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Observability and Controllability of Piecewise Affine
and Hybrid Systems

Alberto Bemporad, Giancarlo Ferrari-Trecate, and Manfred Morari

Abstract—in this paper, we prove, in a constructive way, the imated by a piecewise linear function, some classes of discrete
equivalence between piecewise affine systems and a broad clasgyent systems, linear systems with constraints, etc. Examples of

of hybrid systems described by interacting linear dynamics, o4 \yorld applications that can be naturally modeled within the
automata, and propositional logic. By focusing our investigation .

on the former class, we show through counterexamples that MLD framework are reported in [3][5]. .

observability and controllability properties cannot be easily MLD systems are formulated in discrete time. Although the

deduced from those of the component linear subsystems. Instead, effects of sampling can be neglected in most applications, subtle

we propose practical numerical tests based on mixed-integer nhhenomena such as Zeno behaviors cannot be captured in dis-

linear programming. crete time. On the other hand, although reformulating MLD sys-

_ Index Terms—Controllability, hybrid systems, mixed-integer tems in continuous time would be quite easy from a theoretical

“?eaf Pro?_ramm'”g' observability, piecewise affine systems, ,int of view, a discrete-time formulation allows developing nu-

plecewise linear systems. merically tractable schemes for solving complex problems, such
as control [4], state estimation and fault detection [3], [15], and

I. INTRODUCTION formal verification of hybrid systems [5], [6]. For this reason,

I N recent years, both control and computer science have bé@% analysis presented in this paper will be limited to discrete

: time
attracted byhybrid systemél], [2], [23], [25], [26] because ) ) . .
y 4 &1, [2], [23], 251, [26] The first result is to prove, in a constructive way, that MLD

stems are formally equivalent to PWA systems. This result al-

and logic rules. The interest is mainly motivated by the lar 8WS extending all of theteghqiques deve_loped for PWA models
variety of practical situations, for instance, real-time system ,the .general MLD description of hybrid systgms, thg reforg
where physical processes interact with digital controllers. ren_derlng the _PWA frame\_/vor_k a usefL_JI companion for investi-
Several modeling formalisms have been developed to d&1iNg properties and designing algorithms. Although based on
scribe hybrid systems, as reviewed in [24]. It is apparent th q‘ferent arguments, this importance has also been pointed out

the tools for the analysis of hybrid systems strongly depe <) Sontag [33], who highlights the equivalence between piece-

on the adopted mathematical description. Computer scienti{s® linear (PWL) systems and interconnections of linear sys-

have extended automata theorytitmed automatawhere the ter;_s and_ﬂmteﬁa_\utomata. q ibed by th
continuous-time flow is modeled @s= 1, and further tdinear lecewise affine systems are described by the state-space

hybrid automata[L], where the dynamic is specified by theSduations

they provide a unified framework for describing processes
evolving according to continuous dynamics, discrete dynami

differential inclusiona < & < b. On the other side, the control  x(t +1) = A;z(t) + Byu(t) + f; x(t) i
community started studying the so-callégtbrid dynamical () = Cial(t) + g, for [u . } €X;
systems[11] or hybrid automata[26] where the switching ‘ ‘ 1)

between different dynamics is governed by a finite automaton.

A special case where dynamic equations and switching rulebere{X;}:_, is a partition of the state+input set afid g; are

are linear functions of the state are the so-called piecewisditable constant vectors. Each subsystem defined by the 5-tuple

affine (PWA) systems [33]. (A, B;, 1:,Ci,9:), 1 € {1,2,---, s} is termed a&omponenbf
Recently, Bemporad and Morari [4] introduced a new clashe PWA system (1). If; andg; are null, system (1) is referred

of hybrid systems called mixed logical dynamical (MLD) systo as piecewise linear. From a complexity point of view, PWL

tems. The justification for the MLD form is that it is capableand PWA systems are equivalerft,(g; can be thought of as

of modeling a broad class of systems arising in many appliagenerated by integrators with no input).

tions: linear hybrid dynamical systems, hybrid automata, non-PWA systems are sufficiently expressive to model a large

linear dynamic systems where the nonlinearity can be appraumber of physical processes, such as systems with static non-

linearities (for instance, actuator saturation), and they can ap-

proximate nonlinear dynamics with arbitrary accuracy via mul-
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Consider, for instance, stability properties. Besides simplepility properties can be very complex; we present a number
but very conservative results such as finding one commofcounterexamples that rule out obvious conjectures about in-
guadratic Lyapunov function for all of the components, reieriting observability/controllability properties from the com-
searchers have started developing analysis and synthesis tpoking linear subsystefsand 2) we provide observability and
for PWA systems only very recently. By adopting piecewiseontrollability tests based olinear and mixed-integer linear
guadratic Lyapunov functions, a computational approach baggdgrams(MILP).
on linear matrix inequalities has been proposed in [19] and [21]
for stability analysis and control synthesis. Construction of  |I. Mixep LoGICAL DYNAMICAL (MLD) SYSTEMS

Lyapunov functions for switched systems has also been tackledl_he mixed logical dynamical (MLD) form was introduced

in [37]. For the general class of switched systems of the form . . . . :
&= f(x),i=1,---, s, an extension of the Lyapunov criterion” [4], based on the idea of transforming logic relations into

based on multiple Lyapunov functions was introduced in [ ixed-integer linear inequalitie; [.28]’ [35]'. It is a modeling

and [10]. Blondel and Tsitsiklis [8] showed that the stability 21€Work that allows the description of various classes of sys-

of autonomous PWL systems i¥ P hard to verify (i.e., in ¥ems, like systems _Wlth mixed d|screte/c9nt|nuous mpu_ts and

general, the stability of a PWL system cannot be asses sé%tes, automata driven by events on continuous dynamics, sys-
’ ?ems with qualitative outputs, and PWA systems. The ability to

by a polynomial-time algorithm, unlesB = N P), evenin | . ; S -
. mc,ude constraints, constraint prioritization, and heuristics aug-
the simple case of two component subsystems. Several globdl . .
nts the expressiveness and generality of the MLD framework.

