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Model Predictive Control Based on Linear
Programming—The Explicit Solution

Alberto Bemporad, Francesco Borrelli, and Manfred Morari

Abstract—We study model predictive control (MPC) schemes
for discrete-time linear time-invariant systems with constraints on
inputs and states, that can be formulated using a linear program
(LP). In particular, we focus our attention on performance cri-
teria based on a mixed1 -norm, namely, 1-norm with respect
to time and -norm with respect to space. First we provide a
method to compute the terminal weight so that closed-loop sta-
bility is achieved. We then show that the optimal control profile
is a piecewise affine and continuous function of the initial state and
briefly describe the algorithm to compute it. The piecewise affine
form allows to eliminate online LP, as the computation associated
with MPC becomes a simple function evaluation. Besides practical
advantages, the availability of the explicit structure of the MPC
controller provides an insight into the type of control action in dif-
ferent regions of the state space, and highlights possible conditions
of degeneracies of the LP, such as multiple optima.

Index Terms—Constraints, linear programming (LP), model
predictive control (MPC), multiparametric programming, piece-
wise linear control.

I. INTRODUCTION

FOR COMPLEX constrained multivariable control prob-
lems,model predictive control(MPC) has become the ac-

cepted standard in the process industries [1]. Here at each sam-
pling time, starting at the current state, an open-loop optimal
control problem is solved over a finite horizon. The optimal
command signal is applied to the process only during the im-
mediately following sampling interval. At the next time step a
new optimal control problem based on new measurements of the
state is solved over a shifted horizon. The optimal solution relies
on a linear dynamic model of the process, respects all input and
output constraints, and minimizes a performance figure. This is
usually expressed as aquadraticor alinear criterion, so that the
resulting optimization problem can be cast as a quadratic pro-
gram (QP) or linear program (LP), respectively, for which a rich
variety of efficient active-set and interior-point solvers are avail-
able.

The first MPC industrial algorithms like IDCOM [2] and
DMC [3] were developed for unconstrained MPC based on
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quadratic performance indices, and later followed by algorithms
based on QP, like QDMC [4], for solving constrained MPC
problems. Later an extensive theoretical effort was devoted
to analyze such schemes, provide conditions for guaranteeing
feasibility and closed-loop stability, and highlight the relations
between MPC and linear quadratic regulation [5], [6].

On the other hand, the use of linear programming was pro-
posed in the early sixties by Zadeh and Whalen for solving op-
timal control problems [7], and by Propoi [8], who perhaps con-
ceived the first idea of MPC. Later, only a few other authors
have investigated MPC based on linear programming [9]–[13],
where the performance index is expressed as the sum of the-
or 1-norm of the input command and of the deviation of the state
from the desired value.

In this paper, we review the basics of MPC based on the min-
imization of a mixed -norm, namely, 1-norm with respect
to time and -norm with respect to space (this choice will be
motivated in Section II), derive the associated linear program,
and provide guidelines for choosing the terminal weight so that
closed-loop stability is achieved. Then, we determine explicitly
the structure of LP-based MPC, and show that it can be equally
expressed as a piecewise affine and continuous state feedback
law. This provides an insight into the behavior of the MPC con-
troller in different regions of the state space, highlighting re-
gions where saturation or idle control occur, regions where the
LP has multiple optima, etc. Besides such insights, the avail-
ability of the explicit MPC structure provides a clear computa-
tional benefit: no on-line LP solver is needed in the MPC im-
plementation, which requires only the evaluation of a piecewise
affine function.

The problem of synthesizing piecewise affine stabilizing
feedback controllers for linear discrete-time systems subject
to input and state constraints was also addressed in [14]. The
authors obtained a piecewise linear feedback law defined
over a partition of the set of states into simplicial cones, by
computing a feasible input sequence for each vertex via linear
programming (this technique was later extended in [15]). The
approach presented in this paper provides a piecewise affine
control law which not only ensures feasibility and stability,
but is also optimal with respect to a performance index. Our
approach is close in spirit to the technique proposed recently
in [16] for MPC based on a quadratic performance index: As
the linear program depends on the current state which appears
linearly in the constraints, the key idea is to treat the LP as a
multiparametric linear program(mp-LP), whose properties
have been studied in [17] and [18], and for which we developed
an efficient solver [19]. Note that even if LP can be viewed
as a special case of QP by letting the Hessian matrix ,
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the results of [16] onmulti-parametric quadratic programming
(mp-QP) are restricted only to the case . As a matter of
fact, mp-LP deserves a special analysis, which leads to a deep
insight of mp-LP properties and a different algorithm than the
mp-QP algorithm described in detail in [16].

