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Model Predictive Control Based on Linear
Programming—The Explicit Solution

Alberto Bemporad, Francesco Borrelli, and Manfred Morari

Abstract—We study model predictive control (MPC) schemes quadratic performance indices, and later followed by algorithms
for discrete-time linear time-invariant systems with constraints on - pased on QP, like QDMC [4], for solving constrained MPC
inputs and states, that can be formulated using a linear program ,5jhlems. Later an extensive theoretical effort was devoted

(LP). In particular, we focus our attention on performance cri- . . .
teria based on a mixedL /co-norm, namely, 1-norm with respect to analyze such schemes, provide conditions for guaranteeing

to time and oco-norm with respect to space. First we provide a feaSIbI|Ity and C|Osed-|00p Stablllty, a.nd h|ghl|ght the l’elations
method to compute the terminal weight so that closed-loop sta- between MPC and linear quadratic regulation [5], [6].
bility is achieved. We then show that the optimal control profile On the other hand, the use of linear programming was pro-
is a piecewise affine and continuous functlc_)n of the_lnltlal state and posed in the early sixties by Zadeh and Whalen for solving op-
briefly describe the algorithm to compute it. The piecewise affine timal trol bl 7 dbv P i 181 wh h
form allows to eliminate online LP, as the computation associated |ma con ro_pro_ ems [7], and by Propoi [8], who perhaps con-
with MPC becomes a simple function evaluation. Besides practical Ceived the first idea of MPC. Later, only a few other authors
advantages, the availability of the explicit structure of the MPC have investigated MPC based on linear programming [9]-[13],
controller provides an insight into the type of control action in dif-  where the performance index is expressed as the sum ofthe
ferent regions of the state space, and highlights possible conditions 4 1 _norm of the input command and of the deviation of the state
of degeneracies of the LP, such as multiple optima. .

from the desired value.

Index Terms—Constraints, linear programming (LP), model In this paper, we review the basics of MPC based on the min-
predictive control (MPC), multiparametric programming, piece- imization of a mixedl/oo-norm, namely, 1-norm with respect
wise linear control. - . ’ ’ . . )

to time andoo-norm with respect to space (this choice will be
motivated in Section II), derive the associated linear program,
I. INTRODUCTION and provide guidelines for choosing the terminal weight so that
closed-loop stability is achieved. Then, we determine explicitly

lems,model predictive contrgMPC) has become the aC_the structure of LP-based MPC, and show that it can be equally

cepted standard in the process industries [1]. Here at each S?ﬁp_ressed as a piecewise affine and continuous state feedback

pling time, starting at the current state, an open-loop optimng' Thls p_rowdes an !nS|ght into the behavior of_the_MP_C con-
troller in different regions of the state space, highlighting re-

control problem is solved over a finite horizon. The optimal h turat idl trol . here th
command signal is applied to the process only during the i 1ons where saturation or idie control occur, regions where the
P has multiple optima, etc. Besides such insights, the avail-

mediately following sampling interval. At the next time step ity of th licit MPC struct i | ¢
new optimal control problem based on new measurements ofﬁ’% Ity ot the explicit ML Structure provides a clear computa-
B nal benefit: no on-line LP solver is needed in the MPC im-

state is solved over a shifted horizon. The optimal solution reli tati hich . v th luati f api .
on a linear dynamic model of the process, respects all input "Teepuﬁc'gghw Ich requires only the evaluation ot a piecewise

output constraints, and minimizes a performance figure. This® .. . . . .
P P 9 The problem of synthesizing piecewise affine stabilizing

usually expressed agj@adraticor alinear criterion, so that the i A ) .
Iggedback controllers for linear discrete-time systems subject

resulting optimization problem can be cast as a quadratic pfo-, p ) | 4d din 14l Th
gram (QP) or linear program (LP), respectively, for which arictp 'nput and state constraints was also addressed in [14]. The

variety of efficient active-set and interior-point solvers are aval”?llJthorS ObF"?"”ed a piecewise Ilnea}r fee'dbaf:k' law defined
able. over a partition of the set of states into simplicial cones, by

The first MPC industrial algorithms like IDCOM [2] and computing a feasible input sequence for each vertex via linear

DMC [3] were developed for unconstrained MPC based oq{ogramming (this tec;hniq_ue I fextendeq in [1.5])' The
approach presented in this paper provides a piecewise affine

control law which not only ensures feasibility and stability,

but is also optimal with respect to a performance index. Our
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the results of [16] omulti-parametric quadratic programming of the state deviation from the origin, namely the 1-norm with
(mp-QP) are restricted only to the caHe> 0. As a matter of respect to time of theo-norm with respect to space. Although
fact, mp-LP deserves a special analysis, which leads to a deey combination of 1- ando-norms leads to a linear program,
insight of mp-LP properties and a different algorithm than theur choice is motivated by the fact that-norm over time could

mp-QP algorithm described in detail in [16]. result in a poor closed-loop performance (only the largest state
The paper concludes with a series of examples that illustrateviation and the largest input would be penalized over the pre-
the different features of the method. diction horizon), while 1-norm over space leads to an LP with a
larger number of variables, as will be clarified in Section 1.
[l. MODEL PREDICTIVE CONTROL WITH 1/00-NORM Let U*(x(t)) 2 [ugT (x(t)), ..., uif _,(=(t))]T be the op-
Consider the problem of regulating to the origin the didimalsolution of (3) attime. Then, the first sample @f* (z(#))
crete-time linear time-invariant system is applied to (1)
{ 2(t+1) = Az(t) + Bu(t) W u(t) = u(a(t)): (4)
y(t) = Cx(t) o . :
_ . _ The optimization (3) is repeated at time- 1, based on the new
while fulfilling the constraints statez(t + 1), yielding amovingor receding horizorcontrol
strategy.
Ymin S y(t) S Ymax; Umin S u(t> S Umax (2) gy