properties (such as global convergence and asymptotic stabil > general MLD form is
of PWA systems have been recently shown undecidable in [7]. 9
The research into stability criteria for PWL systems has been

motivated by the fact that the stability of each component sub- ot +1) =As(t) + Bru(t) + B28(t) + Bsz(t) (2a)
system is not enough to guarantee stability of a PWL system y(t) =Ca(t) + Diu(t) + D26(t) + D3z(t) (2b)
(and vice versa). Branicky [10] gives an example where stablB»6(¢) + E32(¢) < Eyu(t) + Esx(t) + E5 (2¢)

subsystems are suitably combined to generate an unstable PWL
system. Stable systems constructed from unstable ones haterexz € R™ x {0, 1}™ are the continuous and binary states,
been reported in [36]. These examples point out that restrictioms R™< x {0,1}™* are the inputsy € RP- x {0, 1}?* are the
on the switching have to be imposed in order to prove thatoatputs, and € {0,1}™, » € R™ represent auxiliary binary
PWL composition of stable components remains stable. and continuous variables, respectively. All constraints on state,
Very little research focused on the observability and contrdhput, =, andé variables are summarized in the inequality (2c).
lability properties of hybrid systems, apart from contributionalthough the description (2) seems to be linear, nonlinearity
limited to the field of timed automata [1], [20], [23] and the piois concentrated and hidden in the integrality constraints over
neering work of Sontag [30] for PWL systems. Needless to sdjnary variables.
these concepts are fundamental for understanidliagd how We assume that system (2) é@mpletely well pose4],
well a state observer and a controller for a hybrid system caich in words means that, for all, «+ within a bounded set,
be designed. For instance, observability properties were diredthg variablesé, » are uniquely determined, i.e., there exist
exploited for designing convergent state estimation schemesfianctions¥', G such that, at each timeg 6(¢) = F(x(¢), u(t)),
hybrid systems in [15]. 2(t) = G(z(t),u(t)).2 This allows assuming that(¢ + 1)
Controllability and observability properties have been invesnd y(¢) are uniquely defined once(t), «(t) are given, and
tigated in [14] and [18] for linear time-varying systems, and itherefore thatz and y trajectories exist and are uniquely
particular for the so-called class of piecewise constant systedetermined by the initial state(0) and input trajectory:.
(where the matrices in the state-space representation are piec&he auxiliary variables are introduced when transforming
wise constant functions of time). Although in principle applipropositional logic into linear inequalities. We briefly review
cable, these results do not allow one to catch the peculiaritieshefre these translation techniques, and refer the reader to [4] for
PWA systems. a detailed exposition.
General questions of th&" P hardness of the controllability By following standard notation [12], [35], [38], [39], we
of nonlinear systems were addressed by Sontag [32]. Followiadopt capital letters(; to represent statements, e.ge, 2> 0"
his earlier results [30], [31], Sontag [33] analyzes the conor “temperature is hot.”X; is commonly referred to as a
putational complexity of the observability and controllabilitfiteral, and has atruth value of either “T" (true) or “F”
of PWA systems through arguments based on the langudfgse). Boolean algebra enables statements to be combined
of piecewise linear algebra. The author proves that obsem-compound statements by meanscohnectives: A” (and),
ability/controllability is A”P complete over finite time, and is “Vv” (or), “~" (not), “—" (implies), “—" (if and only if), “&®”
undecidable over infinite time (i.e., in general, cannot be solvéexclusive or). Connectives satisfy several properties (see, e.g.,
in finite time by means of any algorithm). Using a differenf13]), which can be used to transform compound statements
rationa-le' the same reSL-IIt was deri\-/ed n [8] ; Iwe thank one of the anonymous reviewers for pointing out that similar coun-
_In this paper, we p_rgwde two main cplntrlbutlong to the ar]atle_rexamples were orally presented by Leonid Gurvits.
ysis of the controllability and observability of hybrid and PWA 2A more general definition of well posedness, where only the components of
systems: 1) we show the reader that observability and controbknd: entering (2a)-(2b) are required to be unique, is given in [4].
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Fig. 1. Temperature control system.

TABLE |
BASIC CONVERSION OFLOGIC RELATIONS INTO MIXED-INTEGER
INEQUALITIES; RELATIONS INVOLVING THE FORM [6 = 0] CAN BE OBTAINED
BY SUBSTITUTING (1 — ) FOR& IN THE CORRESPONDING NEQUALITIES

{0, 1}. Consider, for instance, the statem@ft= [f(z) < 0]
wheref: R™ — Rs linear, assume thatc &X', wheret’ C R™
is a given bounded set, and define

relation logic mixed integer
(in)equalities
P1 AND [B=10A=1] =1
(/\) So=1
P2 [(53=1]H -5 +d83<0
[f1=1A[6=1] —d+83<0
S1+8—63< 1
P3 OR (\/) [51 = 1] \% [52 = 1] S51+6:>1
P4 [63=1](—) 61—5350
[51=1]V[62=1] Sy —063<0
—01—02+85<0
P5 | NOT (~) ~[6=1] &5h=0
P6 | XOR (&) [fi=1ab6=1] Sh+dh=1
P7 [63=1](—) —61—62+(53§0
[51=1]€D[(52=1] —~f1+0s—303<0
01—68-8;<0
1+08,+03<2
P8 | IMPLY (=) | [si=1]—=[6=1] 6 -6 <0
P9 flz)<0l={6=1 fz) > e+ (m—e)d
P10 §=1] - [f(z) <0 flz) <M —Mé
P11| IFF (&) [f1=1 5 =1] 6 —d=0
P12 [f(z) <0« [6=1] fle) <M —Ms
f@)> e+ (m ~ )5
P13| Product z=46"f(z) z2<M$é
—z2<-mé

z < f(z) —m(1-9)
—z2< —flz)+ M(1-§)

M 2 max fl@), m 2 min f(@).
ze X zeX
Theoretically, an over[under]estimatef [n] suffices for our
purpose. By associating a binary variablavith the literal X,
one can transfornk 2 [f(x) < 0] into mixed-integer inequal-
ities as described in (P12), Table I, whers a small tolerance
(typically the machine precision), beyond which the constraint
is regarded as violated. Note that, sometimes, translations re-
quire the introduction ofwuxiliary variables[39, p. 178]; for
instance, according to (P13), a product between logic and con-
tinuous quantities requires the introduction of a real variable
The rules of Table | can be generalized for relations involving
an arbitrary number of discrete variables combined by arbitrary
connectivesAnycombinational relation of logical variables can
be, in fact, represented in conjunctive normal form (CNF), and
subsequently automatically translated (without using additional
integer variables) into mixed-integer linear inequalities. This re-
quires the translation from the original logic statement to CNF.
An alternative method for translating any logical relation be-
tween Boolean literals, given in the form of a logical proposition
or truth table, into a minimal set of linear integer inequalities has
been recently shown in [27].

