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A Multiparametric Quadratic Programming
Algorithm With Polyhedral Computations

Based on Nonnegative Least Squares
Alberto Bemporad, Fellow, IEEE

Abstract—Model predictive control (MPC) is one of the most
successful techniques adopted in industry to control multivariable
systems under constraints on input and output variables. To cir-
cumvent the main drawback of MPC, i.e., the need to solve a
Quadratic Program (QP) on line to compute the control action,
explicit MPC was proposed in the past to precompute the control
law off line using multiparametric QP (mpQP). The resulting form
of the MPC law is piecewise affine, which is extremely easy to
code, can be computed online by simple arithmetic operations,
and requires a maximum number of iterations that can be exactly
determined a priori. On the other hand, the offline computations to
solve the mpQP problem require detecting emptiness, full-dimen-
sionality, and minimal hyperplane representations of polyhedra,
and other computational geometric operations. While most of the
existing methods solve such operations via linear programming,
the approach proposed in this paper relies on a nonnegative least
squares (NNLS) solver that is very simple to code and fast to
execute. In addition, the new approach exploits QP duality to
identify and construct critical regions and to handle degeneracy
issues.

Index Terms—Model predictive control (MPC), multiparamet-
ric programming, nonnegative least squares (NNLS), quadratic
programming (QP).

I. INTRODUCTION

MODEL predictive control (MPC) is a well known
methodology for synthesizing feedback control laws

that optimize closed-loop performance subject to prescribed
operating constraints on inputs, states, and outputs [1]–[3]. In
MPC, the control action is obtained by solving a finite horizon
open-loop optimal control problem at each sampling instant.
Each optimization yields a sequence of optimal control moves,
but only the first sample is applied to the process. At the next
time step, the computation is repeated over a shifted time-
horizon, taking the most recently available state information as
the initial condition of the new optimal control problem. In most
practical applications, MPC is based on a linear discrete-time
time-invariant model of the controlled system and quadratic
penalties on tracking errors and actuation efforts; in this case,
the optimal control problem can be recast as a quadratic pro-
gramming (QP) problem, whose linear term of the cost function
and right-hand side of the constraints depend on a vector of
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parameters that may change from one step to another (usually
the current state and reference signals).

Several on-line solution algorithms have been studied for
embedding quadratic optimization in control hardware, such
as active-set methods [4], [5], interior-point methods [6], al-
ternative direction of multipliers (ADMM) methods [7], and
fast gradient projection methods [8]. Explicit MPC uses instead
multiparametric quadratic programming (mpQP) to pre-solve
the QP off-line, converting the MPC law into a continuous and
piecewise affine (PWA) function of a vector of parameters [9].

A few algorithms have been proposed to solve mpQP prob-
lems, we mention here the approaches of [10]–[13], referring
the reader to the survey paper [14] for more comprehensive
list, including extensions to linear MPC based on convex PWA
costs, such as 1- and ∞-norms [15], to min-max MPC problems
for robustness with respect to additive and/or multiplicative
unknown-but-bounded uncertainty [16], and to hybrid MPC
[17], [18].

This paper introduces a novel and effective mpQP algorithm
that, beyond collecting and extending effective ideas scattered
in the literature, exploits the dual mpQP formulation and pro-
poses an original set of technical results for solving the required
polyhedral computations by using a nonnegative least squares
(NNLS) algorithm [19, Chapter 23], in addition to a QP solver.
The latter must be available anyway, as the design flow for
explicit MPC is typically to first tune an implicit (i.e., based
on on-line QP) MPC controller in simulation, then generate
its explicit version for deployment. Recently, an approach to
also solve quadratic programs based on NNLS was developed
by the author in [20], therefore showing that the entire mpQP
solver can be totally based on a simple NNLS algorithm. The
approach was further extended in [21] to solve mixed-integer
quadratic programs.

One advantage of using NNLS is to speed up polyhedral
computations, as the numerical experiments of this paper show,
which are the bottleneck of all mpQP solvers proposed in
the literature. Moreover, it is very simple to code, and, being
an active-set method applied to solve the small-dimensional
problems that arise in mpQP problems of practical interest,
provides numerical solutions with accuracy up to machine
precision after a limited number iterations, a feature that is not
enjoyed by iterative solvers and that is instead very important in
the operations of computational geometry required by the mul-
tiparametric solver. In addition, the mpQP approach proposed
in the paper relies on identifying critical regions via the dual
QP formulation, which eases dealing with degeneracy issues.
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The overall mpQP approach based on NNLS, as evidenced in
numerical experiments, provides superior performance com-
pared to existing mpQP solvers.

This paper is organized as follows. Section II defines the
MPC framework and the associated multiparametric program-
ming problem. The reformulation of several polyhedral compu-
tational problems via nonnegative least-squares is dealt with in
Section III, which is the basis for the mpQP algorithm presented
in Section IV. Section V analyzes the complexity of the solution
and effective ways to evaluate it. Numerical results are reported
in Section VI and some conclusions are drawn in Section VII.

Notation: Let Rn, N denote the set of real vectors of dimen-
sion n and the set of natural integers, respectively. Let I ⊂ N
be a finite set of integers and denote by #I its cardinality.
For a vector a ∈ Rn, ai denotes the ith entry of a, aI the
subvector obtained by collecting the entries ai for all i ∈ I,
∥a∥2 the Euclidean norm of a, the condition a > 0 is equivalent
to ai > 0, ∀i = 1, . . . , n (and similarly for ≥, ≤, < inequali-
ties), diag(a) is the diagonal matrix whose (i, i)th element is
ai, and B(a, ϵ) = {x ∈ Rn : ∥x − a∥2 ≤ ϵ} the Euclidean ball
centered in a of radius ϵ. Given two vectors a, b ∈ Rn, 0 ≤ a ⊥
b ≥ 0 means the complementarity condition aibi = 0, ai ≥ 0,
bi ≥ 0, ∀i = 1, . . . , n. For a matrix A ∈ Rn×m, A′ denotes its
transpose, Ai denotes the ith row of A, AI the submatrix of
A obtained by collecting the rows Ai for all i ∈ I, AIJ the
submatrix of A obtained by collecting the rows and columns of
A indexed by i ∈ I and j ∈ J , respectively, A∥ ∈ Rn the vec-
tor whose ith entry is ∥Ai∥2, and A# ∈ Rm×n a pseudoinverse
matrix of A, namely AA#A = A, A#AA# = A#, AA# =

(AA#)
′, A#A = (A#A)

′ (if A is full column rank, A# ∆
=

(A′A)−1A′). For a square matrix A ∈ Rn×n, det A denotes the
determinant of A, A > 0 denotes positive definiteness of A (and
similarly ≥, <, ≤ denote positive semidefiniteness, negative
definiteness, negative semidefiniteness, respectively). Matrix In

denotes the identity matrix of order n, where sometimes the
subscript n is dropped if the dimension is clear from the context.

II. EXPLICIT MODEL PREDICTIVE CONTROL

Consider the following MPC formulation:

V ∗(x) = min
z

ℓN (xN ) +
N−1∑

k=0

ℓ(xk, uk) (1a)

s.t. xk+1 = Axk + Buk (1b)

Cxxk + Cuuk ≤ c0 (1c)

k = 0, . . . , N − 1

CNxN ≤ cN (1d)

x0 = x (1e)
where N is the prediction horizon, uk ∈ Rnu is the vector of
manipulated variables at prediction time k to be optimized,
k = 0, . . . , N − 1, x ∈ Rm is the current state vector of the
controlled system whose state-space model matrices are A ∈
Rm×m and B ∈ Rm×nu

ℓ(x, u) =
1

2
x′Qxx + u′Ruu (2a)

ℓN (x) =
1

2
x′Pxx (2b)

are the stage cost and terminal cost, respectively, and Qx =
Q′

x ≥ 0, Px = P ′
x ≥ 0, Ru = R′

u > 0.
Let nc ∈ N be the number of constraints imposed at pre-

diction time k = 0, . . . , N − 1, namely Cx ∈ Rnc×m, Cu ∈
Rnc×nu , c0 ∈ Rnc , let nN be the number of terminal con-
straints, namely CN ∈ RnN×m, cN ∈ RnN , and let q

∆
= Nnc +

nN be the total number of linear inequality constraints imposed
in the MPC problem formulation (1).