The two main issues regarding this policy are the feasibility
atall time instantg > 0. In (1) and (2)(t) € R, u(t) € R™ of the optimization problem (3) and the stability of the resulting

andy(t) € RP are the state, input, and output vector respeel-osed'IOOp system.

tively, and the paif A, B) is stabilizable. In (2)ymin < 0 < - _ )

Ymax AN Umin < 0 < umayx are vectors of upper and lowerA- Feasibility and Constraint Horizon

bounds (more generally, we can allow only some componentsSeveral authors have addressed the problem of guaranteeing

of the inputs or outputs to be constrained). at each time step feasibility of the optimization problem asso-
MPC solves such a constrained regulation problem in the fefated with MPC. Clearly, if only input constraints are present,

lowing way. Assume that a full measurement of the stétg¢is there is no feasibility issue at alk (= 0 is always feasible). On

available at the current timee Then, the optimization problem the other hand, in the presence of output constraints, the MPC

) problem (3) may become infeasible, even in the absence of dis-
min

A om turbances.
U=lugs oy, il One possibility is to soften the output constraints and to pe-
Ny—1 nalize the violations [20], [21]. In the case of hard output con-
J(U, z(t)) £ ||pry HOO + Z 1Qzk || oo straints, Keerthi and Gilbert [22] proved that feasibility (as well
—1 as stability) is guaranteed by settidg = N, = N, = oo,
N1 or alternatively,zy, = 0 andN. = N, = N, — 1. Set-
n Z | Rk ting N. = oo leads to an optimization pr_oblem with an infi-
P ' nite number of constraints that is impossible to handle. On the
St other hand, the constraint on the terminal state is undesirable,
as it might severely perturb the input trajectory from optimizing
Ymin S Yk S Ymax, k=1 ....,Ne performance, especially on short horizons.
Umin < Uk < Umax, k=0,1,..., Ny_1 By using arguments from maximal output admissible set
zo = 2(t), theory, Gilbert and Tan [23] proved that if the set of feasible

-1 state and input vectors is bounded and contains the origin in its
interior, a finite horizonV.,. is sufficient for ensuring feasibility.
The smallestV, ensuring feasibility of the MPC problem (3)

at all time instants can be computed by solving a sequence of
g[lear programs [23], [14], [24], [25].

:L‘k+1:A{17k+Buk./ k:071,...7Ny
up =0, Ny<k<N, -1 3)

is solved at each timg wherex;, denotes thé-step ahead pre-
diction of the state vector, obtained by applying the input s

quenceuy, ..., ur—1 to model (1) starting from the staigt), B. Stabil 4 Terminal Weigh
1V]lso 2 maxi—y_, (Vilz), andV 1} is theith row ofa = tability and Terminal Weight
generic matrixt € R"*". In general, stability is a complex function of the various

In (3), we assume tha € R**", R € R™*™ are nonsin- tuning parameterd/,,, N,, N., P, Q, andR. For applications
gular matricesP € R"™*™ is a full-column rank matrix, and it is most useful to impose some conditions df, N. and
N, > N. > N,. The performance index(U, z(t)) amounts P so that stability is guaranteed for all nonsingularand R,
to the sum of a weighted mixed 1- ang-norm of the input and and leavel and R as free tuning parameters for performance.
1Although the form (2) is very common in practical implementations oSometlmes th“e op_tl_mlzatlon pro’l,)lem (3) 'S augmented with
MPC, the results of this paper also hold for the more general mixed constraif'rt'se SO Ca”e_d Sta_b_'“ty ConStra”_“ _(See, e.g, the Survey? [26]
Ex(t) + Lu(t) < M arising, for example, from constraints on the input raténd [5]). This additional constraint imposed over the prediction
Au(t) 2 w(t) — u(t — 1). horizon explicitly forces the state vector either to shrink in some
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norm or to reach an invariant set at the end of the predictiéfy, = lim;—. ., V(¢), which impliesV (¢ + 1) — V(¢) — 0.

horizon. Therefore
Although most of the stability results were developed for
MPC formulations based on squared Euclidean norms, for gen- A [[Qz(#)]loo + (| Ru(t)]|o = 0 (7

eral nonlinear performance functions and models, the idea of

Keerthi and Gilbert [22] mentioned above [i.&/,, N,, N. — Which proves the theorem, gsand i are nonsingular. [

oo or zy, = 0 (end-point constraint)] not only ensures per- When weighted squared 2-norms are used instead of

sistence of solutions (i.e., feasibility at each time step) but alge-norms in (3), (5) becomesT_(—P + AT_PA + Q) <0,

stability, provided that the problem is feasible at time 0. which is satisfied by any paiP’, Q solving the Lyapunov
Another possibility is to relax the end-point constraint b)t;quannP = ATPA+Q.

adopting adual-modeapproach [27], namely, by defining an in- The qtéer?tion n?wda[]ises iEmatrifcéSandQ sa.\tisf?/ing (53)'
variant set around the origin, and constrain the terminal st Ist, and how to find them. Let us focus on a simpler problem

2, 0 lie in that set. y removing the facto| Q|| . from (5)