into equivalent statements involving different connectives, In light of the transformations of Table |, it is clear that the
and simplify complex statements. Correspondingly, one caell-posedness assumption stated above is usually guaranteed
associate with a literaX; alogical variables; € {0,1}, which by the way the linear inequalities (2c) are generated, and there-
has a value of either 1 iX; =T, or O otherwise. A propositional fore this hypothesis is typically verified by MLD relations de-
logic problem, where a statemeff; must be proved to be rived from modeling real-world plants. Nevertheless, a numer-
true given a set of (compound) statements involving literaisal test for well-posedness is reported in [4, Appendix 1].
X4,---, X, can be solved by means of a linear integer program

by suitably translating the original compound statements info An Example: Temperature Control System

linear inequalities involving logical variable%. In fact, the

In order to exemplify the modeling techniques of MLD sys-

propositions and linear constraints reported in Table | c@ms, we consider the temperature controller example reported

easily be seen to be equivalent.
These translation techniques can be adopted to model logig@rmostat, which turns a heater on and off according to the

parts of processes and heuristic knowledge about plant operatigiasured temperature. When the heater istofflecreases ac-

as integer linear inequalities. The link between logic statemerisrding to the first-order dynamics, = —Kz.; when the

and continuous dynamical variables, in the form of logic stat@eater is ong. = K(u — z..), whereu is proportional to the

ments derived from conditions on physical dynamics, is prpower of the heatern,, < u < M,. While in [1] « is con-

vided by properties (P9)—(P12) in Table I, and leadsixed-in-

in [1]. The temperature:. of a room is controlled through a

sidered constant, here we allow more degrees of freedom by

teger linear inequalitiesi.e., linear inequalities involving both assuming that: is an exogenous input. The hybrid automaton
continuous variablesf R” and logical {ndicator) variables in modeling the temperature control system is depicted in Fig. 1. In
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order to translate the automaton into the MLD form (2), we dis- The transformations above can be summarized in the fol-
cretize the continuous dynamics with sampling tilyenamely, lowing MLD representation of the temperature control system:

(b4 1) = {)\xc(t), ff heater OFF @) ot +1) = L))\ 8} o(t) + {8 8 (1) 8} 8(t)
Az.(t) + (1 — MNu(t), ifheater ON
1-A
/ ’ + [ 0 } z(t) (11a)
where) 2 ¢~ K- Then, we introduce the auxiliary binary vari-
ables
r 0 M, —m 0 0 7 r 07
[61(8) = 1] & [ze(t) > M] (4a) 0 my—m-—c 0 0 0
[62(t) = 1] = [ze(t) < m] @p) | M-m, 0 0 0 0
M—-M,—c¢ 0 0 0 0
which take into account the crossing of the guard lines (obyi- 1 1 0 0 0
ously,m < M). Equations (4a)—(4b) can be transformed intp 0 1 -1 0 0
mixed-integer linear inequalities by using (P12) in Table I (wg 1 0 1 0 0
assume that a lower boume,. and an upper boundl/,, overz, -1 -1 1 =1 |é6+]| 0f=
are known). -1 -1 -1 1 0
A logic statez,(¢) is needed to store the status of the heatqr, 0 0 0 -1 0
and evolves according to the equation 0 0 0 1 0
0 0 0 —M, 1
_ 0 0 0 My, -1
ze(t+ 1) = 63(t) (5) 0 0 0 .
where L 0 0 0 M,] [ -1
r 07 r—1 07 r M, 7
[8:(2) = 1] —[8a(¢) = 0 (62) X L. e
[62() = 1] — [65(F) = 1] (6b) 0 -1 0 M—¢
[6:(2) = O] A [62(F) = 0] — [65(¢) = d4(t)]  (6C) 0 0 0 1
0 0 0 0
and 0 0 0 1
< 0w+ 0 O0|x+ 0 (11b)
64(t) = ze(?) ) 0 0 0 0
0 0 -1 0
(althoughd, is redundant here, the reason for introducing it will 0 0 1 0
be clear in Section III). 0 0 0 0
As 61 andé, cannot be 1 at the same time, we include the 0 0 0 0
constraint 1 0 0 —1Ty,
L—1] L O 0 L M, |

61(t) + 62(t) < 1. (8)

wheres = [61 62 b3 64] andz 2 [z z¢]'. A simulation of the
Equations (6a) and (6b) are translated into inequalities aystem forl, = 0.1, K = 1, M = 20, m = 10, M,, = 30,
cording to (P8). Equation (6c¢) is equivalent to m, = 1, M, = 100, m, = 0, starting from the initial condition

z.(0) = M, z,(0) = 0, and applying the inpuk(¢) = 24 is

81(t) + 8a(t) < 85(t) — 6a(t) < 61(t) +62(t).  (9) depicted in Fig. 2.
This example has shown the main steps to represent a hy-

Although (9) can be immediately verified by inspection, it halrid system in the MLD form (2). This procedure was recently
been obtained by applying the technique described in [27] @itomatized by the language HYSDEL (hybrid system descrip-
transform general propositional logic statements into mixed-iion language), developed at ETH Zdrich. The HYSDEL com-
teger linear inequalities through polyhedral computation. ~ Piler automatically generates the matrices of the MLD system

The dynamics (3) can be equivalently rewritten as starting from a high-level description of the hybrid system, and
is available at http://control.ethz.ch/~hybrid/hysdel.

Tt + 1) = dw(t) + z(8) (1 — XNul(t). 10

( ) ®) e Ju(®) (10) I1l. EQUIVALENCE BETWEENHYBRID AND PWA SYSTEMS
Because of the product involving(¢) and«(¢), we introduce  Consider apiecewise affindPWA) time-invariant dynamic

the auxiliary continuous variabldt) = x,(¢t)u(t) = é4(t)u(t), system of the form (1), where € R™, y € R?, andu € R™.
which can be transformed into mixed-integer linear inequalitied/e take into account constraints on the state and the input as-
according to (P13) in Table I. suming that the state+input admissible g&tC R™™ is a
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Fig. 2. Simulation of the temperature control system. The different regions where PWA component subsystems are active are depicted witktdiésrent te

~ TABLE I As the switching is governed by changes of ved@y, it is
VALID COMBINATIONS [&1 85 65 0] AND RESPECTIVEFUNCTIONS intuitive that the number of regions in which the state syféte