By eliminating the states xk = Akx +
∑k−1

j=0 AjBuk−1−j

from problem (1), the finite-time optimal control problem (1)
can be expressed in condensed form as the strictly convex
quadratic program (QP)

V ∗(x)
∆
= min

z

1

2
z′Qz + (Fx + c)′z +

1

2
x′Y x (3a)

s.t. Gz ≤ W + Sx (3b)

where z
∆
= [u′

0 . . . u′
N−1]

′ ∈ Rn, n
∆
= nuN , is the optimization

vector, Q = Q′ ∈ Rn×n is the Hessian matrix, F ∈ Rn×m,
c ∈ Rn, Y = Y ′ ∈ Rm×m has no influence on the optimizer
as it only affects the optimal value of (3a), and the matrices
G ∈ Rq×n, S ∈ Rq×m, W ∈ Rq define the constraints imposed
in (1) in a compact form. Because of the assumptions made

on the weights Qx, Rx, Px, matrix Q > 0 and
[

Q F ′

F Y

]
≥ 0.

Although the value of vector c arising from (1) is always zero,
we include it for the sake of generality of the proposed mpQP
approach.

The MPC control law is defined by setting

u(x) = [Inu 0 . . . 0]z(x) (4)

where z(x) is the optimizer of the QP problem (3) for the
current value of x.

In the sequel, we will make use of the dual problem of (3)

Φ⋆(x)
∆
= min

y

1

2
y′Hy + (Dx + d)′y (5a)

s.t. y ≥ 0 (5b)

where H
∆
= GQ−1G′, D

∆
= GQ−1F + S, d

∆
= GQ−1c + W .

The relation between the optimal primal vector z(x) and op-
timal dual vector y(x) is

z(x) = −Q−1 (G′y(x) + Fx + c) . (6)

A. Multiparametric Solution

Rather than using a numerical QP solver to compute the
optimizer z(x) of (3) on-line for each given current state vector
x, the basic idea of explicit MPC is to characterize the solution
of the QP off-line for an entire set X ⊆ Rm of states x of
interest

X
∆
= {x ∈ Rm : Exx ≤ ex} (7)

that is to get z, and hence the MPC control law u, as an explicit
function of x.

The main tool to get such an explicit solution is multipara-
metric quadratic programming (mpQP). For mpQP problems
of the form (3), we recall the following result from [9]:
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Fig. 1. DC motor example—Section of the partition for x3−6 = 0.

Theorem 1: Consider problem (3) with Q = Q′ > 0 and let
X = Rn.

i) The set Xf of parameters x for which the problem is
feasible is a polyhedron;

ii) The optimizer function z∗ : Xf → Rn is piecewise affine
and continuous over Xf ;

iii) If in addition matrix
[

Q F ′

F Y

]
is symmetric and positive

semidefinite, the value function V ∗ : Xf → R associating
with every x ∈ Xf the corresponding optimal value of (3)
is continuous, convex, and piecewise quadratic.

When X ⊂ Rn, the results of Theorem 1 hold by replacing
Xf with Xf ∩ X .

An immediate corollary of Theorem 1 is that the explicit
version of the MPC control law u in (4), being the first nu

components of the optimal vector z(x), is also a continuous and
piecewise-affine state-feedback law defined over a partition of
the set Xf ∩ X of states into M polyhedral cells

u∗(x) =

⎧
⎨

⎩

K1x + h1 if E1x ≤ e1

...
...

KMx + hM if EMx ≤ eM .

(8)

An example of such a partition is reported in Fig. 1 of
Section VI-B. The explicit representation (8) has mapped the
MPC law (4) into a lookup table of affine gains, meaning that
for each given x the values computed by solving the QP (3) on-
line and those obtained by evaluating (8) are exactly the same.

B. Generalization of the MPC Formulation

The explicit approach described above can be extended to the
following MPC setting:

min
z

N−1∑

k=0

1

2
(yk − rk)′Qy(yk − rk) +

1

2
∆u′

kR∆u∆uk

+ (uk − ur
k)′ Ru (uk − ur

k)′ + ρϵϵ
2 (9a)

s.t. xk+1 = Axk + Buuk + Bvvk (9b)

x0 = x0

yk = Cxk + Duuk + Dvvk (9c)

uk = uk−1 + ∆uk, k = 0, . . . , N − 1 (9d)

u−1 = u−1

∆uk = 0, k = Nu, . . . , N − 1 (9e)

uk
min ≤ uk ≤ uk

max, k = 0, . . . , Nu − 1 (9f)

∆uk
min ≤ ∆uk ≤ ∆uk

max, k = 0, . . . , Nu − 1 (9g)

yk
min − ϵVmin ≤ yk ≤ yk

max + ϵVmax

k = 0, . . . , Nc − 1 (9h)

where R∆u = R′
∆u > 0, Qy = Q′

y ≥ 0, Ru = R′
u ≥ 0, x0 is

the current state, vk is a vector of measured disturbances,
yk ∈ Rny is the output vector, rk ∈ Rny its corresponding
reference to be tracked, ∆uk the vector of input increments,
u−1 is the command input applied during the previous sampling
interval, ur

k the input reference, uk
min, uk

max, ∆uk
min, ∆uk

max,
yk

min, yk
max are bounds, and N , Nu, Nc are, respectively, the

prediction, control, and constraint horizons. The extra variable
ϵ is introduced to soften output constraints via the relaxation
vectors Vmin, Vmax > 0 of Rny and penalized by the (usually
large) weight ρϵ in the cost function (9a).

Everything marked in bold-face in (9) can be treated as a
parameter with respect to which solve the mpQP problem and
obtain the explicit form of the MPC controller. For example, for
a tracking problem with no anticipative action (rk ≡ r0, ∀k =
0, . . . , N − 1), no measured disturbance, fixed upper and lower
bounds, the explicit solution is a continuous piecewise affine
function of the parameter vector [x′

0 r′0 u−1′ ]′.

III. POLYHEDRAL COMPUTATIONS BASED ON NNLS

Finding a solution to the mpQP problem (3) requires solv-
ing several problems of computational geometry, as will be
detailed in Section IV. The goal of this section is to provide
an alternative to existing methods that rely on the availability
of a linear programming (LP) solver, building upon a standard
and easy-to-code solver for the Non-Negative Least-Squares
(NNLS) problem

r∗ = min
v

∥Av − b∥2
2

s.t. v ≥ 0, (10)

where v ∈ Rn, A ∈ Rm×n, b ∈ Rm, and r∗ ∈ R is the mini-
mum squared Euclidean norm of the residual w∗ = Av∗ − b. A
well-known and simple, yet very effective, active-set method
for solving the NNLS problem (10) is described in [19, p.161]
and is summarized in Algorithm 1. At convergence after a finite
number of steps, the algorithm provides the optimal solution
vector v∗, with v∗

i >0, ∀i ∈ P , and v∗
i =0, ∀i ∈ {1, . . . , m} \ P .
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Algorithm 1 NNLS solver [19, p.161]

Input: Matrices A, b.

1) P ← ∅, v ← 0;
2) w ← A′(Av − b);
3) if w ≥ 0 or P = {1, . . . , m} then go to Step 11;
4) i ← arg mini∈{1,...,m}\P wi, P ← P ∪ {i};
5) yP ← arg minzP ∥((A′)P)′zP−b∥2

2, y{1,...,m}\P ←0;
6) if yP ≥ 0 then v ← y and go to Step 2;
7) j ← arg minh∈P: yh≤0{ vh

vh−yh
};

8) v ← v + vj

vj−yj
(y − v);

9) I ← {h ∈ P : vh = 0}, P ← P \ I;
10) go to Step 5;
11) v∗ ← v; end.