In this paper, rather than constraining the final state, we pro- —||1~)3?|| n ||ﬁAx|| <0 ®)
vide conditions for the weight’ overxzy, in (3) that guarantee * © =

closed-loop stability, provided that the matrixis stable, and The existence and the construction of a maffithat satisfies
suggest a procedure for constructing such stabilizing (8), has been addressed in different forms by several authors
In case the matrixA is unstable, the procedure for con{29]-[31], [14], [15], [32]. There are two equivalent ways of
structingP’ can be still applied by pre-stabilizing system (1) viaackling this problem: for the autonomous systet + 1) =
a linear controller without taking care of the constraints. Therx(t), find a Lyapunov function of the form
the output vector can be augmented by including the original ~
(now state-dependent) inputs, and saturation constraints can be V(z) = ||Pr]|oo 9)
mapped into additional output constraints in (3). L )
Assuming that the constraint horizaN, is long enough With P € R full-column rank,r > n, or equivalently com-

so that the shifted optimal input sequen&? (z(t)), ..., pute a symmetrical positively invariant polyhedral set [32].
wiT _ (x(t)), 0]T is feasible at the next time stept 1 [NC is Unlike the 2-norm case, the condition that mattixas all the

chosen according to the techniques recalled in Section ”_%genvalues in the open dig;(A)|| < 1 is not sufficient for

the following theorem shows that, by appropriately choosi g]eﬁﬁteepoﬁﬁ \?vfir? L%ae%lig?nv furr(])(\:/té%nir(lg[é\iv]mggrasr:a\fez r:Le)ces-
the terminal weightP, the control law (3) stabilizes (1) ' 9 P ’ '

. sary and sufficient conditions for the existence of the Lyapunov
asymptotically. _ function (9).
Theorem 1:Let A be a stable matrix, and assume that the Theorem 2: The function®(z) = [[Pa|l.. is a Lyapunov

initial statez(0) is such that a feasible solution of problem (3}unction for the autonomous systenfi + 1) = Az(?) if and

EXISt§ attime = 0. Assume that there exists a full-column ran%nly if there exists a matrigl € C™*" such that
matrix P such that

PA—HP =0 (10a)
[Hlloe <1 (10b)

_HP"BHOO + ||PA$||OO + ”Q‘THOO <0 %)

is satisfied for allz € R™. Then, forN, sufficiently large, the

MPC law (3) and (4) ensures the fulfillment of the input angvhere

output constraint®,,i, < 4(t) < Umax, Ymin < Y(€) < Ymaxs ”

andlim; o z(t) = 0, lim;_, u(t) = 0. | H]| oo = sup | Hz|| oo — max Z ’H{ij}
Proof: The proof follows from standard Lyapunov ar- w20 Tl i=liir

guments, close in spirit to the arguments of [22], [28] where

is established the fact that under some conditions the valgdhe infinity (induced) norm of . O

function V (¢) 2 J(U*(x(t)), z(t)) attained at the minimizer  In [31] and [30], the authors proposed an efficient way to

U*(x(t)) = [ugT (x(t), wiT (x(t)), ..., uif _1(2(t))]T of (3) compute¥(x) by constructing matrice$> and H satisfying

is a Lyapunov function for the closed-loop system. Under tH{&0). By using the results of [31] and [30], the construction of a

assumption thaiv, is sufficiently large (see Section 1I-A), the matrix P satisfying (5) can be performed by exploiting the fol-

shifted sequenc&.is, = {uj(x(t)), ..., uk,_,(x(1), 0} is lowing result. .

feasible at time + 1, and Proposition 1: Let P and H be matrices satisfying (10),

with 7 full rank. Leto 2 1 — ||H]o, p 2 ||QP#| o, where

P# 2 (PTP)~1PT is the left pseudoinverse @?. Then, the

square matrix

V(iE+1) = V(t) < —[Qz(t)llco — [ Ru(t)]lec —

Pz
v oo

(6)

# el + s
oo oo

p=Lp (12)

SRS

As condition (5) is satisfied for = =}, , V(¢) is a decreasing
sequence. Sincd’(t) is lower-bounded by 0, there existssatisfies (5).
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Proof: SinceP satisfiesPA = H P, we obtain optimum J(U*(x(t)), =(t)) is achieved [7], [10]. Therefore,
(3) can be reformulated as the following LP problem:

~ 1Pl + [P A + [[Qallo e o )

1Pl + I Pl + Qs min {ef 4ok be ey, (142)

(H oo = DlIPz|loc + | Q2 ]loo

IN

< (1H|loo — D[P H f’#H Pl = 0. . =
< (|Hlloe = VIIPe]oo + || QP#| _[|Palloc =0 St —Lef <£Q | A%(t)+ 3" ABusr,
j=0
Therefore, (5) is satisfied. 0O - !
In [30] the author shows how to construct matridesand k=1,...,N,—1 (14b)
H in (10) with the only assumption that is stable. However, r N1
this approgc_h _has the drawback_that the nl_meef rows P “1,e% <4P [ANva(t)+ Z AV Buy _i-;| (@4c)
may go to infinity when the moduli\;| of the eigenvalues oft v = ¢
approach 1. } -
In [31], the authors construct a square matixe R™*™ —1mepyq < ERuy, k=0,...,N,—1 (14d)
under the assumption that the matidn (1) has distinct eigen- k—1
values)\; = u; + jo; located in_the open squag; | + |o;| < 1. Ymin < CAFz(t) + CZ AT Bug_1_; < Ymax
In [12], the authors use a different approach based on Jordan =0
decomposition to construct a stabilizing terminal weighting k=1,..., N. (14e)
function for the MPC law (3) and (4). The resulting function
leads to a matri¥® with r = 27="0~1 4 p2mo—1 rows wheren, Umin < Uk < Umax, k=0,...,N,—1 (14f)
is the algebraic multiplicity of the zero eigenvalues of matrix ur =0, No<k<N,—1 (14g)

A. The result seems to hold only for matricésvith stable and

real eigenvalues and, therefore, in general the approach of [3Here constraints (14b)—(14f) are componentwise, and
is preferable. means that the constraint is duplicated for each sign, as irt (12).