2= Gl is partitioned coincides with the number of validombinations
[61 62 83 84 2 = G(z,u) (i.e., six). To see this, consider, for examgle; [0 0 0 0]’. This
[0000] givesz = 0, and, by substituting in (11b), the corresponding
ﬁ oo g} #=[0 0]z + [Ou+0 region is defined by the inequalities
0011]
0111 |z2=[00]z+[ju+0 -1 0 0 —m
ooy 1 0 0 M
O S R 7R (12)
convex and bounded polyhedron. Moreover, we supposéthat 0 0 1 —m,
i =1,2,--- s forms a polyhedral partiticnof A’ 0 0 1 M,

A frequent representation of (1) arises in gain scheduling,
where the linear model (and, consequently, the controller)vere redundant constraints have been eliminated by using stan-
switched among a finite set of models, according to changesdzfrd procedures based on linear programming. Moreover, from

the operating conditions. (11a) andz = 0, it follows that, in the region defined by (12),
PWA systems can be represented in the MLD form (2e state-update equations are

The translation consists of defining logicdl, variables

6 = 1] < [[Z] € &;] and imposing the exclusive-or a0 0 0

conditiond®;_, [6; = 1]. Fordetails, the readeris referredto [4]. b+l =1g o[z®O+ |g|ut]gl- @3
Conversely, we will show in Proposition 1 that every MLD

model (2) is equivalent to a PWA system. In Fig. 2, the different regions where PWA component subsys-

Before stating this general conversion result, we considems are active are depicted by different textures.
again the temperature control system of Section II-A. It is easyProposition 1: Consider generic trajectoriest), u(t), y(t)
to check from (6a)—(9) that only the combinatidéis 6», 53, 64] of an MLD system (2). Then there exist a polyhedral partition
reported in Table Il are allowed. The corresponding relatiodst; }¢_; of the state-input set
between> andz, « are also reported in Table II.

A} — RnC 1 ng anc 1 my
3Each set; is a (not necessarily closed) convex polyhedroné.{) X', = {(w,u) € x 10,1} x x {0’ b )
0,Vi# j, Ui, X = X, s.t. (2c) holds for somé € {0,1}", z € R™}
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and 5-tupleg 4;, B;, C;, fiy 9:), ¢ = 1,---, s, such thate(¢), e.g., in a switching detection problem, namely, the problem of
u(t), y(t) satisfy (1). determining all possible new regiods’s entered by a set of
Proof: In order to simplify the proof, without loss of gen-state vectors at the next time step. While the PWA form would

erality, we assume that the logical componentof x, are also be required for enumerating and checking for the nonemptiness
auxiliary variables, i.e¥i = 1,---,n, 37 such thatry; = 6;. of the intersections of the updated set with all of the regions
This is not a restrictive assumption, as typically the state traf;, ¢ = 1,---, s, the MLD form instead can be conveniently
sition of logical states derives from a logic predicate involvingxploited to solve the problem through mixed-integer linear
literals associated with components&gt) andz,(t), and the optimization involvingé(t), z(¢) as free variables [6]. This in-
latter can be expressed again as additional auxiliary variablesdigectly moves the inference problem to the branch-and-bound
simply adding the constraings(t) < ¢ (t), —6;(t) < —z¢(t) strategy of the MILP solver.
in (2c).

By the well posedness of system (2), giveft), u(t), the V. OBSERVABILITY
vectoré(t) is uniquely defined, namely(t) = F(x(t), u(t)).
Moreover, it only takes a valug within a set of (at mostp™ ; o .
values (corresponding to all possible 0-1 combinations)sLePr' equivalently, PWA systems in view O.f Propo_smon L :
be the number of valid combinations, i.e., the number of all dif: Denote bysy(t, z, u) the ou_tput evolution at time starting
ferent vector$ € {0, 1} satisfying constraints (2c) for some rom the initial conditionz(0) = v ‘?!"d driven by thell_nput.(t), .
(1), u(?), =(t). The idea is to partition the state-+input spacfe: 0,1,---. We extend the defmmon_of observability given in
by grouping in regionst; all [’”8] corresponding to the same 22] a’?d_ [29] t? nonatjtonomo:s hybrid SJStemS of thefqrm 2)

, U ) _ . Definition 1: Let X(0) C R™ x {0,1}™ be a set of initial
binary vectors; = F(x(t),u(t)). Let us fixé(¢t) = &. The in- " me :
equalities (2c) define a polyhedr@hin R™T™+", By the well :;itss’ and Ieg < R™: X {(I)I’ 1}b * be SI S%t of mpurt];. ghe
posedness of(¢), given a pairc(t), u(t), there exists only one system (2) isncrementally observable if steps ont (0)

value=(t) € R satisfying (2¢), namelys() = G(z(t), u(t)). uniformly with respect td/ or simplyincrementally observable

i ist tw . ot . pe+pe
As all of the inequalities (2c) are lined® is an affine function, 'ftzere exg 0 ncirmﬂ ”"h(or?R )and||) o (ond[R . )
namely and a positive scalar such thatvz,, 2z, € A'(0) andV input

sequences$u(t) ) C U:

In this section, we consider observability of MLD systems (2)

2(t) = Kyz(t) + Kiu(t) + Ksi, T-1
Va(t), u(t): Fla(t),u(t) =6  (14) D Ntz w) =yt x2, 0l > wl|zy — z2)le. (15)

andP c R™*+™+ js a polyhedral set of dimension less thanor ~ *=°

equal ton +m (forinstance, ifr = 1,m = 0,7 =1, 7would  Remark 3: When including the input. in the definition of
be a segment ift"). By substituting (14) in (2a) and (2b), wegpservability of nonlinear systems, some authors prefer asking
obtain that “3” (an input sequencéu(t)}2-' C U such that --) in-
. ‘ ‘ stead of ¥.” As typically an observer is used together with
ot +1) =(A+ BsKyi)a(t) + (Br + Bs Kai)u(t) a controller, we have opted for the latter. In fact, in this situ-

+ (Babi + BaKi) ation, the output of the controller is not a sequence which is
y(t) =(C + D3Ky)z(t) + (D1 + D3 Ky )u(t) knowna priori, and therefore observability should be required
+ (DsKs; + D26;) with respect taall possible input commands generated by the

_ _ _ controller. Moreover, the clagg of such commands is usually
which, by suitable choice ofi;, B;, C;, fi, g, = 1,---,s, specified by the control system design, for instance, directly by

corresponds to (1) for limits on actuators. n
" Remark 4: The parameter$’ andw appearing in Definition
X; = { [u} i (EsKy — Bz + (EsKy, — EDu 1 admit a practical interpretation. The scaiacan be viewed
as an observability measudréor an incrementally observable
< (BEs — EsKs; — E»6) } . m System. For fixed initial states; andz., the largerv, the more
different the trajectorieg (¢, x1, ), y(t, x2, ) [from now on,