The paper concludes with a series of examples that illustrate
the different features of the method.

II. M ODEL PREDICTIVE CONTROL WITH -NORM

Consider the problem of regulating to the origin the dis-
crete-time linear time-invariant system

(1)

while fulfilling the constraints1

(2)

at all time instants . In (1) and (2), , ,
and are the state, input, and output vector respec-
tively, and the pair is stabilizable. In (2),

and are vectors of upper and lower
bounds (more generally, we can allow only some components
of the inputs or outputs to be constrained).

MPC solves such a constrained regulation problem in the fol-
lowing way. Assume that a full measurement of the state is
available at the current time. Then, the optimization problem

s.t.

(3)

is solved at each time, where denotes the-step ahead pre-
diction of the state vector, obtained by applying the input se-
quence to model (1) starting from the state ,

, and is the th row of a
generic matrix .

In (3), we assume that , are nonsin-
gular matrices, is a full-column rank matrix, and

. The performance index amounts
to the sum of a weighted mixed 1- and-norm of the input and

1Although the form (2) is very common in practical implementations of
MPC, the results of this paper also hold for the more general mixed constraints
Ex(t) + Lu(t) � M arising, for example, from constraints on the input rate
�u(t) = u(t) � u(t � 1).

of the state deviation from the origin, namely the 1-norm with
respect to time of the -norm with respect to space. Although
any combination of 1- and -norms leads to a linear program,
our choice is motivated by the fact that-norm over time could
result in a poor closed-loop performance (only the largest state
deviation and the largest input would be penalized over the pre-
diction horizon), while 1-norm over space leads to an LP with a
larger number of variables, as will be clarified in Section III.

Let be the op-
timal solution of (3) at time. Then, the first sample of
is applied to (1)

(4)

The optimization (3) is repeated at time , based on the new
state , yielding amovingor receding horizoncontrol
strategy.

The two main issues regarding this policy are the feasibility
of the optimization problem (3) and the stability of the resulting
closed-loop system.

A. Feasibility and Constraint Horizon

Several authors have addressed the problem of guaranteeing
at each time step feasibility of the optimization problem asso-
ciated with MPC. Clearly, if only input constraints are present,
there is no feasibility issue at all ( is always feasible). On
the other hand, in the presence of output constraints, the MPC
problem (3) may become infeasible, even in the absence of dis-
turbances.

One possibility is to soften the output constraints and to pe-
nalize the violations [20], [21]. In the case of hard output con-
straints, Keerthi and Gilbert [22] proved that feasibility (as well
as stability) is guaranteed by setting ,
or alternatively, and . Set-
ting leads to an optimization problem with an infi-
nite number of constraints that is impossible to handle. On the
other hand, the constraint on the terminal state is undesirable,
as it might severely perturb the input trajectory from optimizing
performance, especially on short horizons.

By using arguments from maximal output admissible set
theory, Gilbert and Tan [23] proved that if the set of feasible
state and input vectors is bounded and contains the origin in its
interior, a finite horizon is sufficient for ensuring feasibility.
The smallest ensuring feasibility of the MPC problem (3)
at all time instants can be computed by solving a sequence of
linear programs [23], [14], [24], [25].

B. Stability and Terminal Weight

In general, stability is a complex function of the various
tuning parameters , , , , , and . For applications
it is most useful to impose some conditions on, and

so that stability is guaranteed for all nonsingularand ,
and leave and as free tuning parameters for performance.
Sometimes the optimization problem (3) is augmented with
the so called “stability constraint” (see, e.g., the surveys [26]
and [5]). This additional constraint imposed over the prediction
horizon explicitly forces the state vector either to shrink in some
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norm or to reach an invariant set at the end of the prediction
horizon.