Remark 1:1f P e R"*" is given in advance rather than problem (14) can be rewritten in the more compact form
computed as in Proposition 1, (5) can be tested numerically, ei-

ther by enumeration3g™ LPs) or, more conveniently, through mzin Tz
a mixed-integer linear program withn + 1) continuous vari- (15)
ables andin integer variables. st. Gz < S+ Fu(t)

wheref € R*, G € R?**, F € R**", § € R4, ¢ 2 2(n(N, —
1) + 2mN, + pN. + r).

The MPC formulation (3) can be rewritten as a linear Since problem (15) depends on the current state, in the
program by using the following standard approach (cfimplementation of MPC one needs to solve the LP (15) on line at
e.g., [10]). The sum of the components of any vect@ach time step. Although efficient LP solvers based on simplex

. PIECEWISEAFFINE MPC Law WITH 1/00-NORM

[ef, .-, eX, s €t -, €, ] that satisfies methods or interior point methods are available, computing the
input u(t) demands significant online computation effort and
—1l,e) < Qg k=1,2,..., Ny—1 control software complexity.
—1,6% < —Quy, k=1,2,...,N, -1 Rather than solving the LP online, we follow the ideas of [16]
~1,6% < Pay, and propose an approach where all the computation is moved

offline. The state feedback control law is defined implicitly
by computing the solution of the optimization problem (3), or
Ruy, k=0,1,..., Ny —1 equivalently (15), as a function of the state vectdt). Our
—Ruy, k=0,1,...,N,—1 (12) goalis to make this dependence explicit. In fact, by treating
x(t) as a vector of parameters, the LP becomes what is called
an mp-LP in the operations research literature [17]—[19].

xr
_1T€Ny <—Pzy,
u
—Llmepq

u
—Llnepp

represents an upper bound oRU, z(t)), where 1, 2

M- 17 € R As will be described in Section Ill-A, we use the algorithm
developed in [19] for solving the mp-LP previously formulated.
k—1 Once the multiparametric problem (14) has been solved offline
T = Akx(t) + Z AjBUk_l_j (13) for a polyhedral seX C R™ of states, the optimal solution
=0 z*(z(t)) of (15) is available explicitly as a piecewise affine

function of z(¢), and the model predictive controller (3) is also

and the inequalities (12) hold componentwise. It is eas
d (12) P y2Note thatl-norm over space requires the introductiomdfVv, — 1) slack

2 T T X .
to prove that the vectorz = [ug, ..., uy, _1, €7, - variables for the termBQa |1, ex, s > £Qar k=1,2, ..., N, — 1,
A i ofi i =1,2,..., n, plusr slack variables for the terminal penalty’z ~ ||
et et ..., % T eR, s = (m+1)N, + N, that satisfies * = '+ 2 -~ " PUS? penalfzy, |1,
N, €1 ) Nu] € ( + ) ut Ny Eny i iP“}xNy i = 1,2,..., r, plusmN, slack variables for the

Y . e
(12) and simultaneously mnjlr_mzeg 4o+ sfv_y +et + input terms||Ru ||+, f,, , > £Rup k = 0,1,..., N, —1,i =
-++ + €}, also solves the original problem (3), i.e., the same 2, ..., m.
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available explicitly, as the optimal inpuft) consists simply of to J*(z). We need the following definition of primal and dual

the firstrn components of*(z(t)) degeneracy.
Definition 1: For a givenr € X*, the LP (15) is said to be
w(t) = [Im 0 ... 0]2*(x(t)). (16) brimal degeneratdf there exists a*(z) € Z*(z) such that the

number of active constraints at the optimizer is greater than the
number of variables.
Definition 2: For a givenz € X* the LP (15) is said to be
) ) dual degeneratd its dual problem (18) is primal degenerate.
w(w) = Pix+q, it Huaw<k, i=1 ..., Nmpe We recall some well-known properties of the optimizer
A A7) . R» — R (when it is uniquely defined), of the value
whereP; € R™*", ¢; € R™, and the polyhedral sefs; = {z € fynction.J*: R* — R, and of the sef{*.
R Hiz < ki},i=1, ..., Nupc, are a partition ofX'. Theorem 3 (cf. [18, p. 179, Th. 2))Let X* C X be the set
We remark that the implicit form (3) and the explicit formof parameters: € X such that the LP (15) is feasible and the

(17) are totallyequal and therefore the stability, feasibility, andoptimum./* () € R is finite. Then,X* is a closed polyhedral
performance properties mentioned in the previous sections ggg inR=.

automatically inherited by the piecewise affine control law (17). pefinition 3: A continuous functionh: X — R*, where
Clearly, the explicit form (17) is more advantageous for implex C R+ is a polyhedral set, ipiecewise affine (PWAJ there

Therefore, the MPC control law has the form

mentation, and provides insight on the type of action of the cogxists a partition of{ into convex polyhedr®, ..., Ry, and

troller in different regionsX; of the state space, as will be de,(;) = H,z + k;, Vo € R;,i=1,..., N.

