraint does not appear explicitly in Definition 2, it
can be easily included in inequalities (2c).

A. Controllability Counterexamples for PWA Systems

Analogously to the observability notion, we specialize the
controllability definition to PWL systems. Again, through some
counterexamples, we will show that this property cannot be in-
ferred from the controllability of the component subsystems.

1) An Uncontrollable PWL System whose Components are
Controllable: Consider the system

if

if

(29)

whose components
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Fig. 6. State-space for system (29), whose components are completely
controllable: Region III is not reachable fromx .

Fig. 7. State space for system (30), whose components are uncontrollable.

are completely controllable. Let be the initial state,
and consider the partition of the state space depicted in Fig. 6.
The sectors I–IV are obtained by intersecting the lines

, . It is easy to verify that
only the sectors I, II, IV, are completely reachable from,
while III is not reachable. For instance, the point
can be reached from by applying the input
, , but no input can steer to the origin. In general,

the PWL system (29) is controllable to 0 from if and only if
I II IV, where we point out that sectors I–IV depend

on . Therefore, is controllable to the origin if and only if
, .

2) A Controllable PWL System whose Components are Un-
controllable: Consider the system

if

if

whose components

are uncontrollable. The three regions in which the state space is
partitioned are depicted in Fig. 7. It is easy to verify by inspec-

tion that every initial state in can be controlled to
any other state in at most three steps. This is, for instance, the
situation depicted in Fig. 7, where the point is
steered from by applying the input ,

.

B. Controllability Tests for Hybrid Systems

In this section, we discuss numerical tests for checking the
controllability of an MLD system. We first notice that Definition
2 can be translated into the followingmixed-integer feasibility
test(MIFT):

(30)

The feasibility test (30) is called averification problem in the
hybrid system literature. Unfortunately, solving the MIFT for
large becomes prohibitive. In fact, each problem (30) is
complete, which means that, in the worst case, the required com-
putation time grows exponentially with. Despite this strong
theoretical limitation, a verification algorithm for the general
class of MLD systems under the assumption that both and

are polyhedra was proposed [5], [6]. This procedure is based
on a sequence of linear and mixed-integer linear programs, and
can be adopted as a numerical controllability test. Various other
verification techniques have been proposed in the literature [1],
[2], [23].

VI. CONCLUSIONS

In this paper, we illustrated, through a number of counterex-
amples, the complexity of the observability and controllability
properties of PWA and hybrid systems. After proving the equiv-
alence between PWA and hybrid MLD systems, we exploited
this equivalence to derive observability and controllability tests
which are numerically appealing.
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