Although most of the stability results were developed for
MPC formulations based on squared Euclidean norms, for gen-
eral nonlinear performance functions and models, the idea of
Keerthi and Gilbert [22] mentioned above [i.e., , ,

or (end-point constraint)] not only ensures per-
sistence of solutions (i.e., feasibility at each time step) but also
stability, provided that the problem is feasible at time .

Another possibility is to relax the end-point constraint by
adopting adual-modeapproach [27], namely, by defining an in-
variant set around the origin, and constrain the terminal state

to lie in that set.
In this paper, rather than constraining the final state, we pro-

vide conditions for the weight over in (3) that guarantee
closed-loop stability, provided that the matrixis stable, and
suggest a procedure for constructing such stabilizing.

In case the matrix is unstable, the procedure for con-
structing can be still applied by pre-stabilizing system (1) via
a linear controller without taking care of the constraints. Then,
the output vector can be augmented by including the original
(now state-dependent) inputs, and saturation constraints can be
mapped into additional output constraints in (3).

Assuming that the constraint horizon is long enough
so that the shifted optimal input sequence ,

is feasible at the next time step [ is
chosen according to the techniques recalled in Section II-A),
the following theorem shows that, by appropriately choosing
the terminal weight , the control law (3) stabilizes (1)
asymptotically.

Theorem 1: Let be a stable matrix, and assume that the
initial state is such that a feasible solution of problem (3)
exists at time . Assume that there exists a full-column rank
matrix such that

(5)

is satisfied for all . Then, for sufficiently large, the
MPC law (3) and (4) ensures the fulfillment of the input and
output constraints , ,
and , .

Proof: The proof follows from standard Lyapunov ar-
guments, close in spirit to the arguments of [22], [28] where
is established the fact that under some conditions the value
function attained at the minimizer

, of (3)
is a Lyapunov function for the closed-loop system. Under the
assumption that is sufficiently large (see Section II-A), the
shifted sequence , is
feasible at time , and

(6)

As condition (5) is satisfied for , is a decreasing
sequence. Since is lower-bounded by 0, there exists

, which implies .
Therefore

(7)

which proves the theorem, asand are nonsingular.
When weighted squared 2-norms are used instead of
-norms in (3), (5) becomes ,

which is satisfied by any pair solving the Lyapunov
equation .

The question now arises if matricesand satisfying (5)
exist, and how to find them. Let us focus on a simpler problem
by removing the factor from (5)

(8)

The existence and the construction of a matrixthat satisfies
(8), has been addressed in different forms by several authors
[29]–[31], [14], [15], [32]. There are two equivalent ways of
tackling this problem: for the autonomous system

, find a Lyapunov function of the form

(9)

with full-column rank, , or equivalently com-
pute a symmetrical positively invariant polyhedral set [32].

Unlike the 2-norm case, the condition that matrixhas all the
eigenvalues in the open disk is not sufficient for
the existence of a Lyapunov function (9) withsquare ( )
[29]. The following theorem, proved in [31], [30], states neces-
sary and sufficient conditions for the existence of the Lyapunov
function (9).

Theorem 2: The function is a Lyapunov
function for the autonomous system if and
only if there exists a matrix such that

(10a)

(10b)

where

is the infinity (induced) norm of .
In [31] and [30], the authors proposed an efficient way to

compute by constructing matrices and satisfying
(10). By using the results of [31] and [30], the construction of a
matrix satisfying (5) can be performed by exploiting the fol-
lowing result.

Proposition 1: Let and be matrices satisfying (10),
with full rank. Let , , where

is the left pseudoinverse of. Then, the
square matrix

(11)

satisfies (5).



BEMPORADet al.: MODEL PREDICTIVE CONTROL BASED ON LINEAR PROGRAMMING 1977

Proof: Since satisfies , we obtain

Therefore, (5) is satisfied.
In [30] the author shows how to construct matricesand
in (10) with the only assumption that is stable. However,

this approach has the drawback that the numberof rows
may go to infinity when the moduli of the eigenvalues of
approach 1.