tailed in Section I1I-D. Theorem 4 (cf. [18, p. 180]):The functions.J*(-) and (if
unique) are continuous and piecewise affine ovét. More-

A. Multiparametric Linear Programming over, J*(-) is a convex function ovek *.

The first method for solving mp-LPs was formulated by Gal Because of (16), the following corollary of Theorem 4 shows
and Nedoma [17], and later only a few authors have dealt witpat thg controller (3) and (4) admits the piecewise affine repre-
multiparametric linear [18], [33], [34], [19], nonlinear [35],Sentation (17). _
quadratic [16], and mixed-integer [36] program solvers. Corollary 1: The control lawu(z), u: R" — R™, defined

Multi-parametric programming systematically subdivides tH@y the optimization problem (3) and (4) is continuous and piece-
space of parameters intoitical regions(CRs). A CR is the set Wise affine.
of all vectorse of parameters for which a certain combination of
constraints is active at the optimizer of problem (15) [37], [SBF'
For each CR, the optimizer* is expressed as a function of The mp-LP algorithm presented in [19] consists of two parts.

In [19], we proposed an iterative algorithm which, rather than 1) Determine the minimal dimensiael < n of the affine
visiting different bases of the associated LP tableau [17], uses  subspace that contaii§*. This preliminary step reduces
geometric arguments to directly explore and partition the param-  the number of parameters and allows to work with full-
eter setX [16]. The resulting algorithm for solving multi-para- dimensional regions.
metric linear programs has computational advantages, namely?) Determine the critical regions and the PWA functions de-
the simplicity of its implementation in a recursive form and the scribing the optimuny*(z) and the optimizer* (z:).
efficient handling of primal and dual degeneracy. When the mp-LP algorithm is used to solve the mp-LP (15)

In order to prove interesting properties of MPC based on Lenerated by the MPC formulation (3), the first step may not
we _brlefly recall here below the main features of mp-LP,_ by reg;e required, because of the following proposition.
ferring the reader to [18], [19] for a more comprehensive de- Proposition 2: Consider the MPC problem (3) and suppose

mp-LP Algorithm

scription. _ _ _ _ Umin < 0 < Umax, Ymin < 0 < YUmax. Then the seX* C X
Consider again the right-hand side mp-LP (15) and its du{ states (i.e., parameters)t) which renders (15) feasible is a
problem full-dimensional subset d&™.
- Proof: We first prove thatX* contains a balB. centered
i (S + Fz)"A in the origin of radiuss > 0, B. = {z € R™: ||z < &}.
st GTA=f (18) This is equivalent to show that for each statg) € B. there
- B exist a feasible control sequenge, } ;' and a corresponding
A<0 feasible output evolutior{lyk}kj,v;o. To this end, consider a state

z(t) € B, the input sequencgu;, = O}g;gl, and the corre-
sponding output sequenég, = C Az} . Clearly,u, = 0

eare feasible inputs. The outpujs are also feasible for

where for simplicity we dropped the dependence ofthe state
vectorz. For a given polyhedral sef C R™ of parameters;,

X 2 {zr € R™: Tz < v}, an mp-LP solver determines th

regionX* C X of parameters such that the LP (15) is feasible (i} (i}
and the optimum is finite, and finds the expressié(r) of the €<  min {mm { yf““k , _:'{mink } }
optimizer (or one of the optimizers, in case of multiple optima). P ||C{7’}A || HC{L}A H

For a givenz € X*, let J*(x) be the optimal value of letihakizo

problem (15) andZ*(x) be the set of optimizers*(x) related  3See Section I11-D for details about the case of multiple optima.
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where the superscrigii} denotes théth row (or component), [19] can detect such critical regions of degeneracy and partition
and|| - || the standard Euclidean norm. Hence, forndHl) € B. them into sub-regions were a unique explicit optimizer is
the LP problem (15) is feasible, i.d3, ¢ X*. By Theorem 3, defined. This sub-partitioning may led to discontinuity of the
X* is a full-dimensional convex polyhedron Bf'. 0 optimizer within the dual degenerate regions. The following

The second part of the algorithm represents the core of theposition proves the existence of a continuous optimal
mp-LP algorithm and we refer to [19] for a complete and desontrol law even in case of dual degeneracy.

tailed presentation. Proposition 3: Let CR be a critical region of dual
degeneracy. There always exists a polyhedral partition
C. Offline Complexity of Explicit MPC Based on LP CRy, ..., CRy4 of CR such that the optimizee*(x) is

An upper-bound to the numb@f. of different critical regions affiniin E’}‘T"C_Ir_ﬁRi andf :Eolrlninuc;us 1. its in 18], See [19
that are generated by the mp-LP solver can be found by using the 20(]2 : q e_{aroo ollows from results in [18]. eeD[ ’
approach of [34], wher&/,. is shown to be less than or equal td?em. ] for details.

the numbey; of extreme points of the feasible regioh'y = f, . Examp!e IV.3 will illustrate an MPC law where multiple op-
tipa and idle control occur.

y < 0 of the dual problem of (16). In the worst case, such a du
polyhedron inR? hass + ¢ facets, where, ¢ are the number of
optimization variables and constraints, respectively, in (15). By Efficient Computation of mp-LP Solutions
recalling the result in [38] for computing an upper-bound to the The problem of reducing online computation is crucial, as
number of extreme points of a polyhedron, we obtain whenever the number of constraints involved in the optimiza-
tion problem increases, the number of regions associated with
N, <p< (S +q- f(I/ﬂ) <S +q¢—1-[(g— 1)/21) the piecewise affine control mapping may increase exponen-
T=r= lq/2] (¢ —1)/2] tially. In [40], an algorithm that efficiently performs the online
(19) evaluation of the explicit optimal control law both in terms of
storage demands and computational complexity has been pre-