Output: A vector v∗ solving (10)

Algorithm 1 can be easily modified to warm-start from a
set P ̸= ∅ of active constraints, see, e.g., [22, Algorithm 2].
Moreover, since solving Step 5 is the most time consuming
operation of Algorithm 1, iterative methods have been proposed
for QR factorization [19, Chap. 24] and LDLT factorization
[20] to exploit the incremental changes of the active set P in
Steps 4 and 9.

In the sequel, we will also refer to the unconstrained problem

r∗ = min
v

∥Av − b∥2
2 (11)

as the (unconstrained) Least-Squares (LS) problem, whose
optimizer is v∗ = A#b, where A# is a pseudoinverse of A.

As shown in next Lemma 1, a NNLS algorithm can be
immediately used also to solve the Partially Non-Negative
Least Squares (PNNLS) problem

r∗ = min
v,u

∥Av + Bu − c∥2
2

s.t. v ≥ 0, u free (12)

where u ∈ Rp, B ∈ Rm×p, c ∈ Rm.
Lemma 1 (PNNLS): A solution (v∗, u∗) to the PNNLS prob-

lem (12) is obtained by solving the following NNLS problem:

v∗ ∈ arg min
v

∥Āv − b̄∥2
2

s.t. v ≥ 0 (13)

and setting u∗ = −B#(Av∗ − c), where Ā
∆
= (I − BB#)A,

b̄
∆
= (I − BB#)c, and B# is a pseudoinverse of B.

Proof: Let (v∗, ū) be a solution of the PNNLS
problem (12), and let u(v) ∈ arg minu ∥Av + Bu − c∥2

2 =
−B#(Av − c) for some pseudoinverse B# of B. Since by
definition ∥Av∗ + Bu(v∗) − c∥2

2 ≤ ∥Av∗ + Bu − c∥2
2 for all

u ∈ Rp, we have in particular that ∥Av∗ + Bu(v∗) − c∥2
2 ≤

∥Av∗ + Bū − c∥2
2, and hence (v∗, u(v∗)) is also an optimal

solution of (12). Then, the search for optimal PNNLS solutions
can be restricted to the affine subspace u + B#Av = B#c,
and therefore a solution v∗ can be computed as in (13) after
substituting u = u(v) in (12). !

In the following sections we show how to address different
computational geometric operations over polyhedral sets using
the above NNLS and PNNLS formulations.

A. Feasibility

Lemma 2 (Feasibility): Let P be the polyhedral set P =
{u ∈ Rn : Eu ≤ e}, E ∈ Rm×n, e ∈ Rm. P is nonempty if
and only if the PNNLS problem

(v∗, u∗) ∈ arg min
v,u

∥Iv + Eu − e∥2
2

s.t. v ≥ 0, u free (14)

is such that r∗ = ∥v∗ + Eu∗ − e∥2
2 = 0. Moreover, if P is

nonempty then u∗ ∈ P .
Proof: If r∗ = 0 then Eu∗ = e − v∗ ≤ e and hence u∗ ∈

P . Vice versa, if P is nonempty, for any u∗ ∈ P , the pair
(u∗, e − Eu∗) is feasible and has a zero residual, so r∗ = 0 for
problem (14). !

The idea of Lemma 2 can be immediately adopted to get a
feasible point on a facet of P lying on the hyperplane Eiu = ei

and inside convex cones, as described in the following Lemma 3
and Lemma 4, respectively.

Lemma 3 (Point on a Facet): Let P be the polyhedral set
P = {u ∈ Rn : Eu ≤ e}, E ∈ Rm×n, e ∈ Rm and let

P̃i = P ∩ {u ∈ Rn : Eiu = ei}.

Then P̃i ̸= ∅ if and only if the PNNLS problem

(v∗, u∗) ∈ arg min
v,u

∥Civ + Eu − e∥2
2

s.t. v ≥ 0, u free (15)

has a zero residual, where v ∈ Rm−1 and matrix Ci ∈ Rm×m−1

is obtained by eliminating the ith column from the identity
matrix Im. In this case, u∗ ∈ P̃i.

Proof: Assume P̃i ̸= ∅. Then a vector ū ∈ Rn exists such
that Ej ū−ej ≤0, ∀j =1, . . . , m, and Eiū − ei = 0. By letting

v̄
∆
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

e1 − E1ū
...

ei−1 − Ei−1ū
ei+1 − Ei+1ū

...
em − Emū

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0

we get ∥Civ̄ + Eū − e∥2
2 = 0. Then, all optimal solutions

(u∗, v∗) of (15) have zero residuals. Vice versa, if v∗, u∗ in (15)
are such that Civ∗ + Eu∗ − e = 0, then Eu∗ = e − Civ∗ ≤ 0
and Eiu∗ = ei, or equivalently u∗ ∈ P̃i. !

Lemma 4 (Strictly Feasible Ray): Let C ={u∈Rn :Eu≤0}
be a convex cone, E ∈ Rm×n. Consider the LS problem

u∗ ∈ arg min
u

∥Eu + E∥∥2
2 (16)

where E∥ ∈ Rm is a vector whose ith entry (E∥)i = ∥Ei∥2.
The cone C is full-dimensional if and only if Eu∗ + E∥ = 0.
In this case, u∗ ∈ C is such that the unit ball B(u∗, 1) ⊂ C,
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implying that R = {u ∈ Rn : u = αu∗,α ≥ 0} is a non-
extreme ray of C.

Proof: Let Eu∗ + E∥ = 0 and consider a generic vector
u ∈ B(u∗, 1), that is u = u∗ + w for some w ∈ B(0, 1). Then
Eiu= Eiu∗+Eiw = −∥Ei∥2 + Eiw ≤−∥Ei∥2+∥Ei∥2 = 0,
∀i = 1, . . . , n, and therefore B(u∗, 1) ⊂ C, which proves that
C is full-dimensional. Vice versa, assume C is full dimensional.
Then a vector ū in the interior of P exists such that d

∆
=

Eū < 0. Let u ∈ Rn such that ui = −(∥Ei∥2/di)ūi. Then,
(Eu + E∥)i = −∥Ei∥2 + ∥Ei∥2 = 0, that is Eu + E∥ = 0,
and hence ∥Eu∗ + E∥∥2

2 = 0 for all optimizers u∗ of (16). !

B. Minimal Hyperplane Representation

Definition 1: Given a polyhedron P = {u ∈ Rn : Eu ≤ e},
the inequality Eiu ≤ ei is said redundant if P = {u ∈ Rn :
Eju ≤ ej , j = 1, . . . , i − 1, i + 1, . . . , m}.

Definition 2: A redundant inequality is said weakly redun-
dant if it is redundant and P ∩ {u ∈ Rn : Eiu = ei} ̸= ∅, or
strongly redundant otherwise.

Definition 3: A polyhedron P = {u ∈ Rn : Eu ≤ e} is said
in minimal H-representation if no inequality Eiu ≤ ei in its
hyperplane description is redundant, or in weakly minimal H-
representation if no inequality Eiu ≤ ei is strongly redundant.

In the sequel, given a polyhedron P = {u ∈ Rn : Eu ≤ e}
and its ith inequality Eiu ≤ ei we will denote by

Ei ∆
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1
...

Ei−1

−Ei

Ei+1
...

Em

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ei ∆
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
...

ei−1

−ei

ei+1
...

em

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17a)

P i ∆
= {u ∈ Rn : Eiu ≤ ei}

P̄ i ∆
= {u ∈ Rn : Eju ≤ ej , j ∈ {1, . . . , m} \ {i}}

(17b)

for i = 1, . . . , m. Clearly, P̃i = P i ∩ {u ∈ Rn : Eiu = ei}
and P̄ i = P ∪ P i.