In [31], the authors construct a square matrix
under the assumption that the matrixin (1) has distinct eigen-
values located in the open square .

In [12], the authors use a different approach based on Jordan
decomposition to construct a stabilizing terminal weighting
function for the MPC law (3) and (4). The resulting function
leads to a matrix with rows where
is the algebraic multiplicity of the zero eigenvalues of matrix

. The result seems to hold only for matriceswith stable and
real eigenvalues and, therefore, in general the approach of [31]
is preferable.

Remark 1: If is given in advance rather than
computed as in Proposition 1, (5) can be tested numerically, ei-
ther by enumeration ( LPs) or, more conveniently, through
a mixed-integer linear program with continuous vari-
ables and integer variables.

III. PIECEWISEAFFINE MPC LAW WITH -NORM

The MPC formulation (3) can be rewritten as a linear
program by using the following standard approach (cf.,
e.g., [10]). The sum of the components of any vector

that satisfies

(12)

represents an upper bound on , where

(13)

and the inequalities (12) hold componentwise. It is easy
to prove that the vector , ,

, , that satisfies
(12) and simultaneously minimizes

also solves the original problem (3), i.e., the same

optimum is achieved [7], [10]. Therefore,
(3) can be reformulated as the following LP problem:

(14a)

s.t.

(14b)

(14c)

(14d)

(14e)

(14f)

(14g)

where constraints (14b)–(14f) are componentwise, and
means that the constraint is duplicated for each sign, as in (12).2

Problem (14) can be rewritten in the more compact form

s.t.
(15)

where , , , ,
.

Since problem (15) depends on the current state, in the
implementation of MPC one needs to solve the LP (15) on line at
each time step. Although efficient LP solvers based on simplex
methods or interior point methods are available, computing the
input demands significant online computation effort and
control software complexity.

Rather than solving the LP online, we follow the ideas of [16]
and propose an approach where all the computation is moved
offline. The state feedback control law is defined implicitly
by computing the solution of the optimization problem (3), or
equivalently (15), as a function of the state vector . Our
goal is to make this dependence explicit. In fact, by treating

as a vector of parameters, the LP becomes what is called
an mp-LP in the operations research literature [17]–[19].

As will be described in Section III-A, we use the algorithm
developed in [19] for solving the mp-LP previously formulated.
Once the multiparametric problem (14) has been solved offline
for a polyhedral set of states, the optimal solution

of (15) is available explicitly as a piecewise affine
function of , and the model predictive controller (3) is also

2Note that1-norm over space requires the introduction ofn(N � 1) slack
variables for the termskQx k , " � �Q x k = 1; 2; . . . ; N � 1,
i = 1; 2; . . . ; n, plusr slack variables for the terminal penaltykPx k ,
" � �P x i = 1; 2; . . . ; r, plusmN slack variables for the
input termskRu k , " � �R u k = 0; 1; . . . ; N � 1, i =
1; 2; . . . ; m.
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available explicitly, as the optimal input consists simply of
the first components of

(16)

Therefore, the MPC control law has the form

if
(17)

where , , and the polyhedral sets
, , are a partition of .

We remark that the implicit form (3) and the explicit form
(17) are totallyequal, and therefore the stability, feasibility, and
performance properties mentioned in the previous sections are
automatically inherited by the piecewise affine control law (17).
Clearly, the explicit form (17) is more advantageous for imple-
mentation, and provides insight on the type of action of the con-
troller in different regions of the state space, as will be de-
tailed in Section III-D.

A. Multiparametric Linear Programming

The first method for solving mp-LPs was formulated by Gal
and Nedoma [17], and later only a few authors have dealt with
multiparametric linear [18], [33], [34], [19], nonlinear [35],
quadratic [16], and mixed-integer [36] program solvers.

Multi-parametric programming systematically subdivides the
space of parameters intocritical regions(CRs). A CR is the set
of all vectors of parameters for which a certain combination of
constraints is active at the optimizer of problem (15) [37], [33].
For each CR, the optimizer is expressed as a function of.