In practice, far fewer combinations are usually generated by thnted. Here, we present the main idea. .
mp-LP solver. Furthermore, the gains for the future input movesBY Theorem 4, the value functiofi*(-) is convex and piece-

uy, ..., uy, 1 and slack variablesy, ..., e% ey, ..., i, ~ Wise affine
are not relevant for the control law. Thus, several different com-
binations of active constraints may lead to the samerfirsbm- Jx) =Tz +V; VzeX;,i=1,..., Nmpe (20)

ponentsug(z) of the solutionz*(z). Indeed, the numbeN,
of regions of the piecewise affine solution of (15) is in generglperex. i = 1 N is the polyhedral partition asso-
. . K2 - R | mpcr
larger than the numbe¥,,,c of feedback gains in the MPC 1aw ¢j51e with the optimal control law (17). From the equivalence
(17), as by post-processing the mp-LP solution two critical rgs the representations of piecewise affine convex functions [34],

gions, where the linear gain is the same, are joined, providgfl tnction.J*(.) in equation (20) can be represented alterna-
that their union is a convex set [39].

tively as
D. Idle Control and Multiple Optima J(x)= max {TTz+V;} (21)
i=1 7 2

1=1,...,Nmpc

There are two main issues regarding the implementation of

an MPC control law based on linear programming: idle contrgy exploiting the equivalence of (20) and (21), the polyhedral

and multiple solutions. The first corresponds to a control moYsgionX» containing a given state(t) can be simply identified
u(t) which is persistently zero, the second to the degener searc]hing the indeixi = 1 Nunpe for which T2z () +
of the LP problem and the existence of multiple solutions. T Tl :

: . : V5 is maximum
approach of this paper allows one to easily recognize both situ-
ations.
- . T ) — T,. .
By analyzing the explicit solution of the MPC law, one cant(t) € Xi & (17 x(t) + Vi) = P A {1 (t) +Vi}.
locate immediately the critical regions where the matriegg; (22)

in (17) are zero, i.e., where the controller provides idle contrdaLompared to an algorithm for evaluating PWA functions where
A different tuning of the weights is required if such polyhedradll the polyhedra are stored in memory and searched sequen-
regions appear and the overall performance is not satisfactotially on line, this approach is clearly more efficient both in
The second issue is the presence of multiple solutiorierms of storage demand and computation complexity, as only
that might arise from the degeneracy of the dual problethe value function must be stored, i.62,4 1) Nypc real num-
(18). Multiple optima are undesirable, as they might lead twers, and as it will give a solution afterV,,,. multiplications,
a fast switching between the different optimal control moves — 1) Ny, sums, andVy,,,. — 1 comparisons, see [40] for
when the optimization program (15) is solved online, unlesketails. An alternative approach, although less efficient in terms
interior-point methods are used. Such behavior can be avoidgdnemory requirements, was described in [41] and consists of
when the piecewise affine solution (17) is used. organizing the controller gains of the PWA control law on a bal-
When dual degeneracy occurs there exist critical regioasced search tree, which leads to@N,,,. average computa-
where the optimizer is not uniquely defined. The mp-LP solvéion complexity.
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IV. EXAMPLES

Example IV.1: We provide here the explicit solution to the
unconstrained MPC regulation example proposed in [12]. The
nonminimum phase system

tel
5
A &b &b 4 © = N @ »

s—1

(t)

y<t>: 2 u
3s +43+2 4 3 2 4 0 1 2 3 4

is sampled at a frequency of 10 Hz, obtaining the discrete-time
state-space model

0.4

_ [o0872  —0.0623 0.0935 N
D= 100035 0997 } ®) [0.004 78] u(t) v > —
0.1 ~—
y(t):[0.333 _1]' % 05 1 15 l2” 25 3 35 4

In [12], the authors minimiszN;f1 5|lyk| + |uk—1|, with the

horizon lengthV, = N, + 1 = 30. Such an MPC problem can u® "

be rewritten in the form (3), by defining = [*¢°°7 °], R =1 °

andP = [ {]. Note that since), P are singular matrices, the o o5 1
sufficient condition for stability of Theorem 1 does not hold. e

The solution of the mp-LP problem was computed in 20 s by ®)
running the mp-LP solver [19] in Matlab on a 450-MHz Pentiurhig. 1. Example IV.1 with terminal weight' = 0.
[Il and the corresponding polyhedral partition of the state-space

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 12, DECEMBER 2002

is depicted in Fig. 1(a). The MPC law is

(Region#2)
[—10.07 —14.59]z,

The same problem is solved by slightly perturbi@g =

[16867 5.1 so that it becomes nonsingular, and by adding

(0, ] :
o [-108.78 —157.61}x< [0.00] the terminal weight
L 20 3naT e {000 p_ [~705.3939 —454.5755 24)
(Region#1) T | 332772 354.7107
0, N
i [ —-5.20 —37.97 < [0.00 which is computed as shown in Proposition P ( =
" L1088 157617 = 0.00 ootz oorol H = [_g0ut oeass) p = 78262,

o = 0.021448). The explicit solution was computed in 80 s,
consists of 44 regions and is depicted in Fig. 2(a).
In Fig. 2(b), the closed-loop system is simulated from the