Lemma 5: Let P = {u ∈ Rn : Eu ≤ e}, E ∈ Rm×n, e ∈
Rm, be a nonempty polyhedron. An inequality Eiu ≤ ei is
strongly redundant if and only if the polyhedron P i defined in
(17) is empty.

Proof: If P i = ∅ and therefore P̄ i = P ∪ P i = P , the ith
inequality is redundant. We prove that such an inequality is
also strongly redundant by contradiction. Assume the inequality
Eiu ≤ ei is weakly redundant. Then there exists a vector u
such that u ∈ P̃i ⊆ P i, and therefore P i ̸= ∅. Since this is a
contradiction, Eiu ≤ ei is strongly redundant. Vice versa, let
Eiu ≤ ei be strongly redundant, that is P̄ i = P and P̃i = ∅,
and assume P i ̸= ∅. Let u ∈ P i. As P̃i = ∅, Eiu > ei, and
hence u ̸∈ P , which yields P = P̄ i \ P i ∪ P̃i = P̄ i \ P i ̸=
P̄ i, a contradiction proving that P i = ∅. !

Theorem 2 (Redundancy Elimination I): Let P = {u ∈ Rn :
Eu ≤ e}, E ∈ Rm×n, e ∈ Rm, be a nonempty polyhedron.
The weakly minimal H-representation of P can be obtained
by collecting all constraints Eiu ≤ ei such that the PNNLS
problem

min
v,u

∥Iv + Eiu − ei∥2
2

s.t. v ≥ 0, u free (18)

has zero residual, where Ei, ei are defined in (17), i =
1, . . . , m.

Proof: By Lemma 2 applied to P i, Problem (18) has
a zero residual w = v + Eiu − ei iff P i ̸= ∅; moreover, by
Lemma 5, P i ̸= ∅ iff inequality Eiu ≤ ei is not strongly re-
dundant. Therefore, all non-redundant and weakly-redundant
inequalities are identified by detecting the indices i = 1, . . . , m
for which Problem (18) has a zero residual. !

Note that, from a numerical point of view, by slightly per-
turbing the coefficient ei to ei + ∥Ei∥2δ in (17), where δ > 0
is a small tolerance, weakly redundant inequalities become
strongly redundant and can be eliminated to obtain a minimal
H-representation.

In alternative to solving (18), one can test hyperplane redun-
dancy in accordance with the following theorem.

Theorem 3 (Redundancy Elimination II): Let P = {u ∈
Rn : Eu ≤ e}, E ∈ Rm×n, e ∈ Rm, be a nonempty polyhe-
dron. The weakly minimal H-representation of P can be ob-
tained by collecting all the inequalities Eiu ≤ ei such that the
NNLS problem

min
v

∥∥∥∥∥∥∥∥
[ Ei ei ]′ v −

⎡

⎢⎢⎣

0
...
0
−1

⎤

⎥⎥⎦

∥∥∥∥∥∥∥∥

2

2

s.t. v ≥ 0 (19)

has nonzero residual, where Ei, ei are defined in (17).
Proof: By Lemma 5, strong-redundancy of the ith in-

equality Eiu≤ei is equivalent to emptiness of P i ={u∈Rn :
Eiu ≤ ei}. We need to prove that P i is empty iff Problem (19)
has zero residual.

If Problem (19) has zero residual, then there exists a vec-
tor v ∈ Rm+1 such that (Ei)′v = 0, v ≥ 0, (ei)

′
v = −1. By

Farkas’s Lemma [23, p. 201], this is equivalent to infeasibility
of Eiu ≤ ei. Vice versa, if Eiu ≤ ei is infeasible then a vector
v̄ exists such that (Ei)

′
v̄ = 0, v̄ ≥ 0, (ei)

′
v̄ < 0. By defining

v
∆
= −(1/(ei)′v̄)v̄, we get

[
(Ei)

′
v

(ei)
′
v

]
= − 1

(ei)′v̄

[
(Ei)

′
v̄

(ei)
′
v

]
=

⎡

⎢⎢⎣

0
...
0
−1

⎤

⎥⎥⎦

which proves that Problem (19) has a zero residual. !
Next Theorem 4 provides a third method to check re-

dundancy that is based on testing emptiness of the lower-
dimensional facets P̃i.
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TABLE I
COMPUTATION OF MINIMAL H-REPRESENTATIONS. CPU TIME (s) ON

RANDOM POLYHEDRA IN Rm DEFINED BY 10 m INEQUALITIES (RESULTS
AVERAGED ON 20 NONEMPTY POLYHEDRA PER VALUE OF m)

Theorem 4 (Redundancy Elimination III): Let P = {u ∈
Rn : Eu ≤ e}, E ∈ Rm×n, e ∈ Rm, be a nonempty polyhe-
dron. The weakly minimal H-representation of P can be ob-
tained by collecting all the inequalities Eiu ≤ ei such that the
corresponding PNNLS problem (15) has a zero residual.

Proof: If Problem (15) has a zero residual, by Lemma 3
P̃i ̸= ∅, which implies P i ̸= ∅, and hence, by Lemma 5, the
inequality Eiu ≤ ei is not strongly redundant. Vice versa,
if Eiu ≤ ei is not strongly redundant then P i ̸= 0. Take two
arbitrary vectors u1 ∈ P i, u2 ∈ P \ P i. Clearly, Ejuh ≤ ej ,
∀j ∈ {1, . . . , m} \ {i}, h = 1, 2, and Eiu1 = ei + v1, Eiu2 =

ei − v2 for some scalars v1, v2 ≥ 0. Let α
∆
= (v2/(v1 + v2))

and set u
∆
= αu1 + (1 − α)u2. Then Eiu = αEiu1 + (1 − α)

Eiu2 = αei + αv1 + (1 − α)ei−(1 − α)v2 = αv1 +ei−v2+
αv2 = ei, which implies u ∈ P̃i. Therefore, by Lemma 3,
Problem (15) has a zero residual. !

Theorems 2, 3 and 4 provide three alternative methods
to obtain the weakly minimal H-representation of a given
polyhedron P . By referring to the dimension of the NNLS
problem (10) as the pair (n, m), that is the dimensions of the
vector of unknowns and of the residual, they require solving
m NNLS problems of dimension (m, m), (m, m + 1), (m −
1, m) respectively. The approaches of Theorems 2 and 4 also re-
quire the computation of a pseudoinverse matrix. Section VI-A
below compares the proposed three methods numerically (the
results are summarized in Table I). According to our numerical
experience, Theorem 4 is the fastest one, while the approaches
of Theorems 2 and 3 are numerically more robust.

C. Full-Dimensionality

Definition 4: A polyhedron P is said full-dimensional if
there exists a ball B(u, ϵ) ⊂ P for some u ∈ P and ϵ > 0.

Theorem 5: Let P = {u ∈ Rn : Eu ≤ e}, E ∈ Rm×n, e ∈
Rm, be a nonempty polyhedron, let u0 ∈ P , and let γi

∆
= ei −

Eiu0, i = 1, . . . , m. Let I denote the set of indices i such that
γi = 0 (active inequalities at u0). The following statements are
true:

i) If I = ∅, then P is full-dimensional. Moreover,
B(u0, ϵ) ⊂ P for all ϵ ∈ R such that 0 < ϵ ≤
mini=1,...,m:Ei ̸=0{γi/∥Ei∥2}.

ii) If I ̸= ∅, let u∗ be a solution of the LS problem (16)
with E replaced by EI and E∥ by (E∥)I . Then P is full-
dimensional if and only if the residual EIu∗ + (EI)∥ = 0.

In this case, by defining

αI
∆
= min

i̸∈I: Eiu∗>0

γi

Eiu∗ (20)

where αI
∆
= +∞ if Eiu∗ ≤ 0 for all i = 1, . . . , m, and

ϵα
∆
= min

i∈{1,...,m}

ei − Eiu0 − αEiu∗

∥Ei∥2
(21)

it holds that αI > 0, 0 < ϵα ≤ α, and B(u0 + αu∗, ϵ) ⊂
P for all α, ϵ such that 0 < α < αI and ϵ ≤ ϵα.