In [19], we proposed an iterative algorithm which, rather than
visiting different bases of the associated LP tableau [17], uses
geometric arguments to directly explore and partition the param-
eter set [16]. The resulting algorithm for solving multi-para-
metric linear programs has computational advantages, namely
the simplicity of its implementation in a recursive form and the
efficient handling of primal and dual degeneracy.

In order to prove interesting properties of MPC based on LP,
we briefly recall here below the main features of mp-LP, by re-
ferring the reader to [18], [19] for a more comprehensive de-
scription.

Consider again the right-hand side mp-LP (15) and its dual
problem

s.t. (18)

where for simplicity we dropped the dependence onof the state
vector . For a given polyhedral set of parameters ,

, an mp-LP solver determines the
region of parameters such that the LP (15) is feasible
and the optimum is finite, and finds the expression of the
optimizer (or one of the optimizers, in case of multiple optima).

For a given , let be the optimal value of
problem (15) and be the set of optimizers related

to . We need the following definition of primal and dual
degeneracy.

Definition 1: For a given , the LP (15) is said to be
primal degenerateif there exists a such that the
number of active constraints at the optimizer is greater than the
number of variables .

Definition 2: For a given the LP (15) is said to be
dual degenerateif its dual problem (18) is primal degenerate.

We recall some well-known properties of the optimizer
(when it is uniquely defined), of the value

function , and of the set .
Theorem 3 (cf. [18, p. 179, Th. 2]):Let be the set

of parameters such that the LP (15) is feasible and the
optimum is finite. Then, is a closed polyhedral
set in .

Definition 3: A continuous function , where
is a polyhedral set, ispiecewise affine (PWA)if there

exists a partition of into convex polyhedra , and
, , .

Theorem 4 (cf. [18, p. 180]):The functions and (if
unique3 ) are continuous and piecewise affine over. More-
over, is a convex function over .

Because of (16), the following corollary of Theorem 4 shows
that the controller (3) and (4) admits the piecewise affine repre-
sentation (17).

Corollary 1: The control law , , defined
by the optimization problem (3) and (4) is continuous and piece-
wise affine.

B. mp-LP Algorithm

The mp-LP algorithm presented in [19] consists of two parts.

1) Determine the minimal dimension of the affine
subspace that contains . This preliminary step reduces
the number of parameters and allows to work with full-
dimensional regions.

2) Determine the critical regions and the PWA functions de-
scribing the optimum and the optimizer .

When the mp-LP algorithm is used to solve the mp-LP (15)
generated by the MPC formulation (3), the first step may not
be required, because of the following proposition.

Proposition 2: Consider the MPC problem (3) and suppose
, . Then the set

of states (i.e., parameters) which renders (15) feasible is a
full-dimensional subset of .

Proof: We first prove that contains a ball centered
in the origin of radius , .
This is equivalent to show that for each state there
exist a feasible control sequence and a corresponding
feasible output evolution . To this end, consider a state

, the input sequence , and the corre-
sponding output sequence . Clearly,
are feasible inputs. The outputs are also feasible for

3See Section III-D for details about the case of multiple optima.
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where the superscript denotes theth row (or component),
and the standard Euclidean norm. Hence, for all
the LP problem (15) is feasible, i.e., . By Theorem 3,

is a full-dimensional convex polyhedron of .
The second part of the algorithm represents the core of the

mp-LP algorithm and we refer to [19] for a complete and de-
tailed presentation.

C. Offline Complexity of Explicit MPC Based on LP

An upper-bound to the number of different critical regions
that are generated by the mp-LP solver can be found by using the
approach of [34], where is shown to be less than or equal to
the number of extreme points of the feasible region ,

of the dual problem of (16). In the worst case, such a dual
polyhedron in has facets, where, are the number of
optimization variables and constraints, respectively, in (15). By
recalling the result in [38] for computing an upper-bound to the
number of extreme points of a polyhedron, we obtain

(19)

In practice, far fewer combinations are usually generated by the
mp-LP solver. Furthermore, the gains for the future input moves

and slack variables ,
are not relevant for the control law. Thus, several different com-
binations of active constraints may lead to the same firstcom-
ponents of the solution . Indeed, the number
of regions of the piecewise affine solution of (15) is in general
larger than the number of feedback gains in the MPC law
(17), as by post-processing the mp-LP solution two critical re-
gions, where the linear gain is the same, are joined, provided
that their union is a convex set [39].