¢ [20.14 29.19] _ [0.00 initial statezo = [Z3].
0.09 186" =10.00 Example 1V.2: Consider the double integrator
(Region#3) 1
u=1q [~14.55 —106.21]z, y(t) = Zul®) (25)
if 29.11  212.41 r < 0.00 and its equivalent discrete-time state-space representation
—1.87 —38.20 — 10.00
(Regiong#4) a(t+1) = [(1) ” 2(t) + [ﬂ u(t)
[~10.07 —14.59]z, L (26)
. [—20.14 —29.19] b < [0.00} vt) = 1z 3l=®)
—0.09  -186] " — [ 0.00 obtained by setting
(Region#5)
y(t+T) —y(t t+7T)—y(t
[—14.55 —106.21], i) ~ 2+ D) = i(t) T) 90 sy~ YD = y() 12 y(®)
if —29.11 -=-212.41 0.00
1.87 3890 | * < 0.00 T = 1s. System (26) and the explicit form of the corresponding
Redi 6 constrained linear quadratic regulator was investigated in [16].
. (Regiong#6). 23 Here, instead we want to regulate the system to the origin while
(23) minimizing the performance measure
In Fig. 1(b), the closed-loop system is simulated from the initial 1
statexy = [Z473]. Note the idle control behavior during the 3 {(1) ” srprl 4 (08wl 27)
transient. P .

0
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of the mp-LP problem was computed in 13.57 s and the corre-
sponding polyhedral partition of the state-space is depicted in

Fig. 3(b). The resulting MPC law is

« —1.00,
% 100 2.00 11.00
0.00 1.00 11.00
if —1.00 —1.00 10.00
—0.80 —-3.20 = | —2.40
1.00 1.00 10.00
: —1.00 -3.00 —2.00
@ (Region#1)
N 1.00,
- 0: | 0.80 3.20 —2.40
ol —-1.00  —2.00 11.00
/0 D N N I O ¢ | =100 =100 | | 10.00
tsl 1.00 1.00 — | 10.00
H 0.00 —1.00 11.00
u® 1.00 3.00 —2.00
(Region#2)
o 05 1 15 L?s] 253 35 4 [-0.33 —1.33]z,
(b) 0.53 2.13 0.00
] ) ) ) ) ) ) . 0.67 0.67 0.00
Fig. 2. '(a) Example V.1 with term|n:_al| welg_hﬁ.’ as in (24). (b) Simulation of if ~1.00 —1.00 < 10.00
the explicit controller and the comparison with LQR control based on the same ’ . .
weightsQ, R. —-0.33 —-1.33 1.00
(Region#3)
10 ‘ state x(t) 0’
5 : T 1 —-0.80 —-3.20 0.00
0 — if 1.00 3.00 | z < 0.00
S50 ‘15 20 53055 4 u = —1.00 —-1.00 10.00
os e (Region#4)
o1\ | [~0.50 —1.50],
D ] - —1.00 —1.001 £10.007
0 5 10 5 0 25 30 35 40
@ if 0.50 0.50 o< 0.00
—0.80 —2.40 - 0.00
* 0.50  1.50. L 1.00
TN (Region#5)
o : I} ] 0, - - -
0.80 3.20 0.00
? . Y if | —1.00 —3.00|2z< | 0.00
\l\ﬁﬂ | 100 1.00 [ 10.00 |
-15-25 20 15 10 5 ox 5 10 15 20 25 (Reg|on#6)
(b)' [—0.50 —1.50]z,
r 1.00 1.00 r10.00 7
'\F/:gc3l Example IV.2: closed-loop simulation and polyhedral partition of the ) —050 —0.50 0.00
aw. if <
0.80 2.40 - 0.00
) ) ) L—-0.50 —1.50 L 1.00
subject to the input constraints (Region#7)
[-0.33 —1.33]z,
“lswesl k=01 (28) r—0.53 —2.13 - 0.007
. . —-0.67 —-0.67 0.00
and the state constraints if 1.00 1.00 < 10.00
Sosmsi0 k-l @9 A

This task is addressed by using the MPC algorithm (3) and (Mbte that regions #1 and #2 correspond to the saturated con-
whereN, = 2, N, = 2,Q = [[1] }], R = 0.8. The solution troller, and regions #4 and #6 to idle control. The same example



1982 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 12, DECEMBER 2002

3

-10 l. ]
25 20 45 10 5 0 5 10 15 20 25
b3
1

<15 10 5 0 10 15 20 25 1525 <20 15 -10 5 xD 5 10 15 20 25
Xy 1

3

| Fig. 5. Polyhedral partition associated with problems (28)—(30).

. 6
44—

:z D : The solution of (31) was computed in 0.5 s and the corre-
2 2 sponding polyhedral partition of the state—space is depicted in
: ] “+ L Fig. 5. The MPC law is
N \(I\ o
-":m 15 10 -5 xo1 5 10 15 20 -‘-20 -5 10 -5 : 5 10 15 20 4 _1.00 _2.00 0.00
. - 1.00 0.00 0.00

Fig. 4. E le IV.2, MPC control law: partition of the state— fi .

inoreasing input horizom. . o pariion ot fhe siatemspace far degenerate if | 1.00 1.00 | z < | 10.00

—1.00 —1.00 10.00
TABLE | 0.00 1.00 11.00
OFFLINE COMPUTATION TIMES AND NUMBER OF REGIONS N, IN THE MPC i

CONTROL LAaw (17) FOR THE DOUBLE INTEGRATOR EXAMPLE (Reglon#l)

o e T T 1.00  0.00 0.00
ree moves w omputation time (s . OI regions mpc .
= = o 0, if | 1.00 200|z<| 0.00
3 28.50 16 —1.00 —-1.00 10.00
4 48.17 28