Remark 1: We stress the fact that the proof is based on'4e Will write in shorty:(t), y»(#)]. Hence, in practice, one
constructive argument. In fact, as was done in the temperatiif@uld fix a minimum observability leveb,,,;, and require that
control system example, information on the description of thé = wmin- If this condition is not fulfilled, we classify the
system can be used to derive (14), either from direct insight 9¢Stem asractically unobservablePractical unobservability
automatically from the inequalities (2c). also arises if Definition 1 is satisfied only for largé There-

Remark 2:From a computational point of view, bothfore, itis sensible to fix an upper boufid.. onT’, and define
forms (1) and (2) have advantages. As in the case of lined} MLD system as practically observable when it satisfies Def-
time-varying systems, the former allows expressing the evolfiition 1 with 7" < T',,,.. u
tion of the system in a very compact way, for instance, when Condition (15) is simply anncremental distinguishability
dealing with reach-set computation [6] (i.e., the computation gpndition, i.e., it states that different initial states always give
the set of states which are reachable from a given set of initiakygre precisely, one should use = sup{w > 0 s.t. (15) hold$ as the
conditions). On the other hand, the latter allows inferenceservability measure.
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different outputs, independently of the applied input. Howeveand [-] denotes the least upper integer. Moreover,
althoughy, (t) # w2(t), in principle, there might be a compo-y(T' + 1) = 0.92(0), and therefore two initial states
nent ofz which is not observable. But this cannot be true. In fact; = [ig] Ty = [i;;] , With 210 # 29, are indistinguishable
in this case, one could take two initial states such that the dbr 77 < 7. By Definition 1, system (16) is incrementally
servable component is the same, which implig) = y2(t), observable i’ 4 2 steps. In Fig. 3, we report the plot of the
vVt > 0, thus violating Definition 1. In conclusion, the notionsnction J(t) a S o () — ya(t)] — wllzr — z2]|eo, and
of _inc_remental distinguishability and incremental observabilityefinition 1 can be verified by visual inspection. We can render
coincide. o . T arbitrarily large by choosing smaller and smaller values
For bounded setst’(0), it is easy to verify that the term of ¢ (intuitively, the smaller the initial conditior: (0), the
wllzy — w2lla in Definition 1 could be substituted by ajonger the time required for the output to overpass 1 and switch
more generall., function W(|[z, — z2|) (see [22] for the gynamics). By setting = 0 in (16) and (17), it follows that the
definition of the K, class) such thalV is lower and upper system (16) becomes incrementally observabletign) only
Lipschitz, i.e., there exist positive constarits, L, such that i jnfinite steps, in the sense that, for edththere exist initial
Lylz|| < W([lz|l) < La||z[|. Therefore, we can conclude thakates int (0) that can be observed only aftér> 1" steps.
Definition 1 is not much more restrictive than tlheproperty 2) AnIncrementally Observable PWL System whose Compo-

given in [22]. nents are UnobservableConsider the system

A. Observability Counterexamples for PWA Systems {1 0} |:371:| (t), if 21(t) > za(t)
Definition 1 was formulated for the general class of hybrid {371} (t+1) = L 1]z

systems described by the MLD form (2) or, equivalently, the [ %2 1] |z @), i 21() < 2a()

PWA form (1). One might expectto exploit the structure of PWA 0 1|z ’ ) = $2

systems to derive results about observability similar to those (18a)

holding for linear systems. Below we show some counterexam- z1(t), ifz(t) > zo(t)

ples which undermine these hopes, even in the simpler case of y( {x2(t), if 21(£) < 2 (t) (18b)

autonomous PWL systems.
We first show that, in general, for PWL systems, the tim@hose component subsystems are unobservable. The evolutions

of observabilityZ” has no relation to the order of each sub- of the state-space trajectories are depicted in Fig. 4.

system, and therefore, if a PWL system is incrementally observ-|_et X(0) C sector U sector 2 depicted in Fig. 4 be a bounded

able, nothing can be said, in general, about the minirfitsuch  set of admissible initial states. 4f{0) lies in sector 1, we have

that Definition 1 holds. y(0) = x,(0), and the first component of the initial state is
Then, we show examples where the observability propertigemediately observed. However, since

of a PWL system cannot be directly inferred from the observ-

ability properties of its linear subsystems. In fact, we will show 1 01" [2:(0) . z1(0)

that unobservable subsystems can be composed to build an ob- {1 1} [372(0)} o |:t371(0) + 332(0)}

servable PWL system, and vice versa, that the composition of

observable subsystems can become unobservable. andx’(0) is bounded, there exists a finite tifie > 1 such that
1) A PWL System Incrementally Observable vithArbi-  the state enters sector 2. Theil’) = T'x1(0) + 22(0), and
trarily Large: Consider the following system: the second component(0) can be determined as well from the
output knowledgeMutatis mutandisthe same rationale applies
|:-T1:| (t+1) when the initial state lies in sector 2. Then the system is incre-
mentally observable ifi steps ont’(0). Note, however, that the
1.1 0] [x . system is notincrementally observable on initial $8¢8) inter-
[ 0 1} L;J (®), if e <ay(f) <1, secting sectors 3 or 4. Consider, in fact, an initial state that lies
= in sector 3 (or 4). From Fig. 4, it is clear that the state trajectory
[ 0 0'9} {xl} (t), otherwise never crosses the lineg = xz,. Therefore, the evolutions will
09 0 T2 be governed by the first (the second) component of (18), thus im-
y(t) = 21(t) (16) plying the unobservability of the first (second) coordinate of the
o initial state.
wheree > 0 is fixed, and set 3) An Unobservable PWL System whose Components are

Observable: Consider the system

_ [ [=1(0) L < .
X(O)_{LQ(OJGRQ. < (0)<1} (17) [8 (1)} E‘j(t)’ if 21(t) > 22(t)

Theny(t) = 1.1%z,(0), V¢ < Twhlere {xl} (t+1) = [(1) 8} Bj (t), if z1(t) < za(t)

y(t) _ {xl(t), if a:l(t) > xg(t)

.I’Q(t), |f xl(t) S .I’Q(t)
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s o e e Proposition 2: The MLD system (2) is incrementally observ-
B i — able if and only if there exists a scalar> 0 such that