Proof: Part (i). If I = ∅ then Eu0 < e, and hence ϵ̄
∆
=

mini=1,...,m:Ei ̸=0{γi/∥Ei∥2} > 0. Moreover, for any w ∈
B(u0, ϵ̄) we have Eiw − ei = −γi + Ei(w − u0) ≤ −γi +
ϵ̄∥Ei∥2. Hence, if Ei = 0 then Eiw − ei ≤ −γi ≤ 0, while if
Ei ̸= 0 then Eiw − ei ≤ ∥Ei∥2(−(γi/∥Ei∥2) + ϵ̄) ≤ 0. This
proves that B(u0, ϵ) ⊂ P , ∀ϵ ≤ ϵ̄.

Part (ii). Let I ̸= ∅. Assume that P is full-dimensional and
by contradiction that the residual EIu∗ + (E∥)I ̸= 0. By

Lemma 4 the cone C0
∆
= {u ∈ Rn : EI(u − u0) ≤ 0} is not

full-dimensional, and therefore the set C
∆
= {u0} ⊕ C0 is

not full-dimensional. Consider any u ∈ P . Then eI ≥ EIu =
EIu + (eI − EIu0), which implies EI(u − u0) ≤ 0 and
hence u − u0 ∈ C0, or u ∈ C. Therefore, P ⊆ C, and since
C is not full-dimensional, P is also not full-dimensional, a
contradiction.

Vice versa, assume the residual EIu∗ + (E∥)I = 0. We want
to prove that P is full-dimensional. If no i ̸∈ I exists such
that Eiu∗ > 0 then αI = +∞ > 0. Otherwise, αI > 0 by
definition, being the minimum of ratios of positive scalars.
Consider a generic α, 0 < α < αI and the quantity σi

∆
= ((γi −

αEiu∗)/∥Ei∥2). For i ∈ I, σi = α > 0. For i ̸∈ I, if Eiu∗ ≤ 0
then σi = γi/∥Ei∥2 > 0; otherwise, if Eiu∗ > 0, then σi ≥
(Eiu∗/∥Ei∥2)((γi/Eiu∗)−α) ≥ (Eiu∗/∥Ei∥2)(αI − α)>0.
Hence, ϵα=mini∈{1,...,m}σi>0 and moreover ϵα=mini∈{1,...,m}
{((ei−Eiu0)/∥Ei∥2)−α(Eiu∗/∥Ei∥2)} ≥ α. Let ϵ such that

0 < ϵ < ϵα, let uα
∆
= u0 + αu∗, and let w ∈ B(uα, ϵ). For

i ∈ I, for all w ∈ B(uα, ϵ) we have Eiw − ei = Eiu0 − ei +
αEiu∗+Ei(w−uα)≤−γi+αEiu∗ + ϵ∥Ei∥2 = ∥Ei∥2(−(γi −
αEiu∗)/∥Ei∥2) + ϵ) ≤ 0 for all ϵ ≤ ϵα. Hence, B(uα, ϵ) ⊂ P ,
for all ϵ ≤ ϵα, and for all α < αI , and therefore P is full-
dimensional. !

Theorem 5 provides a simple method, based on solving just
a single LS problem, to determine if a given polyhedron P is
full-dimensional, once a vector u0 ∈ P is known. However,
Theorem 5 is not able to quantify the largest ball B(uc, ϵc)
included in P , that is the Chebychev center uc and radius ϵc
of P , or if P contains a ball of a given radius ρ that is larger
than the radius determined by Theorem 5. Algorithm 2 shows
how to compute uc, ϵc via PNNLS and bisection. At each
iteration, the interval [rmin, rmax] is halved, which ensures a
good convergence of the algorithm.
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Algorithm 2 Chebychev center and radius via PNNLS and
bisection

Input: P ={u : Eu≤e}, u0 ∈ P , tolerance δ>0.

1. rmin←mini{(ei−Eiu0)/∥Ei∥2}, rmax←+∞, uc← u0;
2. while rmax − rmin ≥ δ do

2.1 r ← (rmin + rmax)/2;
2.2 solve the PNNLS problem

(v∗, u∗) ∈ arg min
v,u

∥∥Iv + Eu − (ei − rE∥)
∥∥2

2

s.t. v ≥ 0, u free; (22)

2.3 if ∥v∗+Eu∗−(e−rE∥)∥2 ≤ δ then rmin←r,
uc ← u∗ else rmax ← r;

3. ϵc ← rmin; end.

Output: B(uc, ϵc) = largest ball (within precision δ) in P .

Remark 1: By Lemma (2), the PPNLS problem (22) solved
at Step 2.2 determines if the set of inequalities Eu + rE∥ ≤
e is satisfiable for some u ∈ Rm, which implies that the ball
B(u, r) ⊂ P . If one is only interested in testing if P contains a
ball larger or equal than a given radius ρ, Algorithm 2 reduces
to simply executing Step 2.2 for r = ρ.

Remark 2: Algorithm 2 can be easily modified to determine
lower dimensional balls contained in facets of P , say the facet
contained in the hyperplane Eiu = ei, with an approach similar
to the one proposed by Lemma 3, by simply changing the
PNNLS problem to the one of minimizing ∥Eu + Civ − (ei −
rEi

∥)∥2
2, where Ei

∥ is obtained from E∥ by zeroing its ith entry.
Remark 3: The PNNLS solver for (12) can be also em-

ployed to solve the Linear Program (LP) min{u:Gu≤W } f ′ u,
G ∈ Rq×n, W ∈ Rq , f ∈ Rn, by considering the dual LP
problem max{y≥0:G′y=−f} −W ′y and imposing the optimality
conditions f ′ + G′y = 0, Gu + s = W , s ≥ 0, y ≥ 0, and the
complementarity condition y′(Gu − W ) = 0, where the latter
is equivalent to the condition f ′u + W ′y = 0 (zero duality
gap). As such conditions are all linear conditions with respect to
u, y, s, finding an optimal solution of the LP problem is equiv-
alent to determining a solution u of (12) with zero residual,

for matrices A =

⎡

⎣
W ′ 0
0 I
G′ 0

⎤

⎦, B =

⎡

⎣
f ′

G
0

⎤

⎦, c =

⎡

⎣
0
W
−f

⎤

⎦. Then,

this approach can be used as an alternative to Algorithm 2 to
finding the Chebychev radius of the polyhedron P via the LP
max{u,ϵ:Eu≤e+E∥ϵ} ϵ.

Remark 4: Practical evidence has shown that the hyperplane
representation {Eu ≤ e} should be normalized before applying
any of the results for polyhedral computation presented in this
section to help avoiding ill-conditioning issues, that is to replace
each row Ei of matrix E by (1/∥Ei∥)Ei and each component
ei by (1/∥Ei∥)ei. The cost of this operation is negligible, and
often done anyway (see, e.g., Algorithm 2).

In the next section we will use the above results as the
building blocks of a mpQP algorithm. They can be used
also for other polyhedral computations such as computing the

union of convex polyhedra [24, Algorithm 4.1] and to remove
redundancy in Fourier-Motzkin elimination methods [25] for
projection of polyhedra.

IV. MULTIPARAMETRIC QP BASED ON NNLS

A few algorithms have been proposed in the literature to
solve the mpQP problem (3). All of them rely on the fact that
for a given combination of active constraints at optimality, the
optimal solution z(x) is a linear function of x, and that such
a function is the optimal solution within an entire polyhedral
set (also called critical region) of the parameter space; then,
they enumerate all possible optimal combinations of active
constraints (which are a finite number) until the entire set
X ⊆ Rm defined in (7) has been characterized.