D. Idle Control and Multiple Optima

There are two main issues regarding the implementation of
an MPC control law based on linear programming: idle control
and multiple solutions. The first corresponds to a control move

which is persistently zero, the second to the degeneracy
of the LP problem and the existence of multiple solutions. The
approach of this paper allows one to easily recognize both situ-
ations.

By analyzing the explicit solution of the MPC law, one can
locate immediately the critical regions where the matrices,
in (17) are zero, i.e., where the controller provides idle control.
A different tuning of the weights is required if such polyhedral
regions appear and the overall performance is not satisfactory.

The second issue is the presence of multiple solutions,
that might arise from the degeneracy of the dual problem
(18). Multiple optima are undesirable, as they might lead to
a fast switching between the different optimal control moves
when the optimization program (15) is solved online, unless
interior-point methods are used. Such behavior can be avoided
when the piecewise affine solution (17) is used.

When dual degeneracy occurs there exist critical regions
where the optimizer is not uniquely defined. The mp-LP solver

[19] can detect such critical regions of degeneracy and partition
them into sub-regions were a unique explicit optimizer is
defined. This sub-partitioning may led to discontinuity of the
optimizer within the dual degenerate regions. The following
proposition proves the existence of a continuous optimal
control law even in case of dual degeneracy.

Proposition 3: Let be a critical region of dual
degeneracy. There always exists a polyhedral partition

of such that the optimizer is
affine in each and continuous in .

Proof: The proof follows from results in [18]. See [19,
Rem. 4] for details.

Example IV.3 will illustrate an MPC law where multiple op-
tima and idle control occur.

E. Efficient Computation of mp-LP Solutions

The problem of reducing online computation is crucial, as
whenever the number of constraints involved in the optimiza-
tion problem increases, the number of regions associated with
the piecewise affine control mapping may increase exponen-
tially. In [40], an algorithm that efficiently performs the online
evaluation of the explicit optimal control law both in terms of
storage demands and computational complexity has been pre-
sented. Here, we present the main idea.

By Theorem 4, the value function is convex and piece-
wise affine

(20)

where , , is the polyhedral partition asso-
ciated with the optimal control law (17). From the equivalence
of the representations of piecewise affine convex functions [34],
the function in equation (20) can be represented alterna-
tively as

(21)

By exploiting the equivalence of (20) and (21), the polyhedral
region containing a given state can be simply identified
by searching the index, for which

is maximum

(22)
Compared to an algorithm for evaluating PWA functions where
all the polyhedra are stored in memory and searched sequen-
tially on line, this approach is clearly more efficient both in
terms of storage demand and computation complexity, as only
the value function must be stored, i.e., real num-
bers, and as it will give a solution after multiplications,

sums, and comparisons, see [40] for
details. An alternative approach, although less efficient in terms
of memory requirements, was described in [41] and consists of
organizing the controller gains of the PWA control law on a bal-
anced search tree, which leads to a average computa-
tion complexity.
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IV. EXAMPLES

Example IV.1: We provide here the explicit solution to the
unconstrained MPC regulation example proposed in [12]. The
nonminimum phase system

is sampled at a frequency of 10 Hz, obtaining the discrete-time
state-space model

In [12], the authors minimize , with the
horizon length . Such an MPC problem can
be rewritten in the form (3), by defining ,
and . Note that since , are singular matrices, the
sufficient condition for stability of Theorem 1 does not hold.
The solution of the mp-LP problem was computed in 20 s by
running the mp-LP solver [19] in Matlab on a 450-MHz Pentium
III and the corresponding polyhedral partition of the state-space
is depicted in Fig. 1(a). The MPC law is

if

Region

if

Region

if

Region

if

Region

if

Region

if

Region
(23)

In Fig. 1(b), the closed-loop system is simulated from the initial
state . Note the idle control behavior during the
transient.

(a)

(b)

Fig. 1. Example IV.1 with terminal weightP = 0.