Py, e i 3 t t >0

o =10y tazh N z_: ly1(t) — y2(D)lleo — wllz1 — @2|l1 = 0.
J u(t)eu, t=0

9 f =0, T—1

i 19)

i Proof: The proof easily follows from the fact that all of the
norms in finite-dimensional Euclidean spaces are equivaient.
Proposition 2 proves the decidability of practical incremental
A observability (i.e..w = wmn, as pointed out in Remark 4) over
o 5 W 6 20 -:-"* ¥ 15 40 45 50 afinite timeT". Unfortunately, the minimization problem (19) is,
in general, nonconvex. In any case, the use of the ngiris,
Fig.3.  States, x» are indistinguishable fdF steps. and|| - ||; allows us to formulate it as an MILP problem. For
this purpose, we need a technical lemma. In the seftjelyill
denote theth element of vectos.
T Lemma 1: Let X(0) be bounded. For two vectoss, 2 in
e e B i i e s X(0), it holds that

1.5

n

21— zally = [o1 — @2l — 2[s]; (20a)
=1
z1 — 22 < (M —m) (1, — p) (20b)
21— 22 2ol,+(m—M—01,)p (20c)
SR s<(M—-m)pn (20d)
Lt s> (m—M)p (20e)
ARG s<wp—xp—(m— M) (1, —p) (20
-1 0.5 0 % 0.5 1 1.5 §>x — o — (M _ m)/(ln _ N) (209)

Sector 4 Z

Fig. 4. State-space plane{t + 1) — x(¢) normalized vector field. where € {0,1}", [M]; = WaXzex(0) i) [ml; =
mingcy(o) =i, ¢ = 1,---,n ando is a small tolerance (e.g., the

machine precision).
whose components are observable. We partition again the state pyof: By recalling Table I, (20b) and (20c) are obtained
space as in Fig. 4. If the initial state lies in sector 3, by direglom the logical relation [1]; = 1] < [[z1 — z2]i < 0],
calculation, one hag(0) = x5(0) andy(t) = 0,Vt > 0. \hijle (20d)-(20g) are obtained by translating the prodsjet=
Indeed, the state evolution for > 0 is [x1 — @a]i . Hence|[z1 — za]s| = [#1 — 22]s — 2[s];. -
Theorem 1:Let X(0) be bounded, and consider the fol-

o {[xl(o) O, if t even lowing optimization problem:
T =

0 1(0)], if#odd =

[ -Tl( )] ’ Jr = 7}{1}11 {Z € — w.
and x21(0) < 0 Since the same rationale can be applied for ml{eefx»}(tf)? ;;gﬁo) t=0
initial states lying in sector 4, it can be concluded that the system s€R™, pe{0,13",
is not incrementally observable ati(0) = sector 3J sector 4 {0}y, 80,1}

{z(t)}zﬂzfol, z(t)ERTe
{uycu

: <Z [ — @2]; — 2[s]i> } (21a)

=1

(although itis easy to verify that the system is still incrementally
observable ot (0) = sector 1U sector 2).

B. An Observability Test for Hybrid Systems

The purpose of this section is to derive an observability tesibject to (2), (20b)—(20g), and
for hybrid systems in the MLD form (2). In fact, the observ-
ability condition formulated in Definition 1 can be difficult to oo, Z2yi(t) —9(t), t=0,---,T—-1 (21b)
check, and thus one needs computationally tractable tests. Be- 1, > v2(t) — (1), t=0,---,7—1. (21c)
fore stating Theorem 1, where we show that for MLD systems
the incremental observability ¥ steps ont'(0) andi{ is re- Thenthe MLD system (2) is incrementally observabl#isteps
duced to the solution of a mixed-integer linear program (MILPpn X'(0) andi/ if and only if, for somew > 0, it holds that
we need some preliminary results. J* > 0.



1872

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 10, OCTOBER 2000

Proof: We start by proving necessity. Inequalities (21byith the number of integer variables [28]. Despite this combi-

and (21c) imply that

€ = Zznllaxp| 1) — 2 (O] = [l11(H) — v2(Dllo-  (22)
By Lemma 1,
ey —2alls = for — w2l — 2[si. (23)

=1

Then, combining (22) and (23),

Z ll1(2)

J > min
21€x(0), 2€x(0),
u(t)EU;

t=0,---,T—1

(O)]loo —wl|z1 —@2]]1-

(24)

In view of Proposition 2, the conditia#* > 0 follows from the
incremental observability of system (2).
To show sufficiency, assumg&* > 0 and consider

Z |1 ()

JT — yo(t

min Moo
1 C‘Y(O), i) C‘Y(O)
{87, s(c{o1}7
{=(} 5, =(1)eR™e
{u(t)} ' cu

(25)

— wl|z1 — 2|1

subject to constraints (2), and let, =5 denote the initial states
that minimize (25). The variablefg, }7_, ., ands defined as

A
& = |ly(t,21) — y(t, 25)l|oo
A r s . )
[3]1: |[$1_$2]i|7 ZZlv"'v”
A 1, if [‘/EI _‘/EE]Z <0 .
= I B t=1,---,n
0, if [z —=23]; >0

are feasible for problem (21a). Thus, by optimality, > J* >
0, which proves incremental observability. [ |

Theorem 1 is also helpful for designing an algorithm that Let’R be alist of subset®; € R”,i.e.,R = {R1,Ra, -

natorial nature, several algorithmic approaches have been pro-
posed and applied successfully to medium- and large-size ap-
plication problems [17], anbranch-and-boundnethods were
shown to be extremely successful.

In case the observability horizdfi becomes large, solving
such an optimization can become computationally intractable.
As noted in the Introduction, this has to be expected because of
the A/ P-complete nature of the observability problem itself over
afinite horizon [33]. Consider, for instance, the autonomous case
(noinput). By looking more closely at the MILP (21a), the main
reason for the complexity is the presence of integer variables
6(t). Indeed, determining the optimal sequeri¢e), - - -, 5(¢)
corresponds to finding the sequence of the switching of linear
dynamics, which leads to the worst case for observability.

Nevertheless, we now propose an algorithm which, although
still exponential in the worst case, is very efficient on average.
In fact, the difficulty caused by the (possibly huge) number of
combinations of binary variableg{("«+™:)+" as pointed out
in Remark 5) will be avoided in general by exploiting the equiv-
alent PWA structure of hybrid systems.

C. An Efficient Observability Test for Hybrid Systems

We describe here a procedure to check the observability of
PWA systems that reduces the computational complexity of Al-
gorithm 1. We adopt tools developed ffarmal verification
of hybrid systems [5], [6] where, basically, a set-reachability
problem is solved through the exploration of all possible evolu-
tions of the hybrid system from the set of initial stafég)).