While most of the proposed approaches construct the solu-
tion by exploiting the Karush–Kuhn–Tucker (KKT) conditions
for optimality of the primal problem (3), in this paper we refer
instead most often to the optimality conditions for the dual
problem (5)

w = Hy + Dx + d (23a)

0 ≤ y ⊥ w ≥ 0. (23b)

Note that problem (23) corresponds to a parametric linear
complementarity problem (mpLCP) in the variables y, w [13].

Definition 5: A combination I ⊆ {1, . . . , q} is said optimal
if (23a) is satisfied for some x ∈ Rm, y ∈ Rq , w ∈ Rq with
yI ≥ 0 and wI = 0.

Definition 6: Given an optimal combination I ⊆ {1, . . . , q},
the corresponding critical region CRI is the set of all parameter
vectors x ∈ Rm such that (23a) is satisfied for some y ∈ Rq ,
w ∈ Rq with yI ≥ 0 and wI = 0. When solving an mpQP
problem, we are interested in collecting all full-dimensional
critical regions CRI (in minimal H-representation) such that
CRI ∩ X ̸= ∅.

Given a vector x ∈ Rn, an optimal combination I, and a
pair (y, w) satisfying (23a), by (6) the corresponding optimal
solution is

z(x) = −Q−1 (G′
IyI(x) + Fx + c) . (24)

By (23a) and recalling the definitions of H , D, d in
(5) we get that w(x) = GQ−1G′

IyI(x) + (GQ−1F + S)x +
GQ−1c+W = −Gz + Sx + W is the slack vector, so that
w(x)≥0 is the condition of primal feasibility. Therefore, wI =0
is equivalent to GIz = SIx + WI , so that I determines an
optimal active set for the primal QP problem (3).

Definition 7 [25, Def. 2]: For an active set I ⊆ {1, . . . , q},
we say that the linear independence constraint qualification
(LICQ) holds for I if the set of active constraint gradients are
linearly independent, i.e., GI has full row-rank.

Lemma 6 (Critical Region): Let I ∈ {1, . . . , q} be an opti-
mal combination, and assume LICQ is satisfied for I. Then I
is optimal for all vectors x contained in the critical region CRI

CRI = {x ∈ Rm : yI(x) ≥ 0, wJ (x) ≥ 0} (25a)

-
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where J = {1, . . . , q} \ I, and

yI(x) = − H−1
II (DIx + dI) (25b)

wJ (x) = HJ IyI(x) + DJ x + dJ (25c)

are the dual optimizer and slack vector corresponding to x,
respectively.

Proof: Since Q>0 and GI is full row rank, then HII >0
and is invertible. The proof follows immediately by the KKT
conditions (23) for the dual QP problem (5). !

Note that in case I = ∅ we have y(x) = 0, w(x) = Dx + d,
z(x) = −Q−1(Fx + c).

In case the LICQ condition is violated for a given I, we
refer to a condition of (primal) degeneracy, in which the dual
solution y may not be uniquely defined as a function of x. The
following result allows one to rule out critical regions that are
not full-dimensional.

Theorem 6 (Degeneracy): Let I ⊆ {1, . . . , q} be an opti-

mal combination, nI
∆
= #I, and let r < nI the rank of GI

(LICQ condition violated). Let GIEI = QIRI be a QR de-
composition of GI , where QI ∈ RnI×nI , Q′

IQI = I , QI =
[Q′

1 Q′
2], Q1 ∈ Rr×nI , Q2 ∈ R(nI−r)×nI , RI ∈ RnI×q is such

that RI =

[
R1 R2

0 0

]
, with R1 ∈ Rr×r upper triangular and

det R1 ̸= 0, R2 ∈ Rr×(q−r), and EI is a permutation matrix.

i) If

Q2[DI dI ] ̸= 0 (26)

then CRI is not a full-dimensional critical region.
ii) LetMI =−([R1 R2]E

−1
I Q−1(E−1

I )′[R1 R2]′)
−1

Q1. Then
any vector y(x) such that yJ (x)=0, J ={1, . . . , q}\I,

and yI(x) = QI

[
MI(DIIx + dI)

s2

]
is a dual solution of

(5) for any s2 ∈ RnI−r such that yI(x) ≥ 0, and

z(x) = −Q−1
(
Fx + c +

(
E−1

I
)′

[R1 R2]
′MI(DIx + dI)

)

(27)
is the primal solution of (3). Moreover CRI is the projec-
tion onto Rn of the set

P =

{[
x

s2

]
∈ Rm+nI−r : QI

[
MI(DIx + dI)

s2

]
≥ 0

}
.

(28)

Proof: Let Q̃I = E−1
I Q−1(E−1

I )′, so that HII =
GIEIQ̃IE ′

IG′
I . By (23a), wI = 0 leads to HIIyI + DIx +

dI = 0, and hence, by setting sI
∆
= Q′

IyI =

[
s1

s2

]
, s1 ∈ Rr,

s2 ∈ RnI−r, we get RIQ̃IR′
IsI + Q′

I(DIx + dI) = 0. The
latter leads to

[R1 R2]Q̃I [R1 R2]
′s1 + Q1(DIx + dI) = 0 (29a)

Q2(DIx + dI) = 0. (29b)

(i) If condition (26) is satisfied, then Q2DI ̸=0 or Q2dI ̸= 0,
or both. IfQ2DI ̸= 0, clearly the set of vectorsx satisfying (29b)

is not full-dimensional, and therefore CRI is not full-
dimensional, because (23a) can only be satisfied on an affine
subspace of dimension smaller than m. Otherwise, if Q2DI =0
and Q2dI ̸= 0, then (29b) has no solution, and CRI is empty.

(ii) Since Q̃I and R1 are nonsingular, matrix
[R1 R2]Q̃I [R1 R2]′ is invertible, which leads to s1(x) =

MI(DIx + dI), and hence yI(x) = QI

[
MI(DIx + dI)

s2

]
.

Then G′
IyI(x)=(QIRIE−1

I )′QIsI=(E−1
I )

′
[

R′
1 0

R′
2 0

]
sI(x)=

(E−1
I )′ [ R1 R2 ]′ s1(x). Replacing G′

IyI(x) in (24) leads
to (27). The set P in (28) is obtained by simply imposing primal
feasibility of z(x) and dual feasibility of y(x). The critical re-

gion CRI = {x : ∃s2 such that

[
x
s2

]
∈ P} can be computed

by projecting P onto Rm to get rid of the nI − r components
of s2. !

The need for polyhedral projections was reported in
[9, Sect. 4.1.1], in which the condition Q2SI = 0 was also
recognized as a condition for full-dimensionality of CRI . A
result related to Theorem 6 was shown in [10, Th. 3].

Lemma 7: Under the same hypotheses of Theorem 6, the
condition

rank[GI − SI − WI ] > r (30)

implies that CRI is not a full-dimensional critical region.
Proof: Since r̄

∆
=rank[GI−SI−WI ] = rank[GIEI−SI

EI − WIEI ]=rank[RI−Q′
ISIEI−Q′

IWIEI ], then

r̄ = rank

[
R1 R2 −Q1SIEI −Q1WIEI
0 0 −Q2SIEI −Q2WIEI

]
. (31)

Since Q2[DI dI ]=Q2GIQ−1[F c]+Q2[SI WI ] and Q2GI =

[0 I]Q′
IQIRI = [0 I]

[
R1 R2

0 0

]
= 0, then Q2DI = Q2SI

and Q2dI = Q2WI . As R1 is upper triangular, det R1 ̸= 0, and
EI is nonsingular, the condition in (26) is satisfied iff r̄ > r. !

Lemma 7 is a slight generalization of the result of [26, Th. 3].
This states that when the LICQ condition is violated (nI > r),
then the condition r̄ = nI > r, is an indicator that CRI is not
full-dimensional, while Lemma (7) only requires r̄ > r (clearly,
r̄ ≤ nI ).