5 92.61 37 Region#2

6 147.53 i1 w= (Regions2)
—1.00 0.00 0.00
1.00 2.00 0.00

was solved for an increasing number of degrees of freedgm degenerate if 1.00 1.00 | z < | 10.00

The corresponding polyhedral partitions are reported in Fig. 4. —1.00 —=1.00 10.00

Note that the white regions correspond to the saturated con- 0.00 —1.00 11.00

troller w(¢) = —1 in the upper part, and(¢) = —1 in the Redi 5

lower part. The offline computation times and number of re- (Regiong#3)

gions Ny, in the MPC control law (17) are reported in Table 1. —1.00 —=2.00 0.00

Example IV.3: Consider again the double integrator of Ex- 0, if |-1.00 0.00|z</| 0.00
ample 1V.2, along with the optimization problem 1.00 1.00 10.00
min L0 T + Juo| (30) . (Region#4).
uop 0 1 o
subject to constraints (28) and (29). The associated mp-LPNote the presence of idle control and multiple optima in re-
problem is gions #2, #4 and #1, #3, respectively. The algorithm in [19] re-
turns two possible subpartitions of the degenerate regions #1,
min €1 + €2 #3. Region #1 can be partitioned either as
£€1,€2,U0
r—1 0 17 07 r 0 07
-1 0 -1 0 0 0 Ura =
0 -1 0 0 L1 ( 1.00 —2.00 0.00
0 -1 -1 0 0 1 it _1‘ T < ’
0 —1 0 0 1 -1 0, I .00 (1).00 < 10.00
ot 0 —1 1 i1 - 0 . 0 —1 o(8) 0.00 .00 0.00
A R O B el e R U 0 —1| 7 (Region#1a)
0 0 0 0 10 -1 -1
o 0l ol o [
0o 0 0 10 1 0 —1]a+10, if | Lol | 10
0 0 1 1 0 0 —-1.00 —-1.00 0.00
L0 0 -1 1] L0 0 0.00 1.00 11.00
(31) { (Region#1b)
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Fig. 6.

or

U1

g

\

3a

-15
25 -20 <15 <10 5 0 5 10 15 20 25

I--2.") 20 15 10 5 0 5 10 15 20 25

X

Example IV.3: example of degeneracy.

—:1.00,

0,

[0 —1]z + 10,
0,

[0 —1]z + 10,

—~1.00 —2.00 ]
1.00 0.00| z <
| 0.00  1.00 |
(Region#1a)
1.00 2.007
—-1.00 —-2.00
100 0.00]%S
0.00 1.00 J
(Region#1b)
1.00 2.00 ]
0.00 —-2.00| z <
~1.00 —1.00 |
(Region#1c)
—1.00 0.007
—1.00 —-2.00
1.00  0.00|%S
0.00 1.00]
(Region#1d)
—1.00  0.00]
0.00 —-2.00| z <
100 1.00
(Region#1e).

—1.00
—1.00
11.00

1.00
0.00
0.00
10.00

1.00
—20.00
10.00

1.00
—1.00
0.00

L 10.00

1.00
—20.00
10.00

Region #3 can be partitioned symmetrically either as

U24
p

0,

[0 —1]z — 10,

if

~1.00  0.00]
100 2.00]|z<
0.00  —1.00 |
(Region+#3a)
0.00  2.007
1.00  1.00
100 —1.00] %S
0.00 —1.00]

(Region#3b)

[ 0.00

0.00
10.00

—20.00
10.00
10.00
11.00

1983

or
U2B = ~ _ ~
( —-1.00  0.00 -1.00
1.00, if | 1.00 200 z<]|-1.00
| 0.00 —1.00 | | 11.00
(Region#3a)
r1.00  0.007 r 1.00
—-1.00  0.00 0.00
0, L 100 200 %S| 0.00
L 0.00 —1.00] [ 10.00
(Region#3b)
1.00  0.00] 1.00
[0 —1]z —10, if | 0.00 2.00 |2z < | —20.00
| —1.00 —1.00 | | 10.00
(Region#3c)
r—1.00 —2.007 r 1.00
—-1.00  0.00 —1.00
0, 1 100 200 o000
L 0.00 —1.00 L 10.00
(Region#£3d)
[—1.00 —2.00] 1.00
[0 —1]z—10, if | 0.00 2.00 |z < | —20.00
| 1.00  1.00 | 10.00
L (Region#3e).

As a consequence, two possible explicit solutions to problem
(30) are depicted in Fig. 6. Note that the optimal control law
corresponding to the choice of 4 andus 4 is continuous with
respect tar.

V. CONCLUSION

In this paper, we formulated a model predictive controller
based on & /co-norm performance objective for linear sys-
tems subject to input and output constraints, and gave condi-
tions on the weighting matrices for closed-loop stability. We
also provided the explicit representation of such an MPC con-
trol law, and showed that it is a piecewise affine function
of the state vector. The basic setup can be easily extended
to trajectory following, suppression of measured disturbances,
and time-varying constraints, and to MPC of linear systems
with a performance index expressed by any combination of 1-
and co-norms. In fact, any combination leads to a linear pro-
gram, which can be solved multiparametrically by using the
results of Section IlI-A. The approach can also be extended
for solving explicitly optimal control/MPC problems for hy-
brid systems [42], as shown in [43], and for solving min—max
constrained control of systems affected by norm-bounded input
disturbances and/or polyhedral parametric uncertainties in the
state-space matrices [44].
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