The main advantage of adopting verification schemes is that
they can exploit the PWA dynamics (1) when exploring the
temporal evolution from the initial sé¥(0). More specifically,
in the MILP problem (21a), the task of deciding in which
order to explore the possible combinations of integer vectors
[60, -+, 67—1, ] is assigned to the numerical solver. Clearly,
most of the combinations will not be compatible with the
constraints (2c). Next Algorithm 2 avoids considering these
inadmissible combinations.

3,

checks the practical observability of an MLD system (see Rand let #R denote its length (by conventionRé = 0 iff R =

mark 4. The procedure is summarized in the following steps.

Algorithm 1:

1) Choose wmin and Tya.x (see Remark 4).
2) Set T'=1 and w = wyin-

3) Solve the MILP (21a).

4) If J* >0, stop: the system is
(practically) observable.

If .J* <0, increase T.

If 7 > Thax, Stop: the system is
practically unobservable.

Go to step 3).

5)
6)

7)
Remark 5: When the setst'(0), I/ are polytopes, the opti-

mization problem (21) becomes an MILPHii1 4. +m.)+3n
continuous variables arifi(r; + m¢) + n integer variables. It

?). When a new seR; is added or removed to the list, we write,
respectivelyR; — R orR — R;. Finally,¢(-, z¢) denote the
state trajectory:(-) generated from the initial conditiory. For

the sake of simplicity, we consider a formulation for autonomous
PWA systems, although the presence of inputs can be taken into
account by adapting the verification algorithm proposed in [6].

Algorithm 2:

1) Set T =1 and w = wyiy,.
2) For ¢=1,---,s0if X(O)NA; #0,
then X(0)NA;, — R.
3) While R # o
3.1) for i, 7=1--- #R: solve
m;; = min

wlex(o),wzex(o)
qS(T 1x1)€7?7,q5(T 1m2)ER;

is well known that, with the exception of particular structures,

MILP’s involving 0-1 variables ar&/ P complete, which means

that, in the worst case, the solution time grows exponentially

Z ll1(2)

(Olloo — wl|zr — 22[]1
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3.2) for t=1--,#R:if  my >0, Tr¢ + n required for problem (21a). This smaller number of
Vji=1,---,#R, then R —R; integer variables is the main reason for the computational effec-
3.3) if R =0, STOP: the PWL system is tiveness of Algorithm 2.
practically incrementally Remark 6: In view of Proposition 1, it is apparent that the
observable in T steps property of incremental observability does not change when
34) set R=10 switching between PWA and MLD representations. Therefore,
3.5) for t=1---#R Algorthm 2 is also suitable for checking the (practical) incre-
3.5.1) let [ be the index such that mental observability of an autonomous MLD system.
R, C X As an illustrative example, we apply Algorthm 2 to system
3.5.2) for ji=1,---,s i (AR + fin (16) withe = 0.4 andX'(0) = [0.4,0.99] x [-2, 2]. The observ-
X £0, {(ARi+f)NnX;} =R ability parameters are chosenag, = 1072 andZ},., = 20.
3.6) increase T In Fig. 5, the sets in the lisE are plotted in different gray levels
3.7) if T > Thmax, STOP: the system is attimesT’ = 1, 4, 8, 12. Note that, due to the evolution of the
practically unobservable system and the fathoming criterion, the vertical set in the region
38 R=R. e < z1(t) < 1 progressively shrinks and, faf > 12, it disap-

pears. Algorthm 2 terminates by finding practical incremental
Algorithm 2 computes the evolution from the initial s€(0) observability in 12 steps, in accordance with the analytic results
in order to explore all possible state trajectorig€g). In any of Section IV-A-1 (CPU time: 22.8 s on a Pentium Il 300 run-
case, since after” steps there may exist some subsetd’68) ning Matlab 5.3).
whose elements can be observed (i.e., distinguished from the
other states it (0) in T steps), the algorithm avoids furtherD. A Deadbeat Observer for Hybrid Systems

propagating such states. More precisely, at step 3.1, the S&broposition 3 provides a deadbeat observer for hybrid sys-

U# R, collects the evolution of all of the initial states that a€ams (2). In a certain sense, it is a counterpart of [30, Theorem
notobservableiff” — 1 steps. Then, the algorithm checksif all of, 10].

the initial states:; suchthaty(7 — 1,z1) € R; are distinguish-

able from the initial states, satisfying¢(T’ — 1,z2) € R;.

This is done in step 3.1 by computing;; because, analogously

to (19), the distinguishability condition correspondatg > 0. T—1

In particular, ifm;; > 0,Vj = 1,---,#R, the subset of initial _min Z lo(t — k) — y(t — k|3

states evolving irR; is observable (i’ steps). Then, there is ~ #¢—T+DA8C—k).2¢-R)} 25 155

no need to further consider the evolution of the Bet and it

is removed from the list (step 3.2). It is also apparent that the

practical incremental observability of the PWA system coincides #(k + 1) = Az (k) + Biu(k) + BQS(k) + Bys(k)
£(k)

Proposition 3: Letz(t—T'+1), - --,2(t) be the minimizing
sequence of the following least squares problem:

bject to

with the conditioriR = @ (step 3.3).

The one-step evolution of the s&s is performed instep 3.4. (k) = Ci(k) + Drulk) + D26 (k) + D3z (k)
Note that, from steps 2 and 3.5.2, it follows that eachfgt  E26(k) + Esz(k) < Eyu(k) + Esi(k) + F5
belongs at most to a single regidy) of the state space. This k=t—-T+1,---.t (27)

ensures that the indéxstep 3.5.1) is always well defined and,
in step 3.5.2, every s&®; evolves according the state equatiomherey(t — k), u(t — k), k = 0,---,T — 1 are the collection of
of the region which it belongs to. Moreover, if the $&yR; + pastZ inputs and outputs, arfl is any time horizon such that
fi) intersectsk regions, it is split intok new sets (each one Definition 1 is satisfied. Thef(#) is an estimate of the statét)
belonging only to a single regiof;) that are then added to theandz(t) = = (t), Vt > Tinin, Wherel,,;, < T is the minimum
updated listR. time horizon for observability.