As most existing algorithms proposed in the literature, the
mpQP algorithm described in this paper determines all critical
regions that intersect the given set X ⊆ Rn of interest defined
in (7), by first determining an initial optimal combination I0

and its corresponding CRI0 , finding all neighboring regions
CRI of CRI0 corresponding to new combinations I, and then
proceeds recursively until no optimal combination I exists such
that CRI ∩ X ̸= ∅.

We focus first on determining an initial optimal combination
I0. In case the polyhedron CR∅ = {x ∈ Rm : G(−Q−1(Fx +
c)) ≤ W + Sx,Exx≤ ex} is nonempty, I0 = ∅ is a valid ini-
tial combination. Otherwise, the following Lemma 8 provides a
general method to determine I0.
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Lemma 8: Consider problem (3) with Q = Q′ > 0 and let
X = {x ∈ Rm : Exx ≤ ex} ⊆ Rm. Consider the QP problem

min
[z
x]

1

2
z′Qz + (Fx + c)′z +

1

2
(x − x̄)′B(x − x̄)

s.t. Gz − Sx ≤ W

Exx ≤ ex (32)

where B ∈ Rm×m, B = B′ ≥ 0, x̄ ∈ Rm are an arbitrary ma-
trix and vector, respectively. If (32) is infeasible, then Xf ∩
X = ∅, where Xf is the set of parameter vectors x for which the
QP problem (3) admits a solution. Otherwise, for any solution[

z0

x0

]
of (32) the combination I0 such that GI0z0 = SI0x0 +

WI0 is an optimal combination of active constraints for
problem (3).

Proof: The proof is rather simple. If (32) is infeasible,
then no vector x ∈ X exists such that Gz ≤ W + Sx, and

therefore X ∩ Xf = ∅. If (32) admits a solution
[

z0

x0

]
, then

z0 is also the unique solution of (3) for x = x0, otherwise

a different vector z1 solving (3) would exist such that
[

z1

x0

]

satisfies the constraints in (3) and has a lower cost. Hence, I0

identifies an optimal combination for x = x0. !
A possible choice for B, x̄ in (32) is B = Y , in case matrix Y

in (3) is symmetric and positive semidefinite [which is always
the case for mpQP problems deriving from (1), (9)], and x̄
as the Chebychev center of X (which in case X is a box is sim-
ply the semi-sum of the upper and lower bounds defining X).

Once a starting optimal combination I0 has been determined,
the corresponding critical region CRI0 can be determined in
accordance with Lemma 6 or Theorem 6, followed by the
removal of redundant inequalities, as described in Section III-B.

In order to explore the parameter space outside CRI0 , we
recall the following theorem [10, Theorem 2]:

Theorem 7 (Neighboring Regions): Consider problem (3)
with Q = Q′ > 0, let I an optimal combination of constraints
and CRI = {x ∈ Rm : EI ≤ eI} the corresponding critical
region in minimal H-representation. Assume no constraint is
weakly active at optimality for all x∈CRI , i.e., H−1

II [DIdI ] ̸=0
in (25b). Let CRIj be a full-dimensional critical region neigh-
boring CRI , let P̃j = {x ∈ Rm : EI

j x = eI
j } = CRI ∩ CRIj

the common facet between CRI and CRIj , and assume that the
LICQ property is satisfied on P̃j . Then the optimal combination
Ij associated with CRIj is related to I as follows:

I) If P̃j corresponds to a constraint of type wk(x) ≥ 0 in
(25), then Ij = I ∪ {k};

II) If P̃j corresponds to a constraint of type yh(x) ≥ 0 in
(25), then Ij = I \ {h}.

Remark 5: When the hypotheses of Theorem 7 are not met,
the most efficient methods proposed in the literature to iden-
tify neighboring critical regions exploit the so-called “facet-
to-facet” property of the multiparametric solution [11], [27].
This approach is based on the following idea. For each full-
dimensional facet P̃j ={x∈Rn : EI

j x=eI
j } of CRI , we deter-

mine the Chebychev center xj of P̃j as described in Remark 2,

set x̄j = xj + ϵEI
j , where ϵ > 0 is a small tolerance, and then

solve the QP (3) for x = x̄j in order to determine a new
combination Ij of active constraints. Ways to cope with the
(very rare) case of lack of the facet-to-facet property were
proposed in [11, Sect. IV] and in [12, Algo. 3]. An alternative
method that avoids dealing with this issue is the one proposed
in [13], based on looking at (23) as a multiparametric linear
complimentarity problem.

Based on the results of the previous sections, the overall
mpQP algorithm is formalized in Algorithm 3. At line 6 of
Algorithm 3 the way I is picked from U determines the
exploration strategy: selecting the most recently introduced
element corresponds to depth first, selecting the oldest element
corresponds to breadth first. With a slight abuse of notation,
in the sequel we will denote by {Ki, hi, Ei, ei} the solution
corresponding to the ith combination Ii contained in R =
{I1, . . . , IM}, where M = #R is the cardinality of R.

Algorithm 3 Multiparametric QP algorithm

Input: Q, F , c, G, W , S, X .

1) set E ← ∅, U ← ∅, R ← ∅;

2) remove redundant inequalities in the set
{[

z
x

]
: Gz ≤

W + Sx, x ∈ X

}
(Section III-B);

3) solve (32); if infeasible, Xf ∩ X = ∅; go to step 18;
4) compute I0 (Lemma 8); set U ← {I0};
5) while U ̸= ∅ do:
6) get an element I ∈ U ; set U ← U \ {I};
7) if I ̸∈ E :
8) set E ← E ∪ {I};
9) compute CRI ∩ X (Lemma 6 or Theorem 6);
10) if CRI ∩ X is full-dimensional (Section III-C) or

I = I0:
11) remove redundant inequalities in CRI ∩ X

(Section III-B);
12) for all facets fj of CRI :
13) find the neighboring combination Ij

(Theorem 7 or Remark 5);
if Ij exists, set U ← U ∪ {Ij};

14) if CRI ∩ X is full-dimensional:
15) store CRI ∩ X = {x ∈ Rm : EIx ≤ eI}
16) set R ← R ∪ {I};
17) compute z(x) = KIx + hI as in (24) and

(25b), or as in (27);
18) end.

Output: Multiparametric solution {KI , hI , EI , eI}I∈R.

V. COMPLEXITY OF THE SOLUTION

The complexity of the solution is given by the number M
of critical regions and gains that form the explicit solution
(8), dictating the amount of memory to store the parametric
solution (Ki, hi, Ei, ei, i = 1, . . . , M ), and by the worst-case
execution time required to compute Kix + hi once the so-
called “point-location” problem of identifying the index i of the
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critical region containing the current state x is solved (which
usually takes most of the time). A few methods have been
proposed to solve the point-location problem more efficiently
than searching linearly through the list of regions, see for
example the methods proposed in [26], [28]–[30].

An upper-bound to M is 2q , which is the number of all
possible combinations of active constraints. In practice M is
much smaller than 2q , as most combinations are never active
at optimality for any vector x ∈ X (for example, lower and
upper limits on an actuation signal cannot be active at the same
time, unless they coincide). Moreover, one can attempt joining
regions in which the first nu component of the multiparametric
solution z(x) are the same (see Section V-B below). Nonethe-
less, the complexity of the explicit MPC law typically grows
exponentially with the number q of constraints. The number
m of parameters is less critical and mainly affects the number
of elements to be stored in memory. The number n of free
variables also affects the number M of regions, mainly because
they are usually upper and lower bounded.