The same problem is solved by slightly perturbing
so that it becomes nonsingular, and by adding

the terminal weight

(24)

which is computed as shown in Proposition 1 (
, , ,

). The explicit solution was computed in 80 s,
consists of 44 regions and is depicted in Fig. 2(a).

In Fig. 2(b), the closed-loop system is simulated from the
initial state .

Example IV.2: Consider the double integrator

(25)

and its equivalent discrete-time state-space representation

(26)

obtained by setting

s. System (26) and the explicit form of the corresponding
constrained linear quadratic regulator was investigated in [16].
Here, instead we want to regulate the system to the origin while
minimizing the performance measure

(27)
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(a)

(b)

Fig. 2. (a) Example IV.1 with terminal weightP as in (24). (b) Simulation of
the explicit controller and the comparison with LQR control based on the same
weightsQ, R.

(a)

(b)

Fig. 3. Example IV.2: closed-loop simulation and polyhedral partition of the
MPC law.

subject to the input constraints

(28)

and the state constraints

(29)

This task is addressed by using the MPC algorithm (3) and (4)
where , , , . The solution

of the mp-LP problem was computed in 13.57 s and the corre-
sponding polyhedral partition of the state-space is depicted in
Fig. 3(b). The resulting MPC law is

if

Region

if

Region

if

Region

if

Region

if

Region

if

Region

if

Region

if

Region

Note that regions #1 and #2 correspond to the saturated con-
troller, and regions #4 and #6 to idle control. The same example
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Fig. 4. Example IV.2, MPC control law: partition of the state–space for
increasing input horizonN .

TABLE I
OFF-LINE COMPUTATION TIMES AND NUMBER OFREGIONSN IN THE MPC

CONTROL LAW (17) FOR THEDOUBLE INTEGRATOREXAMPLE

was solved for an increasing number of degrees of freedom.
The corresponding polyhedral partitions are reported in Fig. 4.
Note that the white regions correspond to the saturated con-
troller in the upper part, and in the
lower part. The offline computation times and number of re-
gions in the MPC control law (17) are reported in Table I.

Example IV.3: Consider again the double integrator of Ex-
ample IV.2, along with the optimization problem

(30)

subject to constraints (28) and (29). The associated mp-LP
problem is

s.t.

(31)

Fig. 5. Polyhedral partition associated with problems (28)–(30).

The solution of (31) was computed in 0.5 s and the corre-
sponding polyhedral partition of the state–space is depicted in
Fig. 5. The MPC law is

degenerate if

Region

if

Region

degenerate if

Region

if

Region

Note the presence of idle control and multiple optima in re-
gions #2, #4 and #1, #3, respectively. The algorithm in [19] re-
turns two possible subpartitions of the degenerate regions #1,
#3. Region #1 can be partitioned either as

if

Region a

if

Region b
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Fig. 6. Example IV.3: example of degeneracy.

or

if

Region a

if

Region b

if

Region c

if

Region d

if

Region e

Region #3 can be partitioned symmetrically either as

if

Region a

if

Region b

or

if

Region a

if

Region b

if

Region c

if

Region d

if

Region e

As a consequence, two possible explicit solutions to problem
(30) are depicted in Fig. 6. Note that the optimal control law
corresponding to the choice of and is continuous with
respect to .

V. CONCLUSION

In this paper, we formulated a model predictive controller
based on a -norm performance objective for linear sys-
tems subject to input and output constraints, and gave condi-
tions on the weighting matrices for closed-loop stability. We
also provided the explicit representation of such an MPC con-
trol law, and showed that it is a piecewise affine function
of the state vector. The basic setup can be easily extended
to trajectory following, suppression of measured disturbances,
and time-varying constraints, and to MPC of linear systems
with a performance index expressed by any combination of 1-
and -norms. In fact, any combination leads to a linear pro-
gram, which can be solved multiparametrically by using the
results of Section III-A. The approach can also be extended
for solving explicitly optimal control/MPC problems for hy-
brid systems [42], as shown in [43], and for solving min–max
constrained control of systems affected by norm-bounded input
disturbances and/or polyhedral parametric uncertainties in the
state-space matrices [44].
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