Algorithm 2 is more suitable for implementation when the  proof: After 7" input/output pairs have been collected, the
initial setX'(0) is a bounded polyhedron. In this case, by meansinimum in problem (27) is 0, and the minimizerigt — 7" +
of the update step 3.5.2, every €t is a polytope as well. 1) = ;(+ — T + 1) because, otherwise, there would exist a
Moreover, the minimization in step 3.1 becomes a mixed-integ@htes(+ — 7+ 1) which is indistinguishable from the true state
linear program. Actually, following the rationale of Theorem 1x(t — T + 1) based on the observed output sequence. m

itis easy to prove that Note that the optimization problem (27) is a mixed-integer

T—1 quadratic program, for which efficient solvers exist [16]. An
mig = ex(é?iiex(o) {Z €& —w MILP formulatipn can be obtained by using 1-®r-norms, as
HNT—1,21)ER;, t=0 in Theorem 1, instead of the squared 2-norm.
G(T'~1,22)€R;, As observed in Remark 5, the optimization problem (27) is
oCR™, uef0.1} NP complete, and therefore computationally expensive for
) zn: o1 — a]s — 2[s]; (26) largeT". Again, the complexity arises from the need for deter-
part ! ! mining the sequence of switches of the linear dynamics which

has occurred between time— 7" and time¢. Nevertheless,
subject to (1), (20b)—(20g), (21b), and (21c). Note that eatte A/ P completeness of the problem of solving (27) does not
MILP problem (26) involves only. integer variables versus theimply that simpler observers do not exist for hybrid systems.



1874 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 10, OCTOBER 2000

2 =1 2 T=4
1.5 15
1 1
05 0.5
o~ 0 W 0
-0.5 -0.5
- -
15 15
2 - R 2 R _
2 151 050 051 15 2 2 151 050 051 15 2
X X4
) = ) T=12
15 15
0.5 i 0.5
SN0 X 0
-0.5 -05
-1 1
15 15
-2 -2

2 154 050 051 15 2 2 15-1 050 051 152
X4 X4

Fig. 5. Evolution of the lisfR of Algorithm 2: different set§k; are depicted by different gray levels. Snapshofs &t 1, 4, 8, 12. Aftefl’ = 12, all of the sets
R, disappear.

V. CONTROLLABILITY plant using only a bounded input. We point out that, even if
such a constraint does not appear explicitly in Definition 2, it

We introd the following definiti f trollability f o o e
© Introcuice the Toffowing definition of controfiability for can be easily included in inequalities (2c).

MLD systems.

Definition 2: Let X'(0) and.X; be nonempty sets of initial
and final states, respectively. The MLD system (2) is contr
lable inT" steps fromY'(0) to X if, Vo € X(0), there exists ~ Analogously to the observability notion, we specialize the

oﬁ' Controllability Counterexamples for PWA Systems

an admissible input sequenge(t)} ;' yielding controllability definition to PWL systems. Again, through some
, counterexamples, we will show that this property cannot be in-
x(T) € Xy. (28)  ferred from the controllability of the component subsystems.
If X(0) andX; are singletons (i.e¥(0) = {z} andX; = 1) An Uncontrollable PWL System whose Components are

{z}), Definition 2 reduces to a classical controllability notiorf-ontrollable: Consider the system

[34]. In this case, our definition of controllability is instrumental

for checking if the state can be driven from a perfectly known {xl} (t+1)= [0 1} {xl} ()
initial condition to a desired state (usually an equilibrium +2 1 0] Lz
state) by using a suitable control sequetieét)} . In any [0} w(t), if z1(t) > wa(t)
case, lettingt'(0) be a general set, we also take into account 1 ’

the case of incompletely specified initial conditions. Moreover, + 1 ) (29)
in many situations, the control specifications demand driving a [0} u(®), if z1(t) < wa(f)
system into a set dfafestatest’; [5]. It is apparent that Defi-

nition 2 also embraces this scenario. whose components

Remark 7: In principle, one might be concerned about the

practical meaning of Definition 2. More specifically, due to 0 1 0 0 1 1
physical limitations, a user may be interested in controlling the 1 0(|7|1]/’ 1 0|70
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Fig. 6. State-space for system (29), whose components are completely

controllable: Region Il is not reachable frong.
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tion that every initial state itt’'(0) = R™ can be controlled to
any other state in at most three steps. This is, for instance, the
situation depicted in Fig. 7, where the point = (0.5,0) is
steered fromzy = (2, —1) by applying the input(0) = 2.5,
u(l) = u(2) = —1.5.
B. Controllability Tests for Hybrid Systems

In this section, we discuss numerical tests for checking the
controllability of an MLD system. We first notice that Definition
2 can be translated into the followingixed-integer feasibility
test(MIFT):
x(0) € X(0)
a:(T) € Xf
z(t+ 1) = Az(t) + Bru(t) + B26(t) + Bsz(t)
Egé(t) + Egz(t) < Elu(t) + E4.’17(t) + B
t=0,1,---,T.

(30)

The feasibility test (30) is called erification problem in the
hybrid system literature. Unfortunately, solving the MIFT for
largeT becomes prohibitive. In fact, each problem (3QM%
complete, which means that, in the worst case, the required com-
putation time grows exponentially withi. Despite this strong
theoretical limitation, a verification algorithm for the general
class of MLD systems under the assumption that Both) and

's are polyhedra was proposed [5], [6]. This procedure is based
on a sequence of linear and mixed-integer linear programs, and

Fig. 7. State space for system (30), whose components are uncontrollablea" be adopted as a numerical controllability test. Various other

are completely controllable. Let, = [7'] be the initial state,

verification techniques have been proposed in the literature [1],
[2], [23].

and consider the partition of the state space depicted in Fig. 6.

The sectors |-V are obtained by intersecting the limgs=
max{z19, T20}, T2 = max{zig,x20}. It is easy to verify that
only the sectors I, II, IV, are completely reachable framg
while 11l is not reachable. For instance, the paint= (-2, 3)
can be reached fromy, = (2, —1) by applying the input(0)
4, u(1) = —4, but no input can steer, to the origin. In general,
the PWL system (29) is controllable to O frarg if and only if

VI.

In this paper, we illustrated, through a number of counterex-
amples, the complexity of the observability and controllability
properties of PWA and hybrid systems. After proving the equiv-
alence between PWA and hybrid MLD systems, we exploited
this equivalence to derive observability and controllability tests
which are numerically appealing.

CONCLUSIONS

0ellJNl Y IV, where we point out that sectors I-1V depend

on zq. Thereforezq is controllable to the origin if and only if
To1 < 0, 292 < 0.

2) A Controllable PWL System whose Components are Un-

controllable: Consider the system

2ero=fo 3]z e

m w(t), i za(t) = 1> 21(t) > o (t)
+
mu(t), if 20(£) < 2a(8)

whose components

(R (AN

are uncontrollable. The three regions in which the state space is
partitioned are depicted in Fig. 7. It is easy to verify by inspec-
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