A. Robust Implementation of the PWA Law

The explicit solution (8) can be evaluated as follows:

i(x) ∈ arg min
i=1,...,M

{
max

j=1 ...,ni

{
Ei

jx − ei
j

}}
(33a)

u(x) = Ki(x)x + hi(x) (33b)

where ni = dim(Ei) is the number of inequalities defining the
ith critical region CRIi . The advantage of (33) over (8) is
that it allows defining a solution u(x) also in case x does not
belong to any of the regions. This is particularly useful for two
reasons: First, to avoid that the solution is undefined because of
gaps introduced by numerical errors in defining the hyperplanes
Eix = ei; second, to compute suboptimal explicit control laws
by extrapolation, as suggested in the following section. In
fact, u(x) = u∗(x) in case x ∈ CRIi for some i, otherwise
(33) extrapolates the affine law Ki(x)x + hi(x) outside region
CRIi(x)

, where i(x) identifies the region whose constraints are
least violated by vector x. Clearly, in this case the satisfaction
of constraints (1c) and(1d) is no longer guaranteed.

Lemma 9: Given a set of quadruples {Ku, hi, Ei, ei}M
i=1,

ei ∈ Rni , covering a polytope X ⊂ Rn, the control law (33)
is a (possibly discontinuous) PWA function.

Proof: Let δ(x) : Rm → {0, 1}M be a solution of the
multiparametric MILP problem

min
ϵ,δ,z

M∑

i=1

zi

s.t. ϵi ≥ Ei
jx − ei

j , ∀j = 1, . . . , ni

ϵi ≤ ϵj + 2M(1 − δi), ∀j = 1, . . . , ni, j ̸= i
zi ≤ ϵi + M(1 − δi)
zi ≥ ϵi − M(1 − δi)
zi ≤ Mδi

zi ≥ −Mδi

∀i = 1, . . . , M
M∑

i=1

δi = 1 (34)

for x ∈ X , where M is an upper-bound on ±(Ei
jx − ei

j) for all
x ∈ X , i ∈ {1, . . . , M}, j ∈ {1, . . . , ni}. Problem (34) deter-
mines a solution δi(x)(x) = 1, δj(x) = 0, ∀j ∈ {1, . . . , M} \
{i(x)}, such that the index i(x) solves (33a). As the solution
δ(x) of (34) is a piecewise constant function of x [31], the scalar
product

u(x) =

⎡

⎣
K1x + h1

...
KMx + hM

⎤

⎦
′ ⎡

⎢⎣
δ1(x)

...
δM (x)

⎤

⎥⎦

of an affine and a piecewise constant function is a piecewise
affine function of x. !

B. Explicit MPC With a Reduced Number of Regions

A first approach to reduce the number M of regions that
maintains the solution exact is to attempt joining critical regions
in which the first nu components Kix + hi of the multipara-
metric solution z(x) are the same, either by direct recogni-
tion of convexity and computation of unions of pairs of sets
[24, Algorithm 4.1], or by optimal merging algorithms [32] to
get a minimal number M of partitions.

Suboptimal solutions can be obtained by removing critical
regions CRI that are almost flat, such as regions whose Cheby-
chev radius is smaller than a given positive threshold, that can
be recognized as described in Remark 1.

In alternative, or in addition, suboptimal solutions can be
obtained by partial enumeration as suggested in [14, Sect. 3.1]
and [33]. The idea is to run closed-loop MPC simulations
based on on-line QP and only store the critical regions CRI
corresponding to the most visited combinations I. In any case,
by Lemma 9 the corresponding (suboptimal) explicit MPC law
defined by (33) would be a PWA control law.

VI. NUMERICAL RESULTS

A. Removal of Redundant Constraints

As most of the CPU time is spent in removal of redundant
constraints to get minimal H-representations of critical regions
CRI , we first compare the approaches of Theorems 2, 3, and
4 based on NLLS and the common approach of labelling an
inequality constraint Eix ≤ ei of a polyhedron P = {x ∈ Rm :
Ex ≤ e} as non-redundant if the LP problem

ϵi = max
x

Eix − ei

s.t. Ejx ≤ ej , j ̸= i (35)

returns ϵi > 0. The LP (35) is solved by GLPK [34], while
NNLS problems are coded in Embedded MATLAB and com-
piled. The results are shown in Table I on random nonempty
polyhedra in Rm defined by 10 m inequalities (CPU time is
averaged on 20 polyhedra per value of m). It is apparent that
the method of Theorem 4 outperforms the other methods. The
basic Algorithm 1 is used to solve all NNLS problems, by
solving Step 5 via MATLAB’s built-in QR factorization method
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TABLE II
COMPARISON OF mpQP ALGORITHMS. CPU TIME (s) IS AVERAGED ON 20

RANDOM mpQP PROBLEMS FOR EACH PAIR (q, m)

to solve linear systems in the least-squares sense and without
any attempt to warm-starting the algorithm from P ̸= ∅.

Remark 6: In general, possible sequences of non-improving
steps may occur in active-set methods for linearly constrained
optimization, including the simplex method used for LP, as
analyzed in [35]. In [19] the authors prove that the norm
of ∥Av − b∥ of the residual is strictly decreasing during the
iterations of Algorithm 1, so that cycling cannot occur in
infinite precision. Although none of the extensive tests (run in
double precision arithmetics) revealed such an issue, cycling
remains a theoretical possibility and anti-cycling procedures
were proposed in the literature, see e.g., [35] and the references
therein included, and [36], [37]. In particular, for the NNLS
algorithm a few ideas to deal with finite precision arithmetics
are described in [19, p. 164–165].

B. Performance of the mpQP Solver

We compare Algorithm 3 with the mpQP solvers of the
Hybrid Toolbox [38] and of the Multi Parametric Toolbox
[39]. Algorithm 3 is implemented in MATLAB code, and all
polyhedral computation functions, the NNLS Algorithm 1, and
the QP algorithm [5] in compiled Embedded MATLAB code.
The approach of Theorem 4 is used for computing minimal H-
representations of polyhedra. Results are obtained on a Mac-
book Pro 2.6 GHz Inter Core i5 with 8 Gb RAM running
MATLAB R2014a.

Table II reports the results obtained by solving random
mpQP problems generated for different values of q (number of
constraints), m (dimension of parameter vector), and n = 2m
(number of optimization variables). CPU time is averaged on
20 random mpQP’s for each pair (q,m). Clearly, the results
obtained with the tools of [38] and [39] strongly depend on
the linear and quadratic programming solvers used to solve the
multiparametric problem, here they were both configured with
default options.

Finally, we test the mpQP algorithm on the DC servo ex-
ample of [40]. With reference to the MPC formulation (9) we
have A ∈ R4×4, Bu ∈ R4, Bv = ∅, B ∈ R2×4, Du ∈ R2, Dv =
∅, umin = −220, umax = 220, ∆umin = −∞, ∆umax = +∞,

ymin =

[
−∞

−78.54

]
, ymax =

[
+∞
78.54

]
, Vmin = Vmax =

[
1
1

]
,

N = Nc = 7, Nu = 2, ρϵ = 1000, Qy =

[
100 0
0 0

]
, R∆u =

0.0025, Ru = 0. The resulting mpQP problem has m = 6
parameters (4 states, 1 reference for y1, 1 previous input), n = 3
variables, q = 18 constraints, and is solved for X = {x ∈ R6 :
−1000 ≤ x1−4 ≤ 1000,−5 ≤ x5 ≤ 5,−221 ≤ x6 ≤ 221} in
5.3296 s using Algorithm 3 (it takes 6.0470 s with the Hybrid
Toolbox [38] and 6.2476 s with the Multi-Parametric Toolbox
[39]). A section in the (x1, x2)-space of the six-dimensional
partition, which consists of 215 regions, is reported in Fig. 1.

VII. CONCLUSION

In this paper we have proposed a new mpQP algorithm
to convert an MPC design into an equivalent explicit form.
Contrarily to other methods proposed in the literature, the
algorithm relies on a NNLS solver to perform all the operations
on polyhedra that are necessary to solve the mpQP problem. In
addition, the algorithm exploits the multiparametric dual QP
to create critical regions and handle degeneracy. The overall
mpQP method described in this paper is the core engine for
explicit MPC design in the Model Predictive Control Toolbox
for MATLAB 5.0 (The Mathworks, Inc.) [